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Data for 7N and KN scattering, reactions, and bound-states are examined
with the chiral color dielectric model, the cloudy bag model, and a potential
model. The behaviors of the T matrices in the complex energy plane as
predicted by these models are used to interpret the data.

PACS numbers: 13.75. Gx, 13.75. Jz

1. Introduction

We have assembled here in Krakow to discuss the production, properties,
and interactions of mesons. In this talk I will concentrate on the structure of
the 7N and KN interactions as revealed at low energies by bound state- and
resonant poles in the scattering amplitudes. This will summarize work Jeff
Schnick, Guangliang He, Paul Fink, Dinghui Lu, and Shashi Phatak and I
have done in which we use experimental data and a variety of calculable —
but still realistic — theoretical models to provide simple views of meson-
baryon interactions.

Quark models have been used extensively to study meson-baryon scat-
tering and baryon spectra. Usually the baryon spectrum is identified with
the bound-state spectrum of quarks within a potential well — even though
this has two shortcomings: the influence of the meson-baryon interaction
on the baryon mass is ignored and the baryons are unrealistically stable
since there is no coupling to decay channels. In contrast, the experimental
masses of baryons are determined as resonance energies in meson-nucleon
scattering and so include shifts due to the meson-baryon interactions as well
as widths due to the coupling to the open channels. For this reason it is
more realistic to identify experimental masses and widths with the location
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of the poles of the transition matrix T in the complex energy plane. [You
will recall that bound states are identified with poles on the first (physical)
energy sheet, usually on the real energy axis at energies below the threshold
for scattering, and that resonances are identified with poles on the second
(unphysical) energy sheet, the resonance being narrow if the pole is near the
real axis.)

Chiral quark models, such as the cloudy bag models[1], contain mesons
in additions to quarks and therefore also contain elementary meson-quark
interactions. The calculation of masses with these models consequently
include shifts due to the meson-baryon interactions. However, when these
models use perturbation theory to calculate the widths of the excited
baryons, higher-order terms are ignored and unitarity is not ensured. So
again, a calculation of the poles of the transition matrix 7 would be pre-
ferred {2, 3].

While bag models represent a more fundamental approach to the basic
physics than do the ever-popular potential models, they suffer from several
limitations. First, the use of an artificial bags to confine quarks lead to
coordinate-space wave functions which have sharp discontinuities at the
bags’ boundaries and this leads to meson-baryon form factors which have
unphysical oscillations. Second, the use of static and nonrecoiling bags is
unrealistic and especially so for scattering where the momentum transfers
can be large. Finally, bag calculations treat the bare baryon masses and
the bag radius as independent parameters even though they are related and
should be fit simultaneously with the scattering data.

Chiral color dielectric models (CDM) [4] overcome some of the lim-
itations of bag models by providing a more microscopic and dynamical
mechanism for quark confinement and by including baryon recoil through
nontopological-soliton solutions to the equations of motion. While the CDM
was introduced only to simulate the absolute confinement of quantum chro-
modynamics, it was later discovered that an effective color dielectric field
arises naturally in lattice QCD when coarse-grained field variables are used
[5]. This color dielectric field accounts for the long-distance behavior of
the QCD vacuum and produces a natural confinement of quarks within
baryons [6].

Regardless of the elementary model of the two-body interaction, the
calculations we undertake [3, 7, 8] contain an infinite number of higher-
order terms and ensure unitarity in the meson-nucleon channels. We do
that by iterating tree-level diagrams, that is, the potentials V, using the
relativistic, coupled-channels, Lippmann-Schwinger equation,
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When the input potential V' consists of a bare pole times a vertex-function,
the output T will have a renormalized pole together with a meson-dressed
vertex function. Our work is somewhat unique in calculating the renormal-
ized bound state spectrum and scattering simultaneously.

The subscripts a and 3 in (1) indicate the initial and final meson-baryon
channels:

Pion Reaction Kaon Reaction Channel (a, §)
N — 7N, K™ p —» K7p, 1
— 7wA(rN"). - 7% 2 (2)
- K°’n, 3
— mwPA°. 4

Since we do not include the Coulomb force for the 7N system, we use an
isospin basis, that is, we solve channels 1 and 2 for isospin / = 1/2 and
3/2. Since we do include the Coulomb force for the KN system (in order
to examine kaonic hydrogen) we use a charge basis and this requires at
least these four channels. Our task is to find the V to use in this equation.
For the mN interaction I will show results using the chiral color dielectric
quark model [7]. For the KN interactions I will show results using potential
models[8] and the cloudy bag model [3].

2. NN chiral color dielectric model

We use the cloudy bag model and chiral color dielectric model in similar
ways to derive the VﬁLa‘”(k’, k) to use in (1). We start with an elementary
Lagrangian containing quark and meson fields, deduce the elementary ver-
tices (interaction Hamiltonian) by expanding the Lagrangian in powers of
the meson field, and look for those pieces which produce meson-baryon in-
teractions. Fock-space matrix elements of the appropriate Born diagrams
then yield the potentials.

For our CDM calculation of the N interaction, we start we a Lagrangian
in which the quark field has already been modified so that the Weinberg—
Tomozawa relation appears explicitly at the tree level [1, 4]:

_1. m 1 — e a
L= g|iv*D, - ——-X" + ﬁv“'rsr "Dy~ SAav AL
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where ¢, 5, A} and x are the quark, meson, gluon, and dielectric fields

respectively, and k(x) = x* is the dielectric coefficient. The phenomeno-
logical, dielectric self-interaction field U(x) is expressed in terms of the bag
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constant B, a shape parameter «, and the dielectric field x:

U0 = Baxt [1-2(1-2)x+ (1- 7)) (4)

Of particular interest here is the limit xy — 0 of vanishing dielectric field.
Then the gluon kinetic energy term x*F?/4 in the Lagrangian vanishes and
the quark effective mass m,/x becomes infinite. Accordingly, the quark and
gluon fields are confined within the baryon to the region of non-vanishing
dielectric field x. This contrasts with the bag model in which confinement
is externally imposed by placing the quarks within an infinite square well.

We identify the interaction Hamiltonian by expanding the Lagrangian
in powers of f~1:

Hint =~ H11r+H2m (5)
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We note that H,, has a pseudovector coupling between the pion and the
quark and that H,, has a two-pion contact interaction which reproduces the
Weinberg-Tomozawa result of current algebra. When we treat the baryons
as composite three-quark systems and the mesons as elementary quantized

fields, we obtain the hadron-space interaction Hamiltonian involving a single
meson:

H,,-ZBﬁB/dkk a(k) - V4, (k) + hc, (7)

(2 )3/2
HB = ZB},B /

d3k d3k'
where @(k) is the meson annihilation operator and the vertex functions f)‘“a

[(@) x kud(k)) - Wh, (K, k) + hc] ,(8)

and W“ are matrix elements of the quark pseudovector and vector cur-
rent between baryon states. These Hamiltonians lead to the three distinct
graphs shown in Fig. 1 which contribute in lowest order to the 7N and 7A
potentials.

To evaluate these potentials we need know the quark fields. We get them
by solving simultaneous coupled, nonlinear, partial differential equations for
the quark and dielectric fields:

dU(x) my
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Fig. 1. The three lowest-order terms of the potential contributing to N scattering.

We assume the dielectric field y is time-independent and spherically sym-
metric, and solve numerically for x’s with soliton behaviors. The solutions
of (9) describe quark orbits within baryons in which the center of mass may
move. We remove this spurious motion by a Peierls-Yoccoz[9, 10] projection
to form an eigenstate of momentum p:

. “h) oL kyel (ke
ipr t t 1 [P/ ir(R)ag k)
|B(p)) = [dre 9r 9r 9r€ 0) (10)

Ng(p) ’

where Np is a momentum-dependent normalization constant, qI. creates a
quark wave function centered at =, [0) is the vacuum state, fp(k) is the
Fourier transform of the scalar dielectric field x(r), and a;b(k) is the cre-
ation operator for a scalar dielectric field quanta with energy w(k). The ver-
tex functions with recoil corrections are evaluated between the momentum-
projected baryon states in the Breit frame, for example,

—i <Bg(—-§)fﬁ(0)7“*rsf"4(0) {Ba(§)>‘

2f\/ 2w (k)

This vertex function is related to the axial form factor of the nucleon, with
the £k — 0 limit of V determining g4 of the nucleon. We find that ga
calculated using momentum-projected states is larger than that calculated
statically.

Vb (k) = (11)

3. N Results

We have made the important discovery that the mass and width of
the A and nucleon are significantly affected by the closed but coupled 7A
channel. To draw this conclusion we had to simultaneously reproduce =N
scattering as well as the complex energies of the nucleon and delta poles
in the T matrix. As we see in Fig. 2, the numerical fitting procedure ends
up with the nucleon as a single pole lying on the real energy axis (as it
should since the open channels are all at higher energies), and the A as a
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Fig. 2. The real part of the T matrix as a function of complex energy. (Left) The
nucleon as a single pole on the real energy axis. (Right) The A as a double pole,
symmetric about the real energy axis.

pair of conjugate poles (a consequence of the reflection principle for complex
functions).

Somewhat surprisingly, we found that we can reproduce the experimen-
tal masses of the nucleon and delta for a bag constant B'/* between 100
MeV and 150 MeV and for the quark mass between 40 MeV and 120 MeV.
While 40 MeV may appear small, the dielectric field also becomes small
near the origin, and, consequently, the 40 MeV quark has an effective mass
inside of a nucleon of m,/x(r ~ 0) ~ 100 MeV. For an assumed value of the
pion decay constant f = 93MeV, the fitted parameters and deduced bare
masses (in MeV) are a, = 0.126, mg, =1127, m) =1171, and m'0) =1439.
The glueball mass is consistent with the values found in other models[10]
and is close to the value in the particle data booklet. The effect of renormal-
ization on the nucleon and delta masses is to move the bare masses down by
~ 250MeV, a value which may get decreased if we include more repulsion
in our model (a need suggested by the predicted scattering lengths).

Our study also produced renormalized and bare values for f, the pion
weak decay constant, and for frnyn, the TNN coupling constant. We extract

the bare coupling constant fi?\),N from our final T by comparing the vertex
function v;(k) computed with the CDM to the standard g(k) of Chew-Low

theory:
(0)
. | 4m
vi(k) = 44/ mf;rnﬂg(k)na - k. (12)

We extract renormalized coupling constants and renormalized form factors
(Fig. 3) by making Laurent expansions of the computed T around its poles,
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for example,

. K k
FE - my

It is particularly interesting to compare these form factors to those of other
approaches since form factors are related to the quark wave functions and
are affected by the rarely-included renormalization process. We find that
there is an approximate proportionality between f and frnyn, and a ~ 15%
renormalization effect. From the residue of T near the A pole we also find
that

fNa 87 (14)

ferN
This ratio is quite close to the experimental value of ~ 2, closer in fact than
the SU(6) prediction[1] of 64/2/5 ~ 1.70. This clearly shows the importance
of renormalization.
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Fig. 3. (Left) The S- and P-wave nN phase shifts for f=90 and f=93. {Right)
The bare 7NN form factors of the color dielectric and the cloudy bag models.

On the LHS of Fig. 3 we show the 7NN form factors deduced from the
behavior of the T matrix near the nucleon pole. The different curves cor-
respond to different values of the pion decay constant f. One can estimate
from the falloff that the range R of the equivalent monopole form factor is
approximately 0.5 fm. This R is comparable with the value R ~ Rbas/\/fﬁ
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obtained from the cloudy bag model with a bag radius R,,, ~ 1 fm. The
meson exchange models, however, use much smaller B ~ 0.15 fm which
produces a much harder form factor. In practice, a monopole form factor
falls off much slower than the form factor calculated in our model and does
not fit the scattering phase shifts as well.

As shown on the RHS of Fig. 3, we find excellent agreement with the
P33 phase shifts from threshold through the delta resonance energy, good
agreement with the Pj3 and Ps; scattering volumes, and good agreement
with the energy dependence of the P3; phase shift for the first 300 MeV of
kinetic energy. Better agreement with the S-wave and small P-wave phases
requires additional repulsion in the model, possibly obtained by one-loop
corrections. The model could also be improved by obtaining solutions to
the field equations beyond those of the mean field approximation and by
the inclusion of additional dielectric fields.

4. KN Theory

The dominant characteristics of the low energy K ~p interaction is the
coupling of all the channels in (2) and the influence of the A*(1405) res-
onance in the r channel below the KN threshold. The data for these
reactions, being small in number and large in error, leave uncertainties as
to whether the A* is a composite ©7 resonance, a KN bound state, an
elementary three-quark state, or some combination of these. There is, in
addition, the puzzle of the measurements of kaonic hydrogen finding the 15
level to have more binding than provided by the Coulomb force, which in
turn implies a positive real part to the K N scattering amplitude, in contrast
to the analyses of scattering data.

Schnick and Landau[8] did fit several separable potentials to the KN
scattering data, and found that one could fit both the scattering and bound
state data. In more recent work[3], our group has applied the cloudy bag
model to the coupled channels KN interaction (2) as an improvement to
potential models. The cloudy bag model work is similar to the chiral color
dielectric model already described so I will avoid repetition. The cloudy
bag model Lagrangian is expanded in powers of the meson field to obtain
the linearized, volume-coupled, SU(3)xSU(3) Lagrangian, and this is used
to deduce the potential:

= (B|Hcla) + > (B1Hs|Bo) —7— (BoiH la).  (15)
Bo=501,D03,P13

Here the first term describes direct scattering via elementary quark transi-
tions and the second term sums over processes in which there are resonance
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intermediate states. When the potential is used as the driving term in the
Lippmann-Schwinger equation (1), the contact interaction potential gener-
ates composite, nonelementary resonances not present in the potential, and
the elementary resonances get renormalized.

5. KN Results

We see on the LHS of Fig. 4 that Ref changes sign once below the KN
threshold (right-most arrow) and for fit 1, once again slightly above the ¥n
threshold (left-most arrow). This is fascinating, for the ability of the model
to reproduce the experimental 15 strong interaction shift in kaonic hydrogen
depends on the magnitude and sign of Ref near threshold, and clearly
there are several sign changes here. In order to unravel the mysterious
resonance-like behavior of the K N scattering amplitude, we have solved for
the complex enecrgies at which the scattering amplitudes have poles. On
the RHS of Fig. 4 we plot the imaginary part of the KN S wave scattering
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Fig. 4. (Left) The KN Sy; scattering amplitudes for three cloudy bag model fits.
The arrows show the X7 and KN thresholds. (Right) The imaginary part of the
same amplitude as a function of complex energy.

amplitudes as a function of complex energy. We note two poles: a high-
energy one some 17 MeV above the KN threshold (the tick mark to the
right of 1400 MeV in the figure) and 31 MeV along the negative imaginary
axis, and a low energy pole some 80 MeV below the KN threshold and
far from the real energy axis (and thus of little experimental consequence).
In contrast to these CBM fits, the potential models have only one S-wave
pole, and it is closer to the tabulated A(1405) energy. Apparently, in the
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potential model, the A(1405) is a composite resonance with a single pole
close to its tabulated energy, while in the cloudy bag model the A(1405) is
not elementary and not simple.
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Fig. 5. (Left) The shift and width due to the strong interaction of the 15 level
in kaonic hydrogen. The triangles are predictions of the cloudy bag model, the
filled circle a prediction with the Schnick-Landau potential. (Right) The threshold
branching ratios for K~ p to neutral states, to charged states, and to charged Xm
states as predicted by the cloudy bag model.

The T matrices pole positions for the P and D wave amplitudes have
also been calculated. In both cases the renormalization shifts the masses of
the resonances downwards in energy by 31 MeV, considerably less than the
renormalization shift in 7N scattering. The tabulated masses and widths
for resonances are in excellent agreement with the pole positions, while
for the ¥p;3 and Apgs there are ~ 30% differences (this is expected since
the widths arise completely from renormalization, and these are broad and
nonsymmetric resonances).

On the LHS of Fig. 5 we show our predictions for the strong interaction
shift of the 1S level in kaonic hydrogen. We calculate the binding energy
by determining the complex energy poles of the T' matrix for the combined
Coulomb-plus-nuclear potential problem. All the CBM fits have a width
which is acceptable or slightly large and a shift which is opposite in sign
to the data (the experimental shifts are to the more bound). One of the
potential models of Schnick and Landau(8] and its update by Tanaka and
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Suzuki[11] agree in sign with the data. Although the sign changes in some of
the cloudy bag model’s Refso; are similar to those of the potential models,
none have the proper combination of I = 0 and I = 1 strengths to keep
Ref(K~p) > 0.

On the RHS of Fig. 5 we compare the cloudy bag model predictions to
the experimental data for the branching ratios

K p— X rxt _ K~ p — charged _ K p—7°A
TEKpoota T K-p—all " K~p - neutral’

(16)

We see that some of the cloudy bag model fits can reproduce these ratios
adequately, although they generally are not the ones which reproduce the
the K™p — (E¥nnn, Anmrm) mass spectra well. Although not shown, the
potential model of Tanaka and Suzuki[11] agree well with these ratios.

6. Conclusions

We have witnessed a progression in the sophistication of theory used
to understand meson-baryon interactions: from potential models, to bag
models, o color dielectric models. We now have included natural and real-
istic quark confinement, baryon recoil, and the dominant coupled two-body
channels. We use model field theories to derive effective potentials con-
taining terms up to second order in the meson-baryon coupling, and then
use these potentials as input to relativistic, coupled-channels Lippmann-
Schwinger equations. In this way we derive renormalized values for cou-
pling constants, form factors, and resonance masses. We find much success
for such simple models. They can be improved by including higher order
terms which will give added repulsion, by solving the field equations with
more accuracy than afforded by the mean field approximation, and by the
inclusion of additional dielectric fields.

This work is supported in part by the United States Department of
Energy under grants DE-FG03-96ER40966 and DE-FG06-86ER40283.
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