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The first part of my talk is a very brief review of the Pomeron and how
it is described in perturbative QCD by the BFKL equation. The BFKL
Pomeron differs from that observed in total cross sections, but there is
some hope that it may be observed in perturbative high energy processes. A
particular application of the BFKL equation is to the evolution of the gluon
at low z and the consequences that this has on the structure functions, F
and Fr. Finally I discuss the CCFM equation which contains both the
BFKL and more traditional DGLAP forms of gluon evolution.

PACS numbers: 12.38. Bx

1. Introduction

We currently have an excellent candidate for the theory of the strong
interactions, namely Quantum Chromodynamics. However, before the dis-
covery of this theory, physicists instead studied the behaviour of scatter-
ing amplitudes at high energies. General properties such as unitarity and
analyticity turn out to be strong constraints on the behaviour of such am-
plitudes, enabling many interesting features to be deduced. This led to
the development of a branch of physics known as Regge theory. However,
interest in Regge theory declined sharply after the discovery of QCD and
asymptotic freedom. Unfortunately even with the full power of perturbation
theory at our disposal, predictions for many physical observables remain a
highly non-trivial task. Meanwhile the predictions of Regge theory, based
as they are on such general properties as analyticity, are still valid. It is
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an interesting question to see how these predictions compare with those of
QCD at high energy. Interest in this problem has been fuelled by the latest
generation of colliders which are capable of delivering high centre-of-mass
energies. In this contribution I shall only give a brief overview of some of
the progress that has been made in this area. Therefore, I recommend that
you look in Ref. [1] for more details.

2. Regge Physics and the Pomeron

Regge Physics is concerned with the high energy behaviour of scattering
amplitudes expressed in terms of the Mandelstam variables s and ¢t. The
properties of analyticity, unitarity and crossing symmetry lead one to the
conclusion that the amplitude should behave at high energies as

A(s,t) = 579, (1)

where the function a(t) is known as the Regge trajectory and is an approx-
imately linear function of t, a(t) ~ ap + a’t. For t > 0 these trajectories
connect particles with similar quantum numbers such that

a(m2) =J, (2)

where m is the mass and J the spin of the relevant particle. A scattering
amplitude which describes an elastic scattering process, Ag—aq(s,t), is re-
lated via the optical theorem to a total cross section, o¢ot(a@ — X). Regge
theory predicts that the high energy behaviour of this total cross section
will be

Otor ~ 52071, (3)

Most Regge trajectories have a(0) < 1 and consequently produce contri-
butions to the total cross section which decrease with increasing energy.
However, it is observed experimentally that total cross sections do not fall
as s increases. Therefore there must be a trajectory with «(0) 2 1. This
trajectory is known as the Pomeron trajectory, after Pomeranchuk [2]. A
fit by Donnachie and Landshoff [3] to a variety of total cross sections finds

Crop ~ s°%8. (4)

Figure 1 shows their fit to pp and pp data. In keeping with the other
Regge trajectories we expect that for ¢ > 0 that there should be particles
lying on this Regge trajectory. Since the Pomeron carries the quantum
numbers of the vacuum, these particles correspond to glueballs. The WA91
collaboration at CERN has found just such a candidate glueball state with
mass, 1.9 GeV [4].
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Fig. 1. pp and pp total cross sections with the asymptotic behaviour, s°-%8,

3. The reggeized gluon in QCD

How do the predictions of Regge theory compare with those of QCD?
In this section we shall see that the scattering amplitude for colour octet
exchange does indeed behave at high energies as s*(*). We consider quark
quark scattering with a single gluon exchanged in the ¢t channel. At high
energies this behaves as Ag(s,t) ~ s/t which is quite different from the s*(*)
behaviour associated with Regge theory. However, we should also consider
contributions from higher order graphs which transfer the quantum numbers
of the gluon. The usual suppression of such contributions due to powers of
as can be overcome by large logarithms of s. So at the next order in ag
we consider the colour octet contribution from two gluon exchange. We
only include the piece which contains the In(s) term and, in general, our
approach will only include such “leading logarithms”. With this in mind it
is found that the amplitude at the next order, A;, is proportional to Ag

Ay (s,t) = Ao(s,t)e(t) In(s). (5)

The function €(t) (which contains no s dependence) is formally infinite due
to an infra-red divergence. However, we can adopt some regularization
scheme, such as dimensional regularization, in order to proceed. At the
next order things become more complicated due to the greater number of
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Fig. 2. a) The leading order diagram which gives rise to Ao, b) The first contribu-
tion to Ay, c) the crossed contribution to A;, d) The “one rung” contribution to
Az, built from the effective vertex, I'.

ERSixs

Fig. 3. The effective vertex, I' represents a combination of various gluon emissions.

possible diagrams. A useful procedure is to introduce an effective vertex, I,
which summarizes a variety of gluon emission possibilities (Fig. 2 and 3).
The contribution from the resulting “one rung” diagram of Fig. 2(d) and
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the crossed contribution obtained from s < u is
Az(s,t) = Ay (s,t) %sz(t) In?(s) + extra terms. (6)

The extra terms spoil the proportionality of A; to Ag. However, they can-
cel when we include the relevent contributions from three gluon exchange
(which is the same order in ag). We can continue the process to higher
orders and we find that each contribution is proportional to the leading
contribution Ag

Arn(s,t) = Ao(s, t)e™(t) In"(s)/(n!) . (7

Our approach is thus leading logarithmic in the sense that we are summing
terms o In™(s) whilst neglecting terms o% In”~!(s) and smaller. If we sum
up all the leading contributions we obtain

., en(t) In"(s)

A(s,t) = Ao(s,t) Y

= n!
= Ag(s, t)s*® . (8)
Now recalling that Ao(s,t) ~ s we obtain
A(s, t) ~ s*®) | 9)

where a(t) = 1+ ¢(t). Thus we see Regge behaviour. We have not cured
the problem that £(t) is infra-red divergent. However, we shall see that the
perturbative Pomeron is free from such divergences.

4. The Pomeron

For the reggeized gluon we considered diagrams which exchanged the
quantum numbers of the gluon. The Pomeron, however, corresponds to the
quantum numbers of the vacuum. Consequently the simplest model of the
Pomeron in QCD is the exchange of two gluons. As in the previous case
we also need to sum the leading log s contributions from higher orders.
The whole procedure is similar to that of building up the Regge gluon.
However, unlike that case, we do not find that the next order amplitude
A, is proportional to Ag. To circumvent this problem we no longer work in
terms of the scattering amplitude. Instead we note that the amplitude for
a process involving Pomeron exchange can be written as

Im A(S,t) F(ya k11k2’q)

&p(ka, q) .
s k22(kl_q)2 B( 2 q)

(10)

— oo [ P e 2a(kr, )
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Where @G is the colour factor for the process and the two-vectors kq,k; and
g come from a Sudakov decomposition of the corresponding four-vectors
(g is simply the momentum transfered in the ¢ channel, so t = —g?%). The
functions ®;(k, q) are called the impact factors and determine the coupling
of the Pomeron to the external particles. The function F describes the
Pomeron itself and is independent of the external particles. At leading
order the function F is just two gluon exchange and so we have

Fo =6%(ky — k3). (11)

At the next order in as, Fj, contains an extra gluon exchange beween
the two ¢ channel gluons (coupled via the effective vertex, I') as shown in
Fig. 4. This ‘one rung’ ladder diagram can be expressed in terms of an
integral kernel, Kr, acting on the lowest order diagram, Fy

Fl =KR®F0. (12)

The action of this kernel corresponds to the addition of one “gluon rung”

Fo 1

Fig. 4. The Pomeron at lowest order in QCD corresponds to two gluon exchange
(colour singlet). The next order consists of the “one rung” diagram with couplings
described by the effective vertex, I'.

to the zero rung diagram. However, it is in fact more general than this. It
can be applied to the n*P rung diagram to generate the (n + 1)t diagram
Fn+1 = KR@Fn' (13)
The summation of all the leading terms thus leads to an integral equation
for F
F = F0+F1+F2+
= FR+Kr@(Fo+FR+...)
= FK+KrQ®F. (14)
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At this stage F' contains an infra red divergence. However, we have only
considered the real gluon emission terms. We have as yet to take into ac-
count the necessary virtual corrections, Ky. This is achieved by replacing
the normal ¢ channel gluons by reggeized gluons. As a result the kernel
is modified to K = Kgr + Kyv. Now the infra-red divergences cancel be-
tween the real and virtual pieces and the resulting F is a finite quantity.
So in summary, the perturbative QCD Pomeron consists of a ladder built

[ ]
L 2

Fig. 5. The BFKL Pomeron consists of a ladder built from reggeized gluons.

from reggeized gluons in the ¢ channel connected together by normal gluon
“rungs” at effective vertices, I'. The integral kernel which generates this
Pomeron was first calculated by Balitsky, Fadin, Kuraev and Lipatov and
leads to the famous BFKL equation [5].

5. The BFKL equation

The BFKL equation can be solved by finding the eigenfunctions of the
kernel K. Although these have been found for the general case [6] of finite
momentum transfer (Jt| > 0) we shall look at the particular case [¢t| = 0.
This is much simpler yet it is still extremely useful. For example, it yields
the value of the Pomeron intercept, aprky(0). To simplify the y dependence
of the BFKL equation, we consider the Mellin transfer of F

fw ki ke, 0) = [ dy ™" Fly, ki, ka,0). (15)

So the BFKL equation takes the form
wf(w’ k17 k21 0) = 52(,‘:1 - k2) + K @ f(wv kly k2’ 0) . (16)
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The integral kernel in this case takes the form
— Eﬁ 21,/ 1
K® f(w, ki, k2, 0) = = /d ¥ o
k2 f
(k" + (k1 — K')2)

X (f(w, k', k3,0) (w,kl,kz,o)) . (17)

Here a5 = 3as/m. We expand f in terms of the complete set of eigenfunc-
tions, ¥, of the integral kernel, K with eigenvalues, A(v)

flw ki ke, 0) = [ dv o, (k) (ka) (18)
Substituting this into the BFKL equation (16) we obtain
[ v @@= A0)) au(ka) b (k1) = 8 (ks = ka) (19)
Using the orthogonality of the eigenfunctions

[ v bz ) w(s) = 820k — k) (20)

we find that the solution of the BFKL equation is given by

1 .
F(w, ki, k2, 0) = /du T Bk k). 21)
The eigenfunctions are found to be of the form
1 .
n) = k2 —-1/241v tnd)’ 22
U(k) = (k) (22

where v is a real number (—o0 < v < 00). and ¢ is the angle of k in radial
co-ordinates. At high energies, only the n = 0 set of eigenfunctions are
relevent. For these eigenfunctions the corresponding eigenvalues are found
to be @sx(v), where the function x(v) is given by

x(v) =29(1) - (1/2+ ) — $(1/2 - 3v). (23)

Here ¥(z) is the logarithmic derivative of the gamma function, I'(z). So
the solution of the BFKL equation can be written as

+0o

2 20y _ 1 / 1 2y —1/24iv .2y ~1/2—iv
flw, ki, k3,0) = 572 dv STEo) Fox () (kD) (k3) . (29)

— 00
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Notice that since v is a continuous variable we find a cut rather than an
isolated pole in the w plane. Inverting the Mellin transform via

Fly K k,0) = o [ do et (0,5, (25)
C

leads to

Fly, k3 3,0) = = [[dv eFsxw (y=i/+iv(y=ia=iv . (a6)

This is an exact solution, but we can perform the v integration if we make
an approximation. We notice that the solution is dominated by small values
of v and so we expand x(v) about » =0

x(v) =4In2 - 14¢(3)v% +. .. (27)

Here ((z) is the Riemann zeta function. Keeping only the first two terms
in the expansion of y(v) allows the integral to be performed and F is thus
found to behave as

1 ey —In?(k}/k3)
,k‘ k2,0 —— —_—* ], 28
F(y, k3, k3,0) = T Vi exp( T (28)

where wy = 4In2&s and ¢ = 14@5((3). Now since y = In(s) we see from
(10) that the high energy behaviour of a scattering amplitude with |t| = 0

Pomeron exchange is
gltwo

Vins

The Regge intercept is aprkL(0) = 1 + 4In2a&s ~ 1.5 which should be
compared with the Donnachie, Landshoff value [3] of apr, = 1.08. The
perturbative Pomeron is thus very different from the Pomeron of hadronic
physics, however, although it is not visible in total cross section data it may
show up in other physical processes.

A(s,t) ~ (29)

6. Phenomenology of the BFKL Pomeron

The most immediate application of the BFKL equation is to the evo-
lution of the gluon distribution at low z 1. To achieve this we connect a
suitable (non-perturbative) gluon—-hadron impact factor to the lower end of

! The reason that the BFKL equation is relevant to low z is because Bjorken z is
defined via r = Q?/s, and so high energy corresponds to low z.
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our BFKL ladder. We then note that the n rung ladder is related via the
optical theorem to the n gluon emission part of the gluon evolution. We
have

_ 1 ’
S ) = £, 8 + 22 [ [ k(e KL kY . (0)

z

Here, the BFKL kernel takes the form

[ ak? Kk k) £, @' k) = s 8 [ di”
17 ) Jg\ T = s X7
0

f l’ kl2 _ f I, k2 f l, k2
% { y(III lkz)— kl_gl(x ) + (4,‘:_;]4(:"- k4))1/2} , (31)

and where f7(z, k?) is the “zero rung” term. The gluon distribution is given
by integrating over the possible transverse momenta, up to some maximum
value determined by an external scale
Q2
dk?
z9(2,Q%) = / T folz ). (32)

0

The inhomogeneous term, f{(z,k?) is expected to have only a weak de-
pendence on z (at least at small ) and so the BFKL equation predicts

that
2=

2 L ——
fo(@, k) vin(i/z)’
where A = 4In 2ois. So the BFKL equation predicts a steep growth in the
gluon distribution as # — 0. This has implications for the structure func-
tions, Fy(z, Q?) and Fi(z,Q?). The kr—factorization prescription [7] allows
us to determine F; from f; and a coefficient function, Fy which describes
(off-shell) photon—gluon fusion, y*¢* — ¢g. Using ks—factorization, we find

(33)

1 7 2
Fy(z, Q%) = / dxi, ikk? Folz/o', k%, Q%) f, (o', k7). (34)

T

The z~* behaviour of f, filters through into F; so that BFKL predicts that
at small
Fy(z, Q% ~ 2. (35)
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So that the structure function, F; will also rise rapidly in the small z region.
Of course this last statement is only true asymptotically. For comparison
with actual data, for example from the HERA collider, it is necessary to
use (34) and to include some (essentially z independent) background [8].

There is, however, a serious problem associated with the BFKL equation
at ¢t = 0. The solution behaves as

flz,k?) 2 ep(_ln“’(k*’/ké))_ (36)

)2 = (i) In(1/2)

This is a Gaussian-like distribution which is peaked at k* = k2 and with
a width which increases as z decreases. The physical interpretation of
this formula is that the typical gluon momenta in the BFKL ladder, de-
scribed by, k2, diffuse around a central value, kZ which is determined by the
lower impact factor. For a hadron this lower scale is k2 ~ 1 GeV? and so
the gluon momenta can diffuse into the non-perturbative region where the
BFKL equation is no longer valid. One way of avoiding this problem is to
couple the BFKL ladder to an impact factor which has a much higher, k2.
Such an impact factor could be provided by a parton with a large transverse
momentum, k% ~ Q2, which would show up in the final state as an extra
jet. This process has been studied both theoretically [9] and experimentally
[10] and the inital results look encouraging. Finally we mention that some
recent progress has been made in understanding the phenomenology of the
BFKL equation for |t] > 0 and how it relates to the diffractive production
of vector mesons [11].

7. The CCFM equation

Finally we return to the problem of gluon evolution at low z. There
exists a theoretical framework which gives a unified treatment of both the
BFKL (In(1/z)) evolution and the more familiar DGLAP (In(Q?)) evolu-
tion. This has been provided by Catani, Ciafaloni, Fiorani and Marchesini
(CCFM)[12). 1t is based on the coherent radiation of gluons, which leads to
an angular ordering of the gluons along a chain of multiple emissions.

Like the BFKL equation, the CCFM equation is defined in terms of
an unintegrated gluon density, F, which specifies the chance of finding a
gluon with longitudinal momentum fraction z and transverse momentum
of magnitude k7. However, this distribution now also depends on some
external scale, @),

F(z,k},Q%) = F°(z, k}, Q%)

1
d? .
+ [ iz [ 16(Q - 20)45(Q, 20 Pl 0, k)P (S48 a7) . (30
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The inhomogeneous or “no-rung” contribution, F% may again be regarded
as the non-perturbative term coming from the lower impact factor. The
function P is the gluon—gluon splitting function

P:-S[ 1 +AR3—2+2(1—z)], (38)
1-z z

where @s = 3ag/n. The multiplicative factors Ag and Ag cancel the singu-
larities manifest as z — 1 and z — 0 respectively. The Sudakov form factor
is given by

2

g 1
dk? as
I oI _ btk
Ag(g,z'q") = exp /2 2 O/d:cl_z . (39)
(z'9’)

It contains the virtual corrections which give rise to the usual ‘plus prescrip-
tion’ present in the gluon splitting function. The Regge form factor is given

by

W, 2
AR(z,,Qr) = exp (—as J= %@(Q%—k’)e(k-z'q)) (40)

2
= exp (-65 log (_z;q) log (Z(C)izz)) , (41)

{ 1 if (Qr/g) 21
Zp =

where

Qr/q if z<(Qr/9)<1
z if (Qr/q)<z.

Unlike Ag, the Regge form factor Ag is not just a function of the branching
variables, but depends on the history of the cascade via

Qr=lgr+aqr+ar+...| (42)

At large z we can set AA = 1 and unfold Ag to obtain the usual DGLAP
equation for gluon evolution. At small z we keep only the 1/z piece of Py
and set Ag = 1 and unfold AA to obtain the BFKL evolution.
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8. Numerical solution of the CCFM equation

We have studied the CCFM equation at small z. In this region we may
simplify the equation (37) as follows [13]

1
dz [ d?
Fla, k. Q7) = P k@) +as [ [ 4

x0(Q - 20)An(z, 0, k) F (2, (ke +0)%07) . (43

We take the scale of the running coupling, a5, to be k% and we choose
F? such that it would generate a “flat” gluon, zg ~ 3(1 — z)°, in the
absence of angular ordering and the AA correction term [13]. With these
choices we solve (43) by iteration from the starting distribution. Fig. 6
shows our solution in terms of the integrated gluon distribution, zg(z, Q?).
Also shown are the corresponding solutions for the BFKL equation and the
double-leading-logarithm (DLL) approximation to the DGLAP equations.

O"w‘: r—r—rrrrry Py Ty
X o 1

1073

102, N

1

Fig. 6. The integrated gluon distribution zg versus z, obtained from the CCFM
(continuous curves), BFKL (dot-dash curves) and the DLL (dashed curves) integral
equations, for Q% = 4,10, 102,102 and 10* GeV2. Our solutions are obtained from
a “flat” gluon input [13]

To quantify the increase in zg, we show in Fig. 7 the effective value of
A, defined by

zg(z, Q%) = Az, (44)
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For small z we see that the solutions converge to a typical =% behaviour,
approximately independent of Q2?, which is consistent with that obtained
from the solution of the BFKL equation, although the onset of the z~*
form is more delayed for the CCFM solution.

The gluon distribution itself is, of course, not an observable. However,
as we have seen, the behaviour of the gluon feeds through into physical
quantities such as the structure functions. We have therefore calculated the
structure function F; from the unintegrated gluon distribution F' using the
usual kp-factorization procedure. Details of this calculation can be found
in Ref. [14].

Fig. 7. The effective values of A, defined by zg = Az~*. The CCFM values
(continuous curves) are compared with those obtained from the BFKL (dot-dashed
curves) and DLL approximations (dashed curves). In each case we show curves
corresponding to five different values of Q2.

9. Summary

We have seen that the perturbative Pomeron described by the BFKL
equation is very different from the Pomeron observed in hadronic total cross
sections. The later has an intercept of apy,(0) ~ 1.08 whilst the BFKL equa-
tion predicts aprkg,(0) ~ 1.5. However, the BFKL pomeron may be visible
in high energy perturbative processes such as the diffractive production of
vector mesons. Due to the optical theorem it also has consequences for
the gluon distribution at low z and consequently the structure functions,
F; and Fp. Although the resulting BFKL description of gluon evolution is
quite different from the traditonal DGLAP approach, there exists a unified
equation (CCFM) which contains both. We have studied this equation and
observed a transition from DGLAP-like behaviour at large z to the z79°
growth predicted by the BFKL equation.
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