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These lecture notes give a pedagogical introduction to the use of dis-
persion relations in loop calculations. We first derive dispersion relations
which allow us to recover the real part of a physical amplitude from the
knowledge of its absorptive part along the branch cut. In perturbative
calculations, the latter may be constructed by means of Cutkosky’s rule,
which is briefly discussed. For illustration, we apply this procedure at one
loop to the photon vacuum-polarization function induced by leptons as well
as to the vff vertex form factor generated by the exchange of a massive
vector boson between the two fermion legs. We also show how the hadronic
contribution to the photon vacuum polarization may be extracted from the
total cross section of hadron production in ete™ annihilation measured as
a function of energy. Finally, we outline the application of dispersive tech-
niques at the two-loop level, considering as an example the bosonic decay
width of a high-mass Higgs boson.

PACS numbers: 11.15. Bt

1. Introduction

Dispersion relations (DR’s) provide a powerful tool for calculating higher-
order radiative corrections. To evaluate the matrix element, 7¢;, which de-
scribes the transition from some initial state, |), to some final state, |f),
via one or more loops, one can, in principle, adopt the following two-step
procedure. In the first step, one constructs Im 7; for arbitrary invariant
mass, s = p?, by means of Cutkosky’s rule [1], which is a corollary of S-
matrix unitarity. In the second step, appealing to analyticity, one derives
Re Ty; by integrating Im 7%; over s according to a suitable DR.
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Dispersive techniques offer both technical and physical advantages. With-
in perturbation theory, they allow us to reduce two-loop calculations to stan-
dard one-loop problems plus phase-space and DR integrations, which can
sometimes be performed analytically even if massive particles are involved
[2, 3]. This procedure can also be iterated to tackle three-loop problems [4].
On the other hand, dispersive methods can often be applied where pertur-
bation theory is unreliable. To this end, one exploits the fact that, by virtue
of the optical theorem, the imaginary parts of the loop amplitudes are re-
lated to total cross sections, which may be determined experimentally as a
function of s. Perhaps, the best-known example of this kind in electroweak
physics is the estimation of the light-quark contributions to the photon vac-
uum polarization — and thus to a(M%) — based on experimental data of
o(ete~ — hadrons) [5]. This type of analysis may be extended both to
higher orders in QED [6] and to a broader class of electroweak parameters
[7].

These lecture notes are organized as follows. In Section 2, we derive
DR’s appropriate for physical amplitudes. Cutkosky’s rule is introduced in
Section 3. As an elementary application, we calculate, in Section 4, the
leptonic contribution to the photon vacuum polarization to lowest order in
perturbation theory, and relate its hadronic contribution to the total cross
section of et e~ — hadrons. In Section 5, we derive, from a Ward identity, a
subtraction prescription for general vacuum polarizations. In Section 6, we
evaluate, via a DR, the v ff vertex form factor generated by the exchange
of a massive vector boson between the two fermion legs. In Section 7, we
outline the application of DR’s at the two-loop level, considering the bosonic
decay width of a high-mass Higgs boson.

2. Dispersion relations

In elementary particle physics, we often encounter form factors (i.e.,
functions of ¢?, where ¢ is some transferred four-momentum) which are
real-valued for ¢? below some threshold, M?, and exhibit a branch cut for
g2 > M?. We shall discuss various examples of form factors in Sections 4-7.
In order to benefit from the powerful theorems available from the theory of
complex functions, it is necessary to allow for ¢? to be complex, although
this may contradict the naive physical intuition.

Let us then consider a complex-valued function, F(s), of complex argu-
ment, s, and assume that: (1) F(s) is real for real s < M?; (2) F(s) has a
branch cut for real s > M?; (3) F(s) is analytic for complex s (except along
the branch cut). As usual, we fix the sign of the absorptive (imaginary)
part of F along the branch cut by

F(s+ie) =Re F(s)+iIlm F(s), (1)
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Fig. 1. Contour C of Eq. (3) in the complex-s plane.

where ¢ > 0 is infinitesimal. By Schwartz’ reflection principle, we then have
F(s+1i€) — F(s —te) = 2iIm F(s) . (2)

Since F is analytic at each point ¢? within contour C depicted in Fig. 1, we
may apply Cauchy’s theorem to find

1 F(s
F(q2)=% fas
_ / s+ze s—ze }{d s
27rz
|s|=42
_ /d Im F(s %d (3)
s—q—ze s —q2

ISI =42

where we have employed Eq. (2) in the last step. Suppose that we only
know Im F' along the branch cut and wish to evaluate F' at some point ¢°.
Then, Eq. (3) is not useful for our purposes, since F also appears on the
right-hand side, under the integral along the circle. Thus, our aim is to
somehow get rid of the latter integral. If

lim j{ ds F(s) =0, (4)

A2-—>oo
{sj=42

then we obtain the unsubtracted DR

/d m () (5)

s—q% — ie
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This means that F can be reconstructed at any point ¢2 from the knowledge
of its absorptive part along the branch cut. In particular, the dispersive
(real) part of F' may be evaluated from

Re F(q —P[dImF (6)

where P denotes the principal value.
Equation (4) is not in general satisfied. It is then useful to subtract from
Eq. (3) its value at some real point g2 < M2,

2

F( 2) - F( 2)+ qz_qg 7 ds Im F(S)
7= "o T 2s——qg.s:—q?—ie
M
2
q F(s)
+ f ds 7
27” (3"'90)(3_(]2) ")

[s|=42

If the last term in Eq. (7) vanishes for A2 — oo, then we have the once-
subtracted DR

P = P + £ [t InF )
7= T 2s—qgs—q2—ie'

Otherwise, further subtractions will be necessary. For the use of DR’s in
connection with dimensional regularization, we refer to Ref. [8].

3. Cutkosky’s rule

In the previous section, we explained how to obtain the dispersive part
of a form factor from its absorptive part. Here, we outline a convenient
method how to evaluate the absorptive part within perturbation theory.

Decomposing the scattering matrix as S = 1 +¢7', where T is the tran-
sition matrix, we obtain

—i(T-TH =TT (9)

from the unitarity property STS = 1. Since four-momentum is conserved
in the transition from some initial state |7) to some final state |f), we may
always write

(FIT)i) = (2m)* 6" (P; — P) T (10)
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Consequently,
(FITME) = (IT|f)" = (27)*6 9 (Ps - P)T5}. (11)

Inserting a complete set of intermediate states |n), we find
SITITL) = 3 (AT In)nIT i)
~ ()P, - P) S @n) 8Py~ BT Thie (12

Using Eqs (10)-(12) in connection with Eq. (9) and peeling off the overall
delta function, we obtain Cutkosky’s rule,

~i(Tpi = T3) = Y_(2m)* 6 (P = P) T T, (13)

n

where it is understood that the sum runs over all kinematically allowed
intermediate states and includes phase-space integrations and spin summa-
tions. Appealing to time-reversal invariance, we may identify the left-hand
side of Eq. (13) with 2 Im 7%;. In summary, we may construct the absorptive
part of a loop diagram according to the following recipe: (1) cut the loop di-
agram in all kinematically possible ways into two pieces so that one of them
is connected to |i) and the other one to [f), where cut lines correspond to
real particles; (2) stitch eacl pair of pieces together by summing over the
spins of the real particles and integrating over their phase space; (3) sum
over all cuts.

4. Photon vacuum polarization

One of the most straightforward applications of Cutkosky’s rule and
DR’s is to evaluate the one-loop photon vacuum polarization induced by
fermions. To avoid possible complications due to large nonperturbative
QCD corrections, we start by considering leptons. For the sake of generality,
we keep the electric charge, @, and the number of colours, N, arbitrary.

4.1. Leptonic contribution

Given the QED interaction Lagrangian, £; = —eQuAv, we wish to
compute 7Ty; depicted in Fig. 2. We start from the cut amplitudes,
iToi = a(k)(—ieQ)y"v(k),
iToy = (k) (—ieQ)7"v(k) . (14)
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p-——->

i n f

Fig. 2. Application of Cutkosky’s rule to the lepton-induced photon vacuum po-
larization.

Summation over spins yields

3 T T = €2Q% tr(F — m)y (K + m)y*

spins

= 4N.e2Q? (k“lE” + k*k” — -;-g“”> : (15)

where m is the fermion mass and s = p? = 2(k - k + m?2). Defining dk =
(d3k/(27)32kP), Eq. (13) takes the from

2Im Ty = / dkdk (2m)4 9 (p— k — F) 3 Toy Tos

spins

2
= 2N, aQ?* /1 - Am (16)
S

where o = (e?/4w) is Sommerfeld’s fine-structure constant and
ds? =7 s
W= | — | k*E" + k*EY — —g" ). 17
T / = (k + 59 ) (17)

Upon integration, p is the only four-momentum left, so that we can make
the ansatz T#” = Ap*p” + Bg*¥. In order to determine A and B, we form
the Lorentz scalars

pup, T* = s(sA+ B) =0
guwT" = sA+4B = —s - 2m?>. (18)
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We so find B = ~A/s = —s—2m?, so that Im Ty; = —(sg"* —p*p”) Im 7w (s),
where

2 4 2
Im 7 (s) = %aQ"’ (1 + 2—2‘—) -2 (19)

is the absorptive part of the photon vacuum polarization. Notice that the
dot product of Tf; with p vanishes in compliance with electromagnetic gauge
invariance. Using the once-subtracted DR (8) with ¢ = 0, we obtain the
renormalized photon vacuum polarization as

7(s) = =w(s) — n(0)

_ s /o'ois: Im 7 (s')
o s s —s— 1€
4m?

aQ*r (7). (20)

4m?2

f(r):—(2+%)\/1—%ar5inh\/—_ﬁ+-§-+%, (21)

appropriate for r < 0. This agrees with the well-known result found in
dimensional regularization [9]. Representations of f appropriate for 0 <
r < 1and r > 1 emerge from Eq. (21) through analytic continuation.
Specifically, we have

V1- iarsinh\/-rz \/-1—— larcsin/r = /1 — E (arcoshﬁ—-z’%).
r r r

(22)
We verify that, for r > 1, Eq. (19) is recovered from Eq. (20). The expan-
sions of f for |[r| < 1 and r > 1 read

where

1) = 3r+0(),
Re f(r) = —In(4r) + g +0 (-i-) , (23)

respectively.

From Eq. (23), we conclude that heavy fermions, with mass m > /[s[/2,
decouple from QED [10], while light fermions, with m < \/]s[/2, generate
large logarithmic corrections. The latter point creates a principal problem
for the estimation of the hadronic contribution to #. The evaluation of
Eq. (20) using the poorly known light-quark masses, m,, would suffer from
large uncertainties proportional to ém,/m,. In addition, there would be
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large nonperturbative QCD corrections in connection with the subtraction
term 7(0). In the next section, we discuss an elegant way to circumvent this
problem.

4.2. Hadronic contribution
Let us consider the creation of a quark pair by ete™ annihilation via

a virtual photon, e~ ({)et(I) = v*(p) — q(k)g(k). The corresponding T-
matrix element reads

iT = (1) (~ieQe)7*u(l) ’g“” i(T)", (24)

where s = p? and #(7;;)* is given in Eq. (14). Taking into account the e*
spin average and the flux factor, we evaluate the total cross section as

ols) = + o o [ @Rk en e+ T— k- F) 3 (TP

spins
62Qg 7. 37431 45(4) 7 v u
=S u hﬂfd kdk 2m) 489 (p— k- F) 3 (T2 (Tos)
spins
202 o s
= 33 4 (lulu + by - §guu) (—2)(sg* — p*p") Im 7 (s)
€202
= —;—e- Im 7 (s), (25)
where we have exploited Eq. (16). Substituting Eq. (25) into Eq. (20), we
obtain
s 7 o(s)
f ds' —rnt—. 26
wls) = Ar?20Q)? / S Zs—ic (26)
4m?

Equation (26) allows us to estimate the hadronic contribution to # from
the total cross section of hadron production by ete™ annihilation measured
as a function of s. A recent analysis [5] has yielded —#(M2)|hadrons =
0.0280 % 0.0007.

5. Subtraction prescription for general vacuum polarizations

Vacuum polarizations have mass dimension two, so that the unsub-
tracted DR (5) in general leads to ultraviolet divergences quadratic in the
cutoff A, which violate the Ward identities of the theory and are not re-
moved by renormalization. It is therefore necessary to use a subtraction.
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As we have seen in Section 3, in the case of QED, the naive subtraction of
Eq. (7) with ¢2 = 0 leads to the correct physical result. In the presence of
unconserved currents, as in the Standard Model, the situation is more com-
plicated [2]. In the following, we discuss a suitable subtraction prescription
[11].

Starting from the general interaction Lagrangian £; = —B,J* + h.c.,
where B* is some vector field and J* is the associated current, it is straight-
forward to derive the vacuum-polarization tensor, which, by convention,
differs from the T-matrix element of B*(p) — B¥(p) by a minus sign, as

" (p) = —i / diz &7 (0T J*(2)J" (0)[0), 27)
where T' denotes the time-ordered product. By Lorentz covariance, IT* has
the decomposition

" (p) = I (s)g" + A(s)p"p", (28)
where s = p?. Integrating by parts, we obtain from Eq. (27)

pull(p) = [ dta =0T ,0" (2)7* (0)]0)
= p*Als), (29)

where the last step follows from Lorentz covariance. On the other hand,
from Eq. (28) we get p, IT*(p) = p*[II(s) + sA(s)]. Consequently, we have

II(s) = A(s) — sA(s). (30)

By its definition (27), IT has mass dimension two, so that its evaluation
from Im IT via the unsubtracted DR (5) would be quadratically divergent.
However, Eq. (30) relates IT to quantities for which unsubtracted DR’s are
only logarithmically divergent. This is obvious for A, which is dimensionless.
In the case of A, this may be understood by observing that J* is softly
broken by mass terms and that one power of the external four-momentum
is extracted in Eq. (29). Writing unsubtracted DR’s for A and A, we find

A2
1 ds' , ,
M2
A2
_1 [ Im I (') '
M2

where M? is the lowest threshold. Detailed inspection at O(a) and O(aas)
[11] reveals that the logarithmic divergences of Eq. (31) exhibit a similar
structure as the poles in € = 2 — n/2 found in n-dimensional regularization,
so that both methods lead to the same physical results.
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6. Vertex correction

Cutkosky’s rule (13) is also applicable if the initial and final states
are different. As an example, we now consider the interaction between
a massless-fermion current and a neutral vector boson, B, with mass M
characterized by the Lagrangian £; = —gv¥Bv, where g is the coupling con-
stant, and evaluate the Bf f vertex form factor induced by the exchange of
B between the two fermion legs as depicted in Fig. 3.

Fig. 3. Application of Cutkosky’s rule to the Bff vertex form factor induced by
the exchange of B between the two fermion legs.

The cut amplitudes read
iToi = a(k — q)(~ig)y"v(k + q), .
. — _ . © AV v (T —tGuv 9
tTny = —u(k — q)(—1g)y u(k) v(k)(—19)y v(chrq)————q2 —z e 32

Notice the extra minus sign of 7,;. The spin summation yields

- gs T Moy (o
gymn~¥wamew (33)

where I'* = y"(§— 7*(E+ 4)7.,. Anticipating the multiplication with the
Bff tree-level amplitude, we can bring I'* into the form I'* = N~v*, where

N

—Z};- tr KI'* }3%
:§k4k+@k.w_q) (34)

and s = p2. The integration over the phase space of the cut particles, with
four-momenta k4 = k+¢ and k- = k—gq, is most conveniently carried out in
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the centre-of-mass frame using the variables p=Fky + k- and r = ky — k_.
Then, we have g2 = —s(1+2)/2 and N = s(1 — 2)%/2, where z is the cosine
of the angle between = and k. Cutkosky’s rule (13) now takes the form

Im Ty = / dkydk_ 2m) 96D (p - ky —k_) 3 Toy T
spins
— & »
= —gulk)yo(R) <L Im F(s), (35)
where
(1-=2)
Im F(s) = 2/ 1+z+2/:c

- 2(1+—)1(1+ y—g-2 (36)

=7 T n X p

and z = s/M?. Finally, we obtain the renormalized vertex function through
the once-subtracted DR (8) as

F(s) = F(s) - F(0)

7d_3' Im F(s
0

ERICS

4 s'-s-ze
:2(1+—) [Lis(1+2) - C(2)]+<3+§>ln(—— )—;-—3(37)

1
where Lig(z) = — [dt In(1 — zt)/t is the dilogarithm. This agrees with
0

the corresponding result found in dimensional regularization [12]. Notice
that, in Eq. (37), 2 = (s + i€)/M? comes with an infinitesimal imaginary
part. The dispersive and absorptive parts of F' for ¢ > 0 are conveniently
separated by using the relations

In(—z) = Inz — o,
Lio(142) — ¢(2) = — Liz(—z) — In(—2) In(1 + z). (38)

We so recover Eq. (36), which serves as a useful check.
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7. Two-loop application

In this final section, we illustrate the usefulness of DR’s beyond one
loop, considering the massive scalar two-loop three-point diagram depicted
in Fig. 4. The idea is to write the one-loop two-point subdiagram contained
in that diagram as a once-subtracted DR and to interchange the loop and
DR integrations, so as to reduce the two-loop problem at hand to a one-loop
one with a subsequent DR integration [13].

C

Fig. 4. Massive scalar two-loop three-point diagram, which contributes to the
Higgs-boson decay to a pair of intermediate bosons. a, b, and ¢ denote the squared
masses of the respective loop particles.

In dimensional regularization, the scalar one-loop two-point integral is
given by

AN 1
Bls,a,b) = ( in ) /(271')" (¢ —ati)((g+p)?-b+id

. 1
= 5’71—’(6~ / %
0

_ (4;)2ef~r(1 te) E + f(s) + 0@, (39)

where v is the Euler—-Mascheroni constant, I" is the gamma function, n =
4 — 2¢ is the dimensionality of space time, yx is the 't Hooft mass scale
introduced to keep the coupling constants dimensionless, s = p?, X =

1
[(1~-z)a+zb~2(1 —2)s —ie] /u?, and f(s) = — [dz In X. The pecu-
0

liar form of the prefactor in Eq. (39) is to suppress the appearance of the
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familiar terms proportional to v —In(47) in the expressions. The absorptive
part of f is

Im f(s) = ﬂ/dxﬂ(:z:(l —-z)s—(1- w)a—.z‘b)
0

ﬁ__éﬁiihflo(s-(V&Z+-vﬁa2), (40)

s

where A(s,a,b) = s® +a? +b? — 2(sa+ ab+ bs) is the Killén function. Using
Eq. (5), we then find

B(s,a,b) — B(c,a,b) = (4;)2e5"f’(1+8) [f(s) = f(e) + O(e)]
= (4;) e'I'(1+4¢) [ /dcr Im f(o (a—-;—ie - awi_@,f) + O(a)}.

(41)

Consequently, the subdiagram in Fig. 4 consisting of the bubble and the
adjacent propagator with four-momentum ¢ and squared mass ¢ may be
written as [13)

B(qz’a‘vb) _ B(C» a, b)
g —c+ie  q?—c+ie

I i 7 do No,a,0) 1
(47r)2e F{1+e) o —c— i€ o g% — o +ie
(Va+ve)®
+ Ofe). (42)

If Eq. (42) is inserted in the expression for the one-loop seed diagram in
Fig. 4, the first term turns into a product of two one-loop diagrams, which
contains all divergences. In the second term, we may interchange the DR
and loop integrations and are left with a finite dispersion integral, which
may be solved analytically.

The author is grateful to the organizers of the XXX VI Cracow School of
Theoretical Physics for the perfect organization and the great hospitality.
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