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Among various projects for future high—energy colliders a special place
is occupied by the muon collider (for a review see Ref. [1}). It is interesting
to note that if this machine is ever built, this will be the first place where
collisions of unstable particles can be investigated. It turns out that even
though the muon is only slightly unstable, this instability, as a matter of
principle, brings in a new interesting effect. We name this effect a linear
beam size effect because it predicts that certain scattering cross sections
must be proportional to the transverse sizes of the colliding muon beams
[2, 3, 4]. This paper is devoted to the detailed presentation of this effect.

PACS numbers: 13.10. q

1. Introduction

It has been known since the early 60’s that high—energy processes can
have a t-channel singularity in the physical region [5]. Such a situation can
occur when initial particles in a given reaction are unstable and the masses
of the final particles are such that the real decay of the initial particles can
take place.

Recently in Ref. [6] it was emphasized that this problem turns out to be
of practical importance for the reaction u~ut — e~ 7. W™ . It was noted
in [6] that the standard calculation of this cross section leads to an infinite
result. Indeed, if the invariant mass of the final e”, system is smaller than
the muon mass m, the square of the momentum transfer in the ¢-channel ¢2
can be positive or negative, depending on the scattering angles. In a region
of small ¢2 defined by the inequalities —A4 < ¢? < A and A < m? the main
contribution to the discussed cross section is given by the diagram with the
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exchange of the muonic neutrino in the t-channel (see Fig.1). The t-channel
propagator introduces a factor 1/¢? to the matrix element M of this process

1
M x N (1)
gc + 1€
which results in a power-like singularity in the standard cross section
A 4
daoc/|M|2dq2ocB=/——dq—2—=oo. (2)
| Tt

It is, therefore, necessary to find a physically reliable method to make a
definite prediction for the measurable number of events.

In Ref. [6] (see also [5]) it was suggested to regularize this divergence by
taking into account the instability of muons in the initial state. If this is the
case, then the muon mass is a complex quantity with the imaginary part
proportional to the muon width I". It is possible then to solve the energy-
momentum conservation constraints with the conclusion that the square of
the momentum transfer in the t-channel acquires an imaginary part propor-
tional to the muon width. This observation leads to the replacement

¢ = ¢* -1y, y~ml

The divergent integral in (2) is therefore regularized

A
11
B = ~ =~ —. 3
/lq 2 +ief? /lq 2-wy2  y ml ®)

Consequently a direct calculation of the scattering cross section appears to
become possible.

We note in this regard that if such regularization is applied, one can
estimate a typical time necessary for this reaction to occur. It turns out
that this time is of the order of the moving muon lifetime, i.e., much longer
than the time necessary for muon beams to cross each other. Therefore for
realistic muon colliders the results of Ref. [6] are not applicable and a new
consideration is necessary.

We have found that for muon colliders a much more important effect is
connected with the finite sizes of the colliding beams. We are going to show
that accounting for the finite sizes of the colliding beams gives a finite cross
section for processes like

ppt e X (4)
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with a t-channel singularity in the physical region. This is the main result
of this paper. As an example, we reconsider the reaction py~u*t — er. W+
and show that the actual cross section for this process at total energies of
Vs ~ 100 GeV is approximately 1 fb for typical transverse beam sizes of
a~ 1073 cm.

Let us mention here that the finite beam size effect at the high—energy
colliders is well studied both experimentally and theoretically (for a review
see Ref. [7]). For the first time this beam-size effect (BSE) was observed
at the VEPP-4 collider (Novosibirsk) in 1980-81 during a study of a single
bremsstrahlung in the electron-positron collisions [8]. Last year the BSE
was observed at HERA in the reaction ep — epy [9]. In both cases the
number of observed photons was smaller than expected according to the
standard calculations. The decreased number of photons is explained by
the fact that impact parameters, which give the essential contribution to
the standard cross section of these reactions, are larger by 2-3 orders of
magnitude compared to the transverse beam sizes. From a theoretical point
of view the BSE represents a remarkable example of the situation where
traditional notions of the cross section and standard rate formulas are no
longer valid.

The remainder of this paper is organized as follows. In the next section,
as a realistic example of a process with the t-channel singularity in the
physical region, we consider reaction (4) and present its cross section. In
Section 3 we prove the basic formula used in Section 2. Section 4 is devoted
to the particular case — the reaction p~u* — es,W*. Further we develop
a qualitative picture of the effect and present our conclusions.

2. General case

In this section we show how the cross section of the reaction p~ut —
e~ 7. X can be calculated. We introduce the notations: s = (p +p2)2 =4F?
is the square of the total energy in the center of mass frame, mand I' = 1/7
are muon mass and width respectively, p? = p3 = m?, p3 is the 4-momentum
of the final e~ b, system, y = p2/m?, ¢ = py — p3 = (w, q) is the momentum
transfer in the t-channel and = = ¢p2/p1p2 ~ w/FE.

From simple kinematics it follows that

2 z(l—-z —
¢ =~ 1L +1to, to= -y m?, (5)
11—z 1—-x

where ¢, is the component of momentum g which is transverse to the
momenta of initial muons. Note that

to >0 for y<1-=z, (6)
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and that for ¢ =0

lgil=¢ =my/z(1 -z —y). (7)

For y < 1 -z {or to > 0) we write the cross section in the form

do = dastand + danon—stand ) (8)

where by definition dogang corresponds to the region ¢?> < —m? and
d0non-stand Corresponds to the region

-m? < ¢* < to. (9)

We will show that the main contribution to donon-stand is given by the region
of very small values of ¢? inside the region (9):

A< <A mlag AL m?, (10)

where a is the typical transverse beam size. In the region (10) the main con-
tribution comes from the diagram with the exchange of the muonic neutrino
in the t-channel (Fig. 1). Since for such ¢? the exchanged neutrino is almost
real, the corresponding matrix element can be considerably simplified.

- c
il /
> B

\Y

+
w
Fig. 1. The Feynman diagram for the reaction p~pu*t — eD.X which gives the
leading contribution in the region of small |¢?|.

As a result, in the region (10) we present the matrix element M in the

form )
M=- p—rebe vy m Muu—%Xa (11)
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where M, _sep,, is the matrix element for the pu~ decay and M, x is the
matrix element for the v,u* — X process. In both of these subprocesses
we take g% equal to zero.

Using this equation we express the non—standard contribution through
the muon decay width I" and the cross section 0,,,x of the y,u* — X
process as

1 dg?
dOnon-stand = -7-2'- xmdl lq—gl‘f do.z/u—}X . (12)
For unpolarized muon beams we have
dI" = g(l —y)(1+ 2y)dzdydy, (13)

where ¢ is the azimuthal angle of the vector g. Let us call the coefficient in
front of do,,, x in Eq. (12) as the number of neutrinos:
1 d ml dq?

dN, = —Tm dr [‘1312 =7 z(1 —y)(1 + 2y)dzdydp —— TR (14)

As it is clear from Eq. (12) the standard calculation of the cross section
turns out to be impossible due to the power—like singularity, since the point
¢ = 0 is within the physical region for y < 1 — z.

The main result of our investigation of the BSE in the above process
can be formulated as follows:

Accounting for the BSE results in the following treatment of the divergent
integral in Eq. (12):

A

dq e _ a
e e =k o

The exact expression for the quantity a will be given below (see Eqs.(35)-
(38)). We just mention here that it is proportional to the transverse sizes of
the colliding beams. For identical round Gaussian beams with root-mean-
square radii

Oix = 0jy =0, i=1,2
this quantity is equal to
a=+ro,. (16)
The contribution (15) comes from the region (10). The contribution

from the remaining part of the region (9) is smaller. Indeed, its relative
value is of the order of

to
dq? m/a
~ 1. 17
B/ i BA PEEA R o
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Using Eqgs. (15)-(17) and integrating the number of neutrinos (14) over
y (in the region 0 < y < 1 — z) and over ¢, we arrive at the following
spectrum of neutrinos:

dN,(z)

dz 2crf() f(z)= ?— $(1—$)<1+?9—2x—1-6x2) /lfx)dx_,

e

(18)

where 7 is the life time of the muon at rest, ¢ = 660 m. The plot of the
function f(z) is presented in Fig.2.
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Fig. 2. The normalized spectrum of neutrinos f{z) = (1/N,)(dN, /dz) vs. z —
the fraction of the muon energy carried by neutrino (see Eq. (18)).

The total number of neutrinos is equal to

T a

N, = = —. 19

Y7 2er (19)

After the spectrum of neutrinos is obtained, the non-standard cross
section for the reaction u~u* — e, X is given by the equation

dOnon-stand = AN, (z) do,, x (28) = N, f(z) dz doy,— x (zs) . (20)

Subsequent integration over z can be performed without further diffi-
culties. For the particular case X = W such calculation is performed in
Section 4.
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3. Derivation of the basic formula

Here we are going to prove our result presented in the previous section
(see Eq. (15)). To begin with, let us note that the standard notion of the
cross section is an approximation itself. As is well known it corresponds
to the plane wave approximation for initial and final particles. In a real
experiment the particles are confined to beams of a relatively small size and
it is the collision of such beams that leads to the measurable number of
events.

In order to arrive at more general formulas for the scattering processes, it
is necessary to describe the collisions of wave packets instead of plane waves.
In view of the fact that the movement of the particles inside the beam is
quasiclassical, a simple and efficient technique for taking into account the
beam-size effects in the actual calculations has been developed [10] (for a
review see [7]).

Below we present some results from Refs. [10], [7] which are essential
for our discussion. For simplicity, we neglect the energy and angular spread
of the particles in the colliding beams.

Note that in the standard approach the number of events N is the prod-
uct of the cross section ¢ and the luminosity L:

dN =do L, dox|M|? L= v/nl(r,t) ng(r, t)d3rdt ,, (21)

where v = |v; —v3| = 2 for the head—on collision of ultra—relativistic beams.
The quantities n;(r,t) are the particle densities of the beams.

The transformation from plane waves to colliding wave packets results
in the following changes. The squared matrix element |A|? with the initial
state in the form of plane waves with momenta p; and p, transforms to the
product of the matrix elements Mjy; and M;i' with different initial states:

do x |[M|? —= do(k) x My Mg, . (22)
Here the initial state |7) is a direct product of plane waves with momenta
ki = p, + 3k and ky = p, — 3, while the initial state |¢/) is a direct
product of plane waves with momenta k} = p; — & and kj = p, + 1K .

Instead of the luminosity L the number of events begins to depend on the
quantity

L(g)= v / ni(r, 8) na(r + o, t) drdt (23)

through the following formula

33,
dN = / d( 2'?:5)39 e*@ 4o (k) L(o). (24)
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Due to the presence of the exponent in the above equation, typical values
of k are of the order of the inverse beam sizes, i.e.,

1

K~ —.
a

Usually this quantity is much smaller than the typical scale for the variation
of the matrix element with respect to the initial momenta. In this case
we can set kK = 0 in do(x ) which results in the standard expression for
the number of events (21). If this does not work well one should analyse
complete formulas which take into account the effect of the finite beam sizes.

In view of the discussion given in the previous section, this is indeed the
situation which occurs in our case. Now we want to show how the finite
result for the number of events can be obtained starting from the complete
formula (24).

Let us first define the “observable cross section” by the relation {(compare
with Eq. (8))
_dN
T L

where L is the standard luminosity. Such a definition implies that the
quantity sensitive to the BSE is dogon-stand-

The study of the matrix element of the discussed process (11) suggests
that the only quantity sensitive to the small variation of the initial mo-
menta is the denominator of the neutrino propagator for small values of ¢Z.
Consequently, the transformations (22)-(24) reduce to the modification:

do = dastand + danon-stand ) (25)

1 1 1
26
|q2[2_)t+ie t— e’ (26)
where
¢ = -p)?, t=(ki-pa)’, ¢ =(k1-ps)" (27)
Let us expand ¢ and t' up to the terms linear in k. This gives
t=¢2— X, t'=¢*+ X, (28)
where E
A=KQ, Qz-P3+E_?P1- (29)

In the center of mass frame of the colliding muons

Q= -p3; =q; =lq;|n, n=(cosp,sinp,0). (30)
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As a result, the quantity B in Eq. (15) transforms to

3cd3p . 4 2
(271')3 L | (g2 — XA +1i€) (g% + X — ie)

It has already been mentioned that the above equation must be understood
in the sense that we isolate the part which does not possess the limit xk — 0
to the integral B. All other quantities are smooth in the above limit and
hence do not present any problem.

To perform the ¢g2-integration in (31) we note that in the region (10)

A=kKn \/ ~(1-2z)¢2~ X =krn ¢{. (32)
This approximation is justified because

2
l-q—él- < —A— < 1.
m m?
Now we extend the region of integration over ¢*> up to +oo. The error
introduced by this procedure is of .the order of (m/a)/A < 1 (cf. Eq.
(17)). Now the integral over ¢ along the real axis can be replaced by the
integral over a contour C' which goes around the upper half plane of the
complex variable ¢2:

T dq? dg? )
— =] =—= ———. 33
D c[ D —Ag + i€ (33)

hade o)

Here
D= (qr2 — Ao + i¢€) (q2 + Ao — i€).

Further integrations are simply performed with the help of the exponen-

tial representation
o0

i — ia(—)\o-}»ic) d | 34
*/\0 + 1€ /e o ( )

Subsequent integrations over k and @ become trivial and we obtain
oo
L(angs
B=m / Lang) do.

L
0
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After redefinition ag? = p we get for the factor B

*® q°
B = -%— / Lie dg, n= Q. —O'L (35)
7 QI 4
0
This completes the proof of Eq. (15)

At high energy colliders the distribution of particles inside the beams

can be often considered as Gaussian. In this case L(gn) equals
2

L(on) = Lexp{ - 92(COS Ld

2 2
2a; 2a;
where

sin?

)}, n = (cos¢,sing,0), (36)

_ 2 2 2 _ 2 2
a; = 0y + 03, Gy = 01y + O2y
This results in the following expression for a

_\/? Qg Gy
“= 5\/(12

2 2¢inZ w0
y COs“ @+ azsin® @

For circular (but not identical) beams with the root-mean-square radii

(37)

O1pg =01y =011, O2p =02y = 021
we have

T
az\’i””ﬁ.""’%r (38)
It is interesting to note that the quantity a and the non-standard cross
section are determined by the size of the largest beam!. For circular and
identical beams with o1, = 03, = o the result Eq. (16) can be obtained
4. The cross section for the reaction p—put — es., W+
As an example consider X
been presented in [2]
results.

W*. A detailed discussion of this case has
Here we present a short summary of the numerical
Using Eq. (20) we obtain

2
Ta M
— o9 zo f(z0), To=—,
2er
scribed below

Unon-stand(ﬂ_ﬂ+ — 6175W+) 5 (39)
! This feature can be readily understood in the frame of the qualitative picture de-
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o — 1272 T(W — uv)
T ME M
where I'(W — up,) = 0.22 GeV is the partial W decay width and M = 80.2
GeV is the W boson mass.
For numerical estimates we take a = /7oy (which corresponds to the
case of circular identical Gaussian beams) with (see Ref.[1])

= 20 nb,

o) = 1073 cm.

This non-standard cross section reaches a maximum of 0.76 fb at /s =
93 GeV. For larger energies this cross section decreases as s™32 1t s
interesting to note that the modest value of the non-standard cross section
0.76 fb is the result of the product of the very small number of neutrinos
N, =4.2-1078 (see Eq. (19) and the huge value of the cross section for the
v,ut — W transition averaged over the neutrino spectrum

(Ouusw) = 0o To f(zo) = 1.8-107 fb, o = 0.74.

First, let us compare this non-standard piece with the standard con-
tribution to the same cross section. Remember that by the “standard”
contribution we mean the cross section of the same reaction calculated ac-
cording to the standard rules excluding the region of the final phase space
where ¢2 > — m?. This contribution was calculated [12] with the help
of the CompHEP package [13]. The comparison of both contributions is
shown in Fig.3. It is seen that the non-standard contribution dominates up
to energies /s & 105 GeV.

Second, we compare our non-standard cross section with the cross sec-
tion for single W boson production in the reaction p~ut — u~ 7, W*. The
latter is a completely standard process since it has no t-channel singularity.
A reasonable estimate of its cross section can be quickly obtained with the
help of the equivalent photon approximation. It gives a cross section of ~ 1
fb at /s &~ 95 GeV (where it almost coincides with our non-standard cross
section). At higher energies the process p~u* — p~ 7, W+ dominates as
compared with the process p=u* — ev. W+

5. Qualitative picture

In this section we develop a qualitative but precise picture of the phe-
nomena discussed above. Our aim is to demonstrate the physics responsible
for this effect.

To begin we note again, that the diagram shown in Fig.1 can be viewed
as a sequence of two processes:

B = evevy, (40)
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and
vupt - Wt (41)

both of which can occur for real muonic neutrino. Therefore, there exists a
region of the final phase space corresponding to the reaction (1), where the
denominator of the propagator of the muonic neutrino ¢? can be equal to
zero — in other words the virtual neutrino can go on its mass shell.

1.6 Y e T T

o, fb14
1.2 -

1

I

1L i
o8- -
061
0.4 -
0.2 -

0 ! I i I L
85 90 95 100 105 110 115

JS , GeV

T

Fig. 3. Standard (solid line) and non-standard (dashed line) contributions to the
cross sections (fb) of the reaction p~put — er.W™ in dependence on the total cms
energy. The standard contribution is evaluated with the cut —¢? > m?.

In what follows, we will show that the non—standard piece of the cross
section donen—stand (see Eq. (20)) is completely determined by the sequence
of processes (40), (41) for real muoric neutrinos. Such interpretation pro-
vides a simple and transparent derivation of the main results of the previous
sections, gives a clear physical interpretation, and leads to a clearer under-
standing of the region of applicability of the result.

In view of the realistic situation at future muon colliders, we assume that
the longitudinal [ and the transverse a sizes of the colliding beams satisfy
two inequalities:

FE

mc?’

I<yer, 7= (42)

aLcr, (43)
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where 7 is the muon life time in its rest frame, ¢7 = 660 m. Because of
the condition (42), the number of muons can be assumed to be a constant
during the time which is required for the colliding beams to cross each
other. Note, that conditions (42)-(43) are perfectly fulfilled for the projects
of muon colliders which are discussed in the literature [1]. Using the beam
parameters from Ref. [1] and the total energy 2E = 100 GeV one gets:

(44)

To get a qualitative understanding of the phenomena, it is convenient
to consider a collision of a single muon p~ with the beam of muons of the
positive charge ut in the rest frame of the u~. Being unstable, this muon
is surrounded by a “cloud” of v,’s which appear in the p~ decay (certainly,
there are also 7, and e “clouds”, but they are not interesting for us at the
moment). The density of neutrinos in this cloud decreases as 1/r? with the
growth of the distance r from the u~, its time dependence corresponds to the
exponential decay law, and the angular distribution is isotropic. Therefore,

one finds 0t — r/0) I
—-r/e —-r/c
=——1 -—— . 4
(e, ) = S exp (120 (45)
This density is normalized by the condition
/ cny,(r,t)drridt =1
0

which means that the total number of v,’s which cross a sphere of radius r
is equal to unity.

We shall see below that the main contribution to the opon—stand COmMes
from the distance r ~ a. The typical time of collision is therefore At ~ a/c.
If the collision occurs at the time ¢ which satisfies the inequality At < t < T,
the neutrino density can be taken to be time independent in the collision
region (these assumptions are justified by the obtained result):

1

. 46
4merr? (46)

n,(r,t) =

The distribution of the neutrinos over impact parameters g of the u*u~
collisions? is given by '

400

[ 2=t rmen. @

2
dN,,—d‘Q —_—= —
22402 der o

dmer

-0

% The z-axis is antiparallel to the momentum p, of the ut .
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We note that the main contribution to this integral is given by the longitu-
dinal distances of the order of

12| X o.

It follows from the above equation that the scale for the distribution over
impact parameters is set by the quantity ¢r which is macroscopically large:
cr = 660 m. In contrast, the incident y* beam has much more moderate
sizes: for the projects of the muon collider the transverse size of the beam
is of the order of @ ~ 10~3 cm. Hence, it is clear that a larger part of the
neutrinos is outside the range of the incident beam and can not collide with
ut’s,

The number of muonic neutrinos which collide with the ut beam of the

radius a is therefore
~ ) 48
/ 4c7’g 2cr (48)

The non—standard piece of the cross section of the process (1) is proportional
to the number of neutrinos (48) and can be estimated as

a
Onon—stand ™~ C—T (Uuu—)W> s (49)

where (0,,_,w) corresponds to the cross section of the process (41) averaged
over the v, energy spectrum (see Eq. (18)). The estimate (49) corresponds
to the Gpon—stand Obtained in (20).

Having performed the estimate, we can proceed further with the exact
calculation. We base the calculation on the same idea as the estimate pre-
sented in the previous section. Namely, let us consider a collision of the
muonic neutrino with the incident u™ beam. The source of these neutri-
nos is the decaying u~. Therefore we assume that the distribution of these
neutrinos can be determined by analyzing the exponential decay law of the
muon. After the distribution is known, we apply the standard equation for
the number of events: cross section multiplied by luminosity. In our case,
however, the number of produced W's is defined by the cross section of the
reaction v,ut — W and the luminosity of the v, ut collision. It is this
luminosity which is sensitive to the details of the neutrino distribution in
space and time,

It turns out [4] that the results derived in this way are completely equiv-
alent to the beam-size dependent part of the cross section (20) presented in
the previous part of this paper. From this comparison one concludes that
the qualitative picture presented above is ezact and the discussed effect cor-
responds to the scattering of the beam of positively charged muons on the
halo of real neutrinos which are produced in the course of =~ decay.
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6. Conclusions

In this paper we have developed a theory of the processes with the {-
channel singularity in the physical region and discussed a physical meaning
of the linear beam size effect at muon colliders. Our analysis clearly shows
that this singularity is fictitious and corresponds to the appearance of a real
particle in an intermediate state. When standard formulas of the scattering
theory are used for the calculation, one finds infinite cross sections in these
cases due to the fact that both the “life time” of such intermediate state
is infinite and the flux of the incident particles (determined by the plane
waves) is infinite too.

Though the first of these “infinities” is a physical one, the second actu-
ally is not. The reason is that in the realistic situation which takes place at
high energy colliders the colliding particles are confined to beams of macro-
scopical but finite sizes.

To describe this situation we have considered the collision of two wave
packets which correspond to the incident muon beams and obtained the
finite cross section proportional to the transverse size of the beam. Based
on this exact consideration, a simple physical picture of the effect has been
developed. ,

Let us describe this picture in the center of mass frame of the colliding
beams. In this reference frame the decay products of the muon escape
into a small angle ¢ ~ 1/ around muon direction of motion. Due to this
property, we can take into account only those decays of the muon which
occur during the flight through the last straight part of the muon’s trajectory
before it reaches the interaction point. Let L, > 1 m be the length of
this part. Around each muon there appears a disk of the neutrinos. The
radius of this disk is ~ Ls¥ ~ Lsy~!. The number of neutrinos in the
disk is ~ Ls;/(cy7) < 1. The disks from individual muons form a “cloud”
of neutrinos which follow the muon beam. An opposite beam, having a
transverse radius a, cuts a cylinder of the same radius in the neutrino cloud.
Only neutrinos inside this cylinder participate in the collision. The cylinder
of the radius a is filled with the neutrinos which are produced at the distance

a
lf~=~n~a, 50
g (50)
which one can consider as a formation length of neutrino cloud.

From this one obtains the number of neutrinos v, which participate in
the collision. It can be estimated as

lf a
N, -1~ N, — ~10% 51
uC’)’T ”CT ( )
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for N, ~ 10'2. Therefore, at the formation length the number of muons
does not change. Hence, the neutrino density inside muon beam is almost
a constant during the collision time. Equation (51) also shows the level of
statistical fluctuations which one expects for the v,u* collisions.

It is instructive to compare a contribution of real and virtual v,’s to the
total cross section. First, we remind the reader, that because of the fixing of
the region of the final phase space, the cross section gg¢anq (see Eq. (8) and
the discussion after it) is completely determined by virtual v,’s with ¢% <
—m?2c?. In contrast, the contribution of real v,’s in the intermediate state
absolutely dominates in Gpon-stand — the relative contribution of virtual
neutrinos to this piece of the cross section can be estimated as ~ h/(a+/tg) ~
h/(ame) ~ 10710, Let us stress, however, that the approach described in
the first part of this paper allows us to calculate the contribution of virtual
neutrinos to o,on—stand as well as the contribution which appears due to the
interference of real and virtual neutrinos.

In summary, comparing the results of the calculation of the number of
events in v,u* collisions with the exact calculation based on the notion of
the colliding wave packets, we conclude that the above qualitative picture is
precise. Therefore, the linear beam—size effect corresponds to the scattering
of the pu* beam on the “cloud” of real neutrinos v, produced in the p~ —
ev v, decay.
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