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The perturbative QCD approach to multiparticle production assuming
Local Parton Hadron Duality (LPHD) and some recent results are dis-
cussed. Finite asymptotic scaling limits are obtained for various observ-
ables, after an appropriate rescaling, in the Double Logarithmic Approxi-
mation (DLA). Non-asymptotic corrections are also known in some cases.
The DLA applies also to very soft particle production where energy con-
servation constraints can be neglected. In this region the particle density
follows rather well a scaling behaviour over the full energy range explored
so far in ete~ annihilation.

PACS numbers: 12.38. Lg

1. Introduction

The study of the intrinsic structure of particle jets produced in hard
collisions continues to be an active field of research. The interest is directed
in elaborating and testing specific predictions of perturbative QCD on the
parton cascade evolution and secondly, to investigate the hadronization pro-
cess which cannot be treated within a perturbative scheme. A reduction of
the flexibility of the models involved and a deeper understanding of the
phenomenological aspects of the confinement process is an important aim
of this research.

The most popular models for particle production in hard collision pro-
cesses are based on a primary hard partonic sub-process which is accompa-
nied by gluon bremsstrahlung. The evolution of the partonic jets is derived
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in perturbation theory and is terminated at a scale of around 1 GeV; there-
after, non-perturbative processes take over and the final hadronic particles,
often through intermediate resonances, are produced, for example, by a
string mechanism [1] or through cluster formation [2].

Another approach is based on the concept of “Local Parton Hadron Du-
ality” (LPHD) [3]. It has been observed at first that the hadronic energy
spectra are rather well represented by the parton spectra themselves — with-
out an additional hadronization phase — provided the cut-off of the parton
cascade is lowered to a value around 250 MeV, of the order of the hadronic
masses. This general idea has been applied to various other observables; the
theoretical calculations are based in the simplest case on the Double Log
Approximation (DLA) [4, 5], which provides the high energy limit, or the
Modified Leading Log Approximation (MLLA) [6] which includes finite en-
ergy corrections which are usually essential to obtain quantitative agreement
with experiment at present energies [7]. Recent experimental results from
LEP, HERA and TEVATRON gave further support to this approach [8].
Although a justification of the model is not yet available at a fundamental
level the related phenomenology is quite attractive because of its intrin-
sic simplicity with very few parameters. Also the analytical computations
allow the derivation of scaling laws and the systematics of their violation
which provides an important insight into the structure of the theory. On the
other hand, it is clear that this model cannot compete with the standard
hadronization models in the description of the various details of the final
state like the production of different particle species or resonances. It has
so far been applied successfully for suitably averaged quantities.

In this presentation we summarize, how scaling and scale breaking pre-
dictions obtained from analytical calculations compare with experiment.

2. Basic ingredients of analytical calculations

We consider high energy collisions which involve a hard subprocess.
The colour charges of the primarily produced partons are the sources of
subsequent gluon bremsstrahlung which leads to the partonic jets. The
subprocess is described by the corresponding matrix element. The gluon
bremsstrahlung at small angles § with energy E off the primary hard par-
ton of type A (A = ¢, g) with momentum P is given by

_Ca o dé dE 2 _ 2Ncas(kr) _ g
dnyg = Nc’yo(kT)T E Yo ( T) = . - In(kT/A)’

kTZQO:

(1)
where k7 ~ E§, 82 = 4N¢/b, b = (11N —2ny)/3 with N¢, ny the numbers
of colours and flavours, also C; = N¢, Cy = 4/3. Inside the cascade the soft
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gluons are coherently produced from all harder partons. For azimuthally
averaged quantities the consequences of the coherence effect can be taken
into account by the angular ordering prescription [9] which requires the
angles of subsequent gluon emissions to be in decreasing order.

The multiparticle properties of the jet can be discussed conveniently by
using the generating functional [10] Z4 (P, ©@;u(k)). Here P and © denote
the initial parton momentum and opening angle of the jet, and u(k) is a pro-
file function for particle momentum k. The functional is constructed from
all the exclusive final states. Then the inclusive densities can be obtained
by functional differentiation with respect to the profile function u(k)

P (ky, ..., k) = 6" Z{u}/Su(ky)...0u(kn) |u=1 - (2)

Properties of these densities can be obtained from the evolution equation
for Z which relates the functional at scales P,© to the one at lower scales
according to the “decay” A — BC. In MLLA accuracy this evolution
equation is given by [6]

TuePO=5 % [ & 2 e
% [Z5(2P,0) Zo((1 - 2)P,O) — ZA(P,Q)], (3)

where #5C (2) denotes the DGLAP splitting functions. The initial condition
of the evolution is given by

ZA(P,6;{u})|lpo=q, = ualk = P), (4)

i.e. at threshold there is only the primary parton.

These equations take into account energy conservation by choosing the
proper arguments of Z. One can obtain for various observables O ana-
lytic solutions which correspond to the summation of the perturbative se-
ries in leading double logarithmic order, i.e. the summation of the terms
a?L? with a large logarithm L. Also results with resummed next-to-
leading order terms o™ L?"~! are available in some cases. At high energies
O ~ exp fY v(as(y)) dy where the anomalous dimension v has the expan-
sion ¥ ~ \/as + a5 + ... The leading term is referred to as the DLA, the
next-to-leading one as the MLLA result. The evolution equation (3) yields
the complete results for the first two terms in this \/o, expansion. These
leading terms are not sufficient, however, to satisfy the initial condition (4),
this is only possible by using the full result from the summed perturbative
series. From (3) one can obtain the evolution equations for particle densities
by appropriate differentiation (2). Therefore this equation is the basic tool
for deriving the multiparticle properties of a jet analytically.
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For very high energies the small z contributions dominate (fixed scales
Qo and A), then one can neglect the recoil effects and approximate 1 -z ~ 1
in the argument of Z in (3). Furthermore, in the high energy limit it
is sufficient to include the most singular terms of the splitting functions
¢A9 1/z, in particular, one can neglect the production of quark pairs
in the cascade with nonsingular splitting function. In this case Eq. (3)
simplifies and can be integrated using the initial condition (4) to

ZA(P,6,u) = u(P) exp ( /r dna[u(E)Z,(E, §) - 1]) (5)

with integration measure from (1) and boundary I" which takes into account
the angular ordering constraint § < 6 and the kr cutoff E§ > Q. This
is the evolution equation in DLA accuracy appropriate for the high energy
asymptotics.

For the energy spectra [11] and a large class of angular correlations [12]
one can derive from (5) by functional differentiation and appropriate partial
integration an evolution equation of the type

ha(5,0, P) = 6P+/dk (6,9, K), (6)

70
%
where h, denotes generically one such distribution or correlation of order n
and d, the appropriate initial condition. The singularities in the kernel are
regularized by the k1 cut-off. A nonsingular evolution equation is obtained
by changing to logarithmic momentum and angular variables.

3. High energy asymptotics

The high energy behaviour can be obtained from (5). As will be shown
in several cases, the observable quantities, after appropriate rescaling, ap-
proach a finite scaling limit.

3.1. Multiplicity distribution

A well known example of such behaviour is the “KNO-scaling” [13, 14]
of the multiplicity distribution

(M)Pu(s) = f(¥), ¥ =n/(n(s)). (7)

Here f(%) is the high energy limit of the probability P, to produce n par-
ticles at cms energy /s, rescaled by the average multiplicity (n). This
scaling law has been derived in the DLA for the partons of QCD [16] but
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holds more generally for a large class of branching processes [14, 15]. Specif-
ically for QCD one obtains also an explicit prediction for the function f(¢)
or the normalized factorial moments F(¥) = (n(n —1)...(n — k + 1)) /(n)* of
the multiplicity distribution. For example, for ete™ annihilation one finds
F2) = lsl. This prediction is infrared safe, i.e. independent of the cut-
off Qp. Furthermore QCD predicts the approach to the asymptotic limit,
so for the same quantity one obtains with inclusion of the next-to-leading
correction (MLLA) [17]

11 4255
F® = (1 - ——— 8
) ( 1782 /_671'\/6;3) ( )

(for ny = 5) which turns out to be large (about 30%); if yet higher order
corrections are included the result fits the experimental data [18]. The
energy dependence of F(?) in (8) is very weak (~ 1/v/In s) thus simulating
the scaling behaviour observed at present energies. The ultimate KNO
scaling function according to (7) or (8) is broader and will be approached
only at much higher energies than available today and in the near future.

3.2. Momentum spectra

Spectra in the rescaled Bjorken or Feynman momentum variables z =
p/ P do not scale in QCD. Rather the distributions of certain rescaled loga-
rithmic variables approach a finite asymptotic limit in the DLA. Such scaling
properties have been discussed recently in some detail for angular correla-
tions [12] (see below). For the energy spectra a scaling limit of this type has
been suggested already some time ago [11] and one obtains in logarithmic
variables after rescaling

Indn/dg §

i =0 (=g (9)
where £ = In(P/E) = In(1/z) for a particle of energy E in a jet with
primary parton momentum P, ¥ = In(P8/Qp) and A = In(Qo/A). The
function f(¢) has an approximately Gaussian shape, the so-called “hump-
backed plateau” [4, 19]. Again, the approach to this limit is rather slow, for
example, the maximum of the spectrum occurs at (for Qo = A)

§‘=Y(%+\/§—-}°;)+o.1 (10)

where ¢ = 0.2915 for ny = 3. The leading DLA term gives the asymptotic
limit * — %, the next two terms the high energy corrections [20], the
last term a numerical estimate of the remaining contributions applicable
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in the present energy range [21]. According to the LPHD hypothesis this
prediction at the parton level can be compared directly to the hadronic
observable. The rescaled quantity * = ¢*/Y for charged hadrons is shown
in Fig. 1 up to LEP-1.5 energies in comparison with the prediction (10). The
cut-off parameter Q¢ = 0.270 GeV is taken from a global fit to the moments
of the distribution from cms energies 3 to 91 GeV in e*e™ annihilation [22).
The data in Fig. 1 closely follow the MLLA prediction (10) which very slowly
approaches the asymptotic DLA limit {* = 1.

1.0 r T LN T ]
0.8 | -
¢t 0.6 -1

04 @ TASSO ¢ TOPAZ

! B MARK II & ALEPH
02 L + TPC @ DELPHI -
& CELLO 13 ]
00 . X AMY ® OPAL |
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Y

Fig. 1. Maximum of the rescaled inclusive momentum distribution ¢* = £*/Y
as a function of Y = In 33; comparison between experimental data from e*e~
annihilation and theoretical prediction in MLLA numerically extracted from the
shape of the Limiting Spectrum (solid line) for the cut-off parameter @y = A =
270 MeV. Crosses mark the predictions at the cms energies 200 GeV and 500 GeV.

Asymptotically, the leading DLA result {* = % is approached {see [21, 23]).

3.3. Angular correlations

There was a lot of interest in the last years in the study and interpre-
tation of angular correlations [24], which was triggered by the suggestion
[25], such correlations could be power behaved at high resolution (“inter-
mittency”). Such power behaviour is expected, for example, for selfsimilar
branching processes, so it applies to QCD to the extent that the running of
the coupling is neglected [28].

The observables which are considered in the analytical QCD calculations
(12, 26, 27] are the two particle correlation density between two particles
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p()(912,0) in the forward cone of half angle @, the factorial or cumulant
multiplicity moments F(*) and C{™ for particles between two cones at angles
© — 4 and © + 6 around the jet axis or in a cone of angular size ¢ in direction
© with respect to the jet axis. According to the volume of phase space §°
these two configurations are referred to by their dimensions D = 1 und
D = 2. One finds the results on these correlations by first deriving the
integral equation of the n-particle correlation function from (5) and (2),
and then integrates over the remaining variables; the resulting evolution
equation is of the type (6) which can be solved approximately for running
ay (for fixed o, one can get often exact results).

The correlation functions of order n are conventionally normalized by
a power of the multiplicity (n) ~ exp(28,/In(PO/A)). These normalized
correlations, after removal of certain known kinematic phase space factors
follow, after rescaling, the asymptotic angular scaling law [12]

In H(($,0, P) In %
’ - - 11
e (e, o= (1)

< € £ 1. So the rescaled
observables do not depend on the variables ¢, and P separately but only
through the variable €. The normalization of the Lh.s of (11) corresponds
to (In(n))". The function w is known analytically, for large n one finds

w(e,n):n\/1—€(1~-;?ln(l—e)-i-...) (12)

which turns out to be a good approximation already for n = 2.

An interesting feature of these results is their universality, i.e. the same
limit is obtained for quite different observables: the correlations 7(d;3) =
pB(9,2,6)/(n(©))? and the normalized moments of any order in one or
two dimensions. These correlation functions refer actually to particles in
quite different regions of phase space. As an example we show in Fig. 2
the rescaled normalized two particle density 7(9;2,0) as obtained from
the DELPHI collaboration [29] which is rather well approximated by the
asymptotic prediction from the DLA. The data are in good agreement
with the Monte Carlo calculations at the same energy at either parton
or hadron level. Monte Carlo results at a much higher energy show a
similar behaviour in agreement with the scaling prediction (11). An ob-
servable which projects out the genuine 2-particle correlations more effec-
tively from the uncorrelated background is the “correlation integral” [30, 12]

r(Y12) = p(z)(ﬁn)/pﬁ)m(ﬁm) where the normalization corresponds to the
density of relative angles ¥y, of particles from different jets. This quantity
has been measured as well [29] and the predicted angular scaling law (11)
for r(#;2) has been verified for different jet opening angles ©.

in the rescaled logarithmic variable ¢ with 0 <
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Fig. 2. The rescaled 2-particle angular correlation # = p(?)(91,)/(n) in the forward
cone with half-opening @ as function of the scaling variable ¢ as measured by
DELPHI [29]. Also shown are the results from the JETSET and HERWIG Monte
Carlo’s at the parton and hadron levels at different energies. The data show the
predicted scaling behaviour and the approach to the asymptotic DLA prediction

(for A =0.15 GeV, with b = 238\/In(PO/A)).

An uncertainty in these comparisons, which is hard to quantify, comes
from the choice of the jet axis (taken usually as the sphericity axis). An
improvement of both theoretical and experimental results could be obtained
by using the Energy-Multiplicity-Multiplicity (EMM) definition as applied
already to the 2-particle azimuthal angle correlations [31].

The predictions for moments have been derived for cumulants [12] or for
factorial moments [26, 27] which approach the same limit asymptotically.
It turns out that the factorial moments at present energies are much closer
to the asymptotic predictions; such moments are shown in Fig. 3 after ap-
propriate rescaling by kinematic factors again as function of the ¢-variable.
The data show the same trend as the asymptotic DLA predictions of (11).
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The approach of the cumulant moments to the asymptotic results is much
slower.

0.7
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Fig. 3. Rescaled factorial multiplicity moments for particles in the ring around the
jet axis with polar angles between @ — ¢ and © + ¢ as measured by DELPHI [29]
{momentum P = 45 GeV, A = 0.15 GeV) in comparison with the asymptotic DLA
prediction. Note that the curve for n = 2 is the same as in Fig. 2 for the rescaled
correlation 7.

Note that the curve in Fig. 3 for n = 2 is the same as the one in Fig. 2
according to the universality property of (11). Also the differences between
the moments of orders n = 2 and n = 3 are largely removed after rescaling;
they are of relative order 1/n? according to (11) and (12).

The various angular regions have quite different characteristics. For
small € (large relative angles) the function w(e,n) =~ n — %"2”‘15, which

yields a power behaviour of the moments M (™) (either C(*) or F(™)

én
M(’*)(@,«sw(?) . $u=D(n-1)~ (n= Dy(P).  (13)
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This is the asymptotic power law (“intermittency”) for the QCD cascade.
It applies for large relative angles where the cascade is fully developed and
reflects the selfsimilarity of the branching process; the intermittency expo-
nent ¢, depends on the scale through the running a,. In case of fixed a,
the same result is obtained with universal vy parameter. Moving to larger
¢ the observables show the angular scaling law (11) with nonlinear function
w(e, n). In this region the results are infrared safe (i.e. do not depend on
Qo), they apparently are also not much dependent on hadronization effects
(see Fig. 2).

Moving to yet larger € one comes to a critical angle £, which separates
two kinematic regimes of quite different characteristics [28, 31, 32]. The
correlation functions have a discontinuous second derivative at this angle.
In the new region € > et (small relative angles) the correlation functions
do depend on the cut-off Qo and they become independent of the order n,
contrary to the behaviour for € < €.4; they are given in terms of the one-
particle inclusive spectrum. As a consequence, one expects in this region
a dependence of the particle type (r7, KK, pp correlations) if the particle
mass is related to the cut-off Q.

For fixed a, this angle is given by ecis = n2/(n%+ 1) at order n [31, 32].
For running o a new scale A appears and one considers [32] the double
scaling limit of the function wy(g, p) with p = \/A/(Y + A) for asymptotic
Y at fixed € and p. Then again a critical behaviour at a certain angle £
is found. This limit requires also an increasing (o and therefore does not
correspond to the usual fixed k7 cut-off. Therefore, for finite, physical Qg
the separation of the two regions is not expected to be complete. It would be
interesting to verify the characteristics of these two regimes experimentally.

4. Scaling law for soft particles

The prediction of the hump-backed shape of the inclusive energy spec-
trum in the £ = In1/xz variable and its subsequent observation was an
important success of QCD in its application to multiparticle physics. The
coherence of the soft gluon emission from all harder partons forbids the
multiplication of the soft particles and one expects nearly an energy inde-
pendence of the soft particle rate [3]. Such a property has been pointed out
to be present indeed in the data [33, 22].

This problem has been studied recently in more detail [21]. The analyt-
ical calculations both in DLA and MLLA converge towards the same limits
independent of the cms energy for small particle energies. In this limit
the energy conservation effects and large 2z corrections from the splitting
functions which make up the differences between the approximations (3)
and (5) can be neglected. If LPHD is valid towards these low energies one
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expects also a scaling behaviour for the invariant density /o of hadrons in
the soft limit where the particle momentum p or rapidity y and transverse
momentum k7 become small:

dn

. 1..
Io = y%tl)l,zl;r;—*OEd% - izl)%EE' (14)

The factor -% in this definition takes into account that both hemispheres are
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Fig. 4. Invariant density Edn/d3p of charged particles in e*e~ annihilation as a
function of the particle energy E = \/p? + QZ at Qo = 270 MeV. Data at various
c¢ms energies are compared to MLLA predictions with the overall normalization
adjusted (from [34]).

included in the limit p — 0. This scaling behaviour is a direct consequence of
the coherence of the gluon emission: The emission rate for the gluon of large
wavelength does not depend on the details of the jet evolution at smaller
distances; it is essentially determined by the colour charge of the hard initial
partons and is energy independent. The energy independent contribution
comes from the single gluon bremsstrahlung of order a;, the higher order
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contributions generate the energy dependence but do not contribute in the
soft limit. In Fig. 4 we show the experimental results on the invariant
density of charged particles for cms energies from 3 to 130 GeV in ete™
annihilation. An approximate energy independence of the soft limit (within
about 20%) is indeed observed; the same is true for identified particles ,
K and p [34]. The curves in Fig. 4 represent the MLLA results, where
also a particular prescription is employed to relate the different parton and
hadron kinematics near the boundary E = Qg (for more details, see [34, 35}).
The theoretical curves show the approach to the scaling limit and describe
well the different slopes at larger particle energies. An important role here
is played by the running «, which provides the strong rise towards small
energies for £ < 1 GeV, for fixed o, this rise would be much weaker [22, 34].
A crucial test of the QCD-LPHD interpretation of this scaling result is
the verification of the dependence of the limiting densitiy Iy on the primary
colour charge. This can be obtained from ete~ —3 jets, deep inelastic
scattering or semihard hadronic processes with gluon exchange [34].

5. Summary

The perturbative approach to multiparticle production in connection
with the LPHD assumption represents a very economic description of the
phenomena which involves only the parameters Qo and A apart from the
normalization.

The analytical treatment singles out the logarithmic momentum and an-
gular variables which are appropriate to the description of bremsstrahlung
processes and absorb the collinear and soft divergent behaviour. Therefore
the finite asymptotic limits of various observables in the rescaled logarithmic
variables are a direct consequence of the parton branching process gener-
ated by bremsstrahlung type emissions. These scaling laws are then more
specific to QCD than the KNO multiplicity scaling which holds for a wide
class of branching processes, not necessarily of bremsstrahlung type. These
results are obtained in the DLA where energy conservation is neglected. A
noteworthy feature of angular correlations not met in energy spectra is the
occurrence of a critical angle which separates two scaling regimes with quite
different characteristics.



Scaling and Scale Breaking Phenomena in QCD Jets 3517

Another scaling prediction from DLA is obtained in the soft particle
limit at finite energies where energy conservation effects can be neglected
as well. It is remarkable that perturbative QCD predictions work even in
such an extreme limit and this requires further investigations with different
partonic antenna patterns for confirmation.

I would like to thank A. Bialas for his inspiration of the studies of scaling
laws in multiparticle physics and V. A. Khoze, S. Lupia and J. Wosiek for
the collaboration on the subjects of this lecture.
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