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1. Introduction

The standard model (SM) is very accurate in describing the elementary
particles and their interactions, but it has a large number of free parameters
whose values are determined only experimentally.

To reduce the number of free parameters of a theory, and thus render it
more predictive, one is usually led to introduce a symmetry. Grand Unified
Theories (GUTs) are very good examples of such a procedure [1-3]. For
instance, in the case of minimal SU(5) it was possible to reduce the gauge
couplings by one and give a prediction for one of them. GUTs can also relate
the Yukawa couplings among themselves, again SU(5) provided an example
of this by predicting the ratio M,/M, [4] in SM. Unfortunately, requiring
more gauge symmetry does not seem to help, since additional complications
are introduced due to new degrees of freedom, in the ways and channels of
breaking the symmetry, etc.

A natural extension of the GUT idea is to find a way to relate the gauge
and Yukawa sectors of a theory, that is to achieve Gauge-Yukawa Unification
(GYU). A symmetry which naturally relates the two sectors is supersym-
metry, in particular N = 2 supersymmetry. It turns out, however, that
N = 2 supersymmetric theories have serious phenomenological problems
due to light mirror fermions. Also in superstring theories and in composite
models there exist relations among the gauge and Yukawa couplings, but
both kind of theories have phenomenological problems.

There have been other attempts to relate the gauge and Yukawa sectors.
One was proposed by Decker, Pestieau, and Veltman [6]. By requiring the
absence of quadratic divergences in the SM, they found a relationship be-
tween the squared masses appearing in the Yukawa and in the gauge sectors
of the theory. A very similar relation is obtained by applying naively in the
SM the general formula derived from demanding spontaneous supersymme-
try breaking via F-terms [7]. In both cases a prediction for the top quark
was possible only when it was permitted experimentally to neglect the My
as compared to M, z with the result M; = 69 GeV. Otherwise there is only
a quadratic relation among M; and My.

A well known relation among gauge and Yukawa couplings is the
Pendleton-Ross (P-R) infrared fixed point [8]. The P-R proposal, involving
the Yukawa coupling of the top quark g; and the strong gauge coupling as,
was that the ratio oy/as3, where a; = g?/4n, has an infrared fixed point.
This assumption predicted M; ~ 100 GeV. In addition, it has been shown
(9] that the P-R conjecture is not justified at two-loops, since then the ratio
a¢/as diverges in the infrared.

Another interesting conjecture, made by Hill [10], is that a itself devel-
ops a quasi-infrared fixed point, leading to the prediction M; ~ 280 GeV.
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The P-R and Hill conjectures have been done in the framework on the
SM. The same conjectures within the minimal supersymmetric SM (MSSM)
lead to the following relations:

M; ~ 140 GeV sing (P - R), (1)
M, ~ 200 GeV sin g (Hill), (2)

where tan 8 = v, /v4 is the ratio of the two VEV of the Higgs fields of the
MSSM. We should stress that in this case there is no prediction for M;,
given that sin 8 is not fixed from other considerations.

In a series of papers [11-14, 63] we have proposed another way to relate
the gauge and Yukawa sectors of a theory. It is based on the fact that within
the framework of a renormalizable field theory, one can find renormalization
group invariant (RGI) relations among parameters that can improve the
calculability and the predictive power of a theory. We have considered
models in which the GYU is achieved using the principles of reduction of
couplings [17-21] and finiteness [11, 22-27, 33-36, 61]. These principles,
which are formulated in perturbation theory, are not explicit symmetry
principles, although they might imply symmetries. The former principle is
based on the existence of RGI relations among couplings, which preserve
perturbative renormalizability. Similarly, the latter one is based on the fact
that it is possible to find RGI relations among couplings that keep finiteness
in perturbation theory, even to all orders. Applying these principles one
can relate the gauge and Yukawa couplings without introducing necessarily
a symmetry, nevertheless improving the predictive power of a model.

It is worth noting that the above principles have been applied in super-
symmetric GUTs for reasons that will be transparent in the following sec-
tions. We should also stress that our conjecture for GYU is by no means in
conflict with the interesting proposals mentioned before (see also Ref. [60]),
but it rather uses all of them, hopefully in a more successful perspective.
For instance, the use of susy GUTs comprises the demand of the cancel-
lation of quadratic divergences in the SM. Similarly, the very interesting
conjectures about the infrared fixed points are generalized in our proposal,
since searching for RGI relations among various couplings corresponds to
searching for fized points of the coupled differential equations obeyed by the
various couplings of a theory.

2. Unification of couplings by the RGI method

Let us next briefly outline the idea of reduction of couplings. Any RGI
relation among couplings (which does not depend on the renormalization
scale p explicitly) can be expressed, in the implicit form &(gy,---,94) =
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const., which has to satisfy the partial differential equation (PDE)

Zﬂa

a=1 3ga

ad

i : (3)

where (3, is the 3-function of g,. This PDE is equivalent to a set of ordinary
differential equations, the so-called reduction equations (REs) [18],

dga

ﬂg _ﬂa,azl,---,A, (4)
where g and 3, are the primary coupling and its S-function, and the count-
ing on a does not include g. Since maximally (A — 1) independent RGI
“constraints” in the A-dimensional space of couplings can be imposed by
the &,’s, one could in principle express all the couplings in terms of a single

coupling g. The strongest requirement is to demand power series solutions
to the REs,

= 3 P g (5)

nz==0

which formally preserve perturbative renormalizability. Remarkably, the
uniqueness of such power series solutions can be decided already at the one-
loop level [18]. To illustrate this, let us assume that the S-functions have
the form

1 Ci
Bo = 1—6‘7;‘2'[ > B g, g.94 + Zﬂ,‘,"”ybgz] ey,
be,dg b#g

1
= ——g1gd
ﬂg 167!'2/8 + (6)

gD bed;

where - - - stands for higher order terms, and s are symmetric in b, ¢, d.

We then assume that the p((;")’s with n < r have been uniquely determined.

(r+1),

To obtain p, ' *’’s, we insert the power series (5) into the REs (4) and collect
terms of O(g 2"“‘3) and find
Z M(r r+1) = lower order quantities ,
d#g
where the r.h.s. is known by assumption, and
M(r)d =33 I ol o) 4 g0 — (27 +1) ﬂ§”5:f , (7)
bic#g

0 = Z ﬂ(l)bcd (1) (1)p 1)+Zﬁ l)d ﬁ(l) 1) (8)

b,e,d#g d#g
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(n}s (1),

Therefore, the ps '’s for all n > 1 for a given set of pg
determmed if det M(n)? # 0 for all n > 0.

As it will be clear later by examining specific examples, the various
couplings in supersymmetric theories have easily the same asymptotic be-
haviour. Therefore searching for a power series solution of the form (5) to
the REs (4) is justified. This is not the case in non-supersymmetric theories.

The possibility of coupling unification described in this section is without
any doubt attractive because the “completely reduced” theory contains only
one independent coupling, but it can be unrealistic. Therefore, one often
would like to impose fewer RGI constraints, and this is the idea of partial
reduction {19].

s can be uniquely

3. Partial reduction in N = 1 supersymmetric gauge theories

Let us consider a chiral, anomaly free, N = 1 globally supersymmetric
gauge theory based on a group G with gauge coupling constant g. The
superpotential of the theory is given by

W = ml] & d)] + 5 Cl]k éi ¢] bk (9)

where m;; and C;jz are gauge invariant tensors and the matter field ¢;
transforms according to the irreducible representation R; of the gauge group
G. The renormalization constants associated with the superpotential (9),
assuming that supersymmetry is preserved, are

& = (Z)g; (10)
m?] = Z:;‘]’ My, (11)
Chi = Zift" Cuwr - (12)

The N = 1 non-renormalization theorem [32] ensures that there are no mass
and cubic-interaction-term infinities and therefore

1]’16’ ]/21" 1/2]" 1/2’6” L j" £

z} Z‘/"" z)*" = & &)

; ) (13)

As a result the only surviving possible infinities are the wave-function renor-
malization constants Z}, i.e., one infinity for each field. The one-loop S-
function of the gauge coupling g¢ is given by [22]

(1) —
By’ = t 16”2 [Z: -3C, G)] (14)
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where [(R;) is the Dynkin index of R; and C>(G) is the quadratic Casimir
of the adjoint representation of the gauge group G. The S-functions of Cjji,
by virtue of the non-renormalization theorem, are related to the anomalous
dimension matrix v;; of the matter fields ¢; as

dCy;
Bijk = dth = Cijivi + Cim ¥} + Cim vl - (15)
At one-loop level v;; is [22]
]' 1
7,(,1) 3272 [C M Cir — 24 Cz(R:')&j], (16)

where C(R;) is the quadratic Casimir of the representation R;, and C¥* =
CFig- Since dimensional coupling parameters such as masses and couplings of
cubic scalar field terms do not influence the asymptotic properties of a the-
ory on which we are interested here, it is sufficient to take into account only
the dimensionless supersymmetric couplings such as g and Cjj;. So we ne-
glect the existence of dimensional parameters, and assume furthermore that
C’,]k are real so that CZ x always are positive numbers. For our purposes, it
is convenient to work w1th the square of the couplings and to arrange Cj;
in such a way that they are covered by a single index ¢ (: =1,:--,n):
_lel® o _ el
T 4 0 T 4w

The evolution equations of a’s in perturbation theory then take the form

ig =8 = W2 4... |

d

(17)

"‘ =g = —ﬂ(”aza+2ﬂukajak+---, (18)

(1 _ ﬁ(l)

where - - - denotes the contributions from higher orders, and ﬂi’jk =B ks
Given the set of the evolution equations (18), we investigate the asymp-
totic properties, as follows. First we define [17, 18]

dizgiyizl""vn’ (19)
@
and derive from Eq. (18)
dé; B _ .
ada __——oz,-i-ﬁ— (- 1+ﬂ(1)) i
[’)mk -1 )
1,] ~ r r) (=
—-Z E(—" j Ok +Z ﬂ 0‘) ’ (20)
3k
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where Bgr)(&) (r =2,---) are power series of &’s and can be computed from
the r-th loop f-functions. Next we search for fixed points p; of Eq. (19) at
a = 0. To this end, we have to solve

(1)
BYN Bk
(—1+E(—17 Pz—]zk:"'é(—l)—Png—Os (21)
and assume that the fixed points have the form
pi=0fori=1,---,n"; p; >0fori=n"+1,---,n. (22)

We then regard &; with ¢ < n’ as small perturbations to the undisturbed
system which is defined by setting &; with ¢ < n’ equal to zero. As we have
seen, it is possible to verify at the one-loop level [18] the existence of the
unique power series solution

&i:pi+zp$r)ar_lai=n,+1a"'7n (23)
r=2
of the reduction equations (20) to all orders in the undisturbed system.
These are RGI relations among couplings and keep formally perturbative
renormalizability of the undisturbed system. So in the undisturbed system
there is only one independent coupling, the primary coupling a.

The small perturbations caused by nonvanishing &; with i < n’ enter
in such a way that the reduced couplings, t.e., & with ¢ > n’, become
functions not only of o but also of &; with ¢ < n/. It turned out that, to
investigate such partially reduced systems, it is most convenient to work
with the partial differential equations

o - I
{ ﬂ%-+az=:l ﬂa%: } &i(e, &) = Bi(a, ) ,
3 Biwy B 3 _ B
Bia) = 7 o2 %) o B = o (24)
which are equivalent to the reduction equations (20), where we let a,b run
from 1 to n’ and 4, j from n’ + 1 to n in order to avoid confusion. We then
look for solutions of the form
d’i = Pi+z(%)r~l fi(r)(d'a) 3 izn,'*'l?"'vns (25)

re=2

where f,-(r)(da) are supposed to be power series of &,. This particular type
of solution can be motivated by requiring that in the limit of vanishing
perturbations we obtain the undisturbed solutions (23) [21, 28]. Again it

is possible to obtain the sufficient conditions for the uniqueness of fl-(r) in
terms of the lowest order coefficients.
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4. The minimal asymptotically free SU(5) model

The minimal N=1 supersymmetric SU(5) model [29] is particularly in-
teresting, being the the simplest GUT supported by the LEP data [5]. Here
we will consider it as an attractive example of a partially reduced model. Its
particle content is well defined and has the following transformation proper-
ties under SU(5): three (5 4 10)-supermultiplets which accommodate three
fermion families, one (5 + 5) to describe the two Higgs supermultiplets
appropriate for electroweak symmetry breaking and a 24-supermultiplet re-
quired to provide the spontaneous symmetry breaking of SU(5) down to
SU(3)xSU(2)xU(1).

Since we are neglecting the dimensional parameters and the Yukawa
couplings of the first two generations, the superpotential of the model is
exactly given by

W =1¢10310; H + g,53103 H + g5 (24)° + gs H24 H , (26)

where H, H are the 5,5-Higgs supermultiplets and we have suppressed the
SU(5) indices. According to the notation introduced in Eq. (19), Eqgs. (20)
become

déy 27 4 _ 8. .
Q—dg = '5—0’3—30't gatab—gataf,
addb = 230[ 10& Qe '-8-0’ &

do ~ 5 0 3T T EoA,

day . 21
Cl’—d; =9cv,\—€a,\—oz)\af,

dé; _ 83 53 4 7
e A AR LA L @7)

in the one-loop approximation. Given the above equations describing the
evolution of the four independent couplings (a; , ¢ = t,b, A, f), there exist
2* = 16 non-degenerate solutions corresponding to vanishing p’s as well as
non-vanishing ones given by Eq. (25). The possibility to predict the top
quark mass depends on a nontrivial interplay between the vacuum expec-
tation value of the two SU(2) Higgs doublets involved in the model and the
known masses of the third generation (my , m,). It is clear that only the
solutions of the form

Pty Pb # 0 (28)

can predict the top and bottom quark masses.

There exist exactly four such solutions. The first solution is ruled out
since it is inconsistent with Eq. (17), and the second one is ruled out since
it does not satisfy the criteria to be asymptotically free. We are left with
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two asymptotically free solutions, which we label 3 and 4 (or AFUT3 and
AFUT4, for asymptotically free unified theory). According to the criteria
of section 3, these two solutions give the possibility to obtain partial reduc-
tions. To achieve this, we look for solutions [12] of the form Eq. (23) to
both 3 and 4.

We present now the computation of some lower order terms within the
one-loop approximation for the solutions. For solution 3:

& = i+ Vo + [PV a3+ fori=tbf, (29

where

2533 1491 560
Mbs = 5505 2605 ° 521
ft(?,*f'l) ~ 0.018, 0.012, -0.131,

F57D ~ 0.005, 0.004, —0.021. (30)

For the solution 4,

& = ni+ f}rf:l) ay+ f,-(“=1) ay + f,-(rle’”zl) g @y

+fi(rf=2) d} + fi(rA=2) &i evvo fori= t, b s (31)
where
89 6 (r;\ 1) (r)\-—z)
_ 8 —0,
M, 65 ’  fi =f;
fo7 ~ o258, —0.213, £V ~ —o0258, 0213,
5= ~ ~0.055, —0.050, £/ > —0.021, -0.018 . (32)

In the solutions (29) and (31) we have suppressed the contributions from the
Yukawa couplings of the first two generations because they are negligibly
small.

Presumably, both solutions are related; a numerical analysis on the so-
lutions [12] suggests that the solution 3 is a “boundary” of 4. If it is really
so, then there is only one unique reduction solution in the minimal su-
persymmetric GUT that provides us with the possibility of predicting .
Note furthermore that not only a; but also a; is predicted in this reduction
solution.

Just below the unification scale we would like to obtain the MSSM
SU(3)xSU(2)xU(1) and one pair of Higgs doublets, and assume that all the
superpartners are degenerate at the supersymmetry breaking scale, where
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the MSSM will be broken to the normal SM. Then the standard model
should be spontaneously broken down to SU(3)XU(1)em due to VEV of the
two Higgs SU(2)-doublets contained in the 5, 5-super-multiplets.

One way to obtain the correct low energy theory is to add to the La-
grangian soft supersymmetry breaking terms and to arrange the mass pa-
rameters in the superpotential along with the soft breaking terms so that
the desired symmetry breaking pattern of the original SU(5) is really the
preferred one, all the superpartners are unobservable at present energies,
there is no contradiction with proton decay, and so forth. Then we study
the evolution of the couplings at two loops respecting all the boundary con-
ditions at MguyTt.

5. Finiteness in N = 1 SUSY gauge theories

According to the discussion in Chapter 3, the non-renormalization the-
orem ensures there are no extra mass and cubic-interaction-term renormal-
izations, implying that the S-functions of Cj;; can be expressed as linear

combinations of the anomalous dimensions 'y,] of ¢'. Therefore, all the one-

(1)

loop B-functions of the theory vanish if ﬁg and 7;;’, given in Eqs. (14) and

(16) respectively, vanish, i.e.

SR =3C(G), (33)

CH i = 2659 Co(R) - (34)

A very interesting result is that the conditions (33,34) are necessary and
sufficient for finiteness at the two-loop level [22].

In case supersymmetry is broken by soft terms, one-loop finiteness of the
soft sector imposes further constraints on it [24]. In addition, the same set
of conditions that are sufficient for one-loop finiteness of the soft breaking
terms render the soft sector of they theory two-loop finite [25].

The one- and two-loop finiteness conditions (33), (34) restrict consid-
erably the possible choices of the irreps. R; for a given group G as well
as the Yukawa couplings in the superpotential (9). Note in particular that
the finiteness conditions cannot be applied to the supersymmetric standard
model (SSM), since the presence of a U(1) gauge group is incompatible with
the condition (33), due to C3[U(1)]= 0. This naturally leads to the expec-
tation that finiteness should be attained at the grand unified level only, the
SSM being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that
supersymmetry (most probably) can only be broken by soft breaking terms.
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Indeed, due to the unacceptability of gauge singlets, F-type spontaneous
symmetry breaking [30] terms are incompatible with finiteness, as well as
D-type [31] spontaneous breaking which requires the existence of a U(1)
gauge group.

A natural question to ask is what happens at higher loop orders. The an-
swer is contained in a theorem [33] which states the necessary and sufficient
conditions to achieve finiteness at all orders. Before we discuss the theorem
let us make some introductory remarks. The finiteness conditions impose
relations between gauge and Yukawa couplings. To require such relations
which render the couplings mutually dependent at a given renormalization
point is trivial. What is not trivial is to guarantee that relations leading
to a reduction of the couplings hold at any renormalization point. As we
have seen, the necessary, but also sufficient, condition for this to happen is
to require that such relations are solutions to the REs

d/\ijk

i Bijk (35)

By

and hold at all orders. As we have seen, remarkably the existence of all-order
solutions to (35) can be decided at the one-loop level.

Let us now turn to the all-order finiteness theorem [33], which states
when a N = 1 supersymmetric gauge theory can become finite to all orders
in the sense of vanishing g-functions, that is of physical scale invariance. It
is based on (a) the structure of the supercurrent in N = 1 SYM (39, 40, 41],
and on (b) the non-renormalization properties of V = 1 chiral anomalies {33,
34]. Details on the proof can be found in Refs. [33] and further discussion in
Refs. [34-36]. Here, following mostly Ref. [36] we present a comprehensible
sketch of the proof.

Consider a N = 1 supersymmetric gauge theory, with simple Lie group
G. The content of this theory is given at the classical level by the matter
supermultiplets S;, which contain a scalar field ¢; and a Weyl spinor ¢,
and the gauge fields V;, which contain a gauge vector field A} and a gaugino
Weyl spinor AS.

Let us first recall certain facts about the theory:

(1) A massless N = 1 supersymmetric theory is invariant under a U(1)
chiral transformation R under which the various fields transform as follows

. .2 1
A=Ay, M, =exp(—if)A, ¢ = exp(—zé-ﬁ)(j), Yl = exp(—zgﬁ)t/)a, .
(36)
The corresponding axial Noether current Jp(z),

Jh(z) = Ay#y°A 4 .-+ (37)
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is conserved classicaly, while in the quantum case is violated by the axial
anomaly
g =r(e”PFFypp+ ). (38)

From its known topological origin in ordinary gauge theories [37], one
would expect the axial vector current J4 to satisfy the Adler-Bardeen the-
orem [38] and receive corrections only at the one-loop level. Indeed it has
been shown that the same non-renormalization theorem holds also in super-
symmetric theories [34]. Therefore

r=haM. (39)

(2) The massless theory we consider is scale invariant at the classical level
and, in general, there is a scale anomaly due to radiative corrections. The
scale anomaly appears in the trace of the energy momentum tensor T,
which is traceless classically. It has the form

T = PgF*™Fu +--- (40)

(3) Massless, N = 1 supersymmetric gauge theories are classically invariant
under the supersymmetric extension of the conformal group — the supercon-
formal group. Examining the superconformal algebra, it can be seen that
the subset of superconformal transformations consisting of translations, su-
persymmetry transformations, and axial R transformations is closed under
supersymmetry, t.e. these transformations form a representation of super-
symmetry. It follows that the conserved currents corresponding to these
transformations make up a supermultiplet represented by an axial vector
superfield called supercurrent [39] J,

J={Jg, QL Tk ..}, (41)

'l

where J;;‘{ is the current associated to R invariance, Q¥ is the one associated
to supersymmetry invariance, and T/ the one associated to translational
invariance (energy-momentum tensor).

The anomalies of the R current J}é‘, the trace anomalies of the super-
symmetry current, and the energy-momentum tensor, form also a second
supermultiplet, called the supertrace anomaly

S ={Re S, Im S, S,}
= {Tf, 8uJf, 0*,Q0 + -+, (42)
where 7/ in Eq. (40) and
O, JE = By PFFy,+ - (43)
akQh = BNalFu + - (44)
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(4) It is very important to note that the Noether current defined in (37)
is not the same as the current associated to R invariance that appears in
the supermultiplet J in (41), but they coincide in the tree approximation.
So starting from a unique classical Noether current J}‘{(Cl ass)? the Noether

current Jp is defined as the quantum extension of Jp . ) Which allows
for the validity of the non-renormalization theorem. On the other hand
J4, is defined to belong to the supercurrent J, together with the energy-
momentum tensor. The two requirements cannot be fulfilled by a single
current operator at the same time.

Although the Noether current Jp which obeys (38) and the current
J;é‘ belonging to the supercurrent multiplet J are not the same, there is a
relation [33] between quantities associated with them

r=B,(1+z4) + ﬂ,'jkz'”k - 7ArA , (45)
where r was given in Eq. (39). The r# are the non-renormalized coefficients
of the anomalies of the Noether currents associated to the chiral invariances
of the superpotential, and — like r — are strictly one-loop quantities. The
v4’s are linear combinations of the anomalous dimensions of the matter
fields, and z,4, and z'7* are radiative correction quantities. The structure of
equality (45) is independent of the renormalization scheme.

One-loop finiteness, i.e. vanishing of the S-functions at one-loop, implies
that the Yukawa couplings A;;x must be functions of the gauge coupling g.
To find a similar condition to all orders it is necessary and sufficient for the
Yukawa couplings to be a formal power series in g, which is solution of the
REs (35).

We can now state the theorem for all-order vanishing 3-functions.
Theorem:

Consider an N = 1 supersymmetric Yang-Mills theory, with simple
gauge group. If the following conditions are satisfied

1. There is no gauge anomaly.

2. The gauge B-function vanishes at one-loop

1)—0—21 ) — 3C2(G). (46)

3. There exist solutions of the form

Aijk = pijkg, pijk €T (47)
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to the conditions of vanishing one-loop matter fields anomalous dimen-
sions 1
M= —
75 32?2
4. These solutions are isolated and non-degenerate when considered as
solutions of vanishing one-loop Yukawa S-functions:

Bijk = 0. (49)

[ ik Cjkl -2 g2 CQ(R,')(si]']. (48)

Then, each of the solutions (47) can be uniquely extended to a formal power
series in g, and the associated super Yang-Mills models depend on the single
coupling constant g with a 3 function which vanishes at all-orders.

It is important to note a few things: The requirement of isolated and
non-degenerate solutions guarantees the existence of a formal power series
solution to the reduction equations. The vanishing of the gauge B-function
at one-loop, s(;l), is equivalent to the vanishing of the R current anomaly
(38). The vanishing of the anomalous dimensions at one-loop implies the
vanishing of the Yukawa couplings S-functions at that order. It also implies
the vanishing of the chiral anomaly coefficients r4. This last property is a
necessary condition for having 3 functions vanishing at all orders.

Proof:

Insert f;jx as given by the REs into the relationship (45) between the
axial anomalies coefficients and the S-functions. Since these chiral anomalies
vanish, we get for §, an homogeneous equation of the form

0= B,(1+O(h)). (50)

The solution of this equation in the sense of a formal power series in h is
By = 0, order by order.- Therefore, due to the REs (35), ;1 = 0 too.

Thus we see that finiteness and reduction of couplings are intimately
related.

6. Finite SU(5) model

As a realistic example of the concepts presented in the previous section
we consider a Finite Unified Model Based on SU(5). From the classification
of theories with vanishing one-loop ( function for the gauge coupling [23],
one can see that using SU(5) as gauge group there exist only two candidate
models which can accommodate three fermion generations. These models
contain the chiral supermutiplets 5, 5, 10, 5, 24 with the multiplicities
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(6,9,4,1,0) and (4,7,3,0,1), respectively. Only the second one contains
a 24-plet which can be used for spontaneous symmetry breaking (SSB)
of SU(5) down to SU(3)xSU(2)xU(1). (For the first model one has to
incorporate another way, such as the Wilson flux breaking to achieve the
desired SSB of SU(5) [11]). Therefore, we would like to concentrate only on
the second model.

To simplify the situation, we neglect the intergenerational mixing among
the lepton and quark supermuitiplets and consider the following SU(5) in-
variant cubic superpotential for the (second) model:

3
=> 31 gmlo 10;H, + ¢%,10;5, H, ]

=la=1

.

4 )\
+Z I H, 24T, +-—(z4) , with gi?=0fori#a, (51)

where the 10;’s and 5;’s are the usual three generations, and the four (5 +
5) Higgses are denoted by H, , H,. The superpotential is not the most
general one, but by virtue of the non-renormalization theorem, this does
not contradict the philosophy of the coupling unification by the reduction
method (a RG invariant fine tuning is a solution of the reduction equation).
In the case at hand, however, one can find a discrete symmetry that can
be imposed on the most general cubic superpotential to arrive at the non-
intergenerational mixing [11]. This is given in Table I.

TABLE I

The charges of the Z7 x Z3 symmetry

10, | 10, | 103 | 5, | 5, | B3 | Hy | Hz | H3 | Ha
Z7 1 2 4 4 1] 2 ) 3 6
Z3 i 2 0 010 1 2 0

Given the superpotential W, we can compute the 3 functions of the
model. We denote the gauge coupling by ¢ (with the vanishing one-loop 3
function), and our normalization of the 3 functions is as usual, i.e.,

dgi/dinp = B /1672 + 0 (g®),

where p is the renormalization scale. We find:
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A =0,
wt)y _ 1 9% » 2 24 2
Bia _W[ 5g+62.‘]¢g) +3§:9Ja 5(9&')
4
+4 Z(gfﬁ)z} gz‘a )
B=1
dry _ 1 2 > d 2
j=1
4
+6 Z(g?,e)z} 9%, (52)
B=1
1 63 4
A1) _ Can a2 L 29 A2 el A
B0 = 9067+ T @43 a?] o
1 98 3 3 48
ALV = —— | == g* +3 Y (gh)> +4 ) _(95)* + + (91)”
167 5 i1 i1 5
+Z(y}§ )2] /
p=1

We then regard the gauge coupling g as the primary coupling and solve the
reduction equations (4) with the power series ansatz. One finds that the
power series,

u 8 6 15
(g%)* = 392+ oy (gh)? = 392+ oy (N = 792'*‘
(@)?=¢", (6)*=0+... (@=123), (53)
exists uniquely, where ... indicates higher order terms and all the other

couplings have to vanish. As we have done in the previous section, we can

easily verify that the higher order terms can be uniquely computed.
Consequently, all the one-loop (3 functions of the theory vanish. More-

over, all the one-loop anomalous dimensions for the chiral supermultiplets,

. 1 [ 36
7o = = 92+3ng)2+2zgzg :
167 ) ﬁ__ 1

751 - 167"2[ I3 e +4ﬁz:1 g1ﬂ ’



Unification Beyond GUTs: Gauge- Yukawa Unification 3927

1 2. 24
i) Tooz | ~2497+3 D (e%)" + —5—(gf )2} : (54)

=1

r 3
1 _ 1 _ 2 d\2 gﬁ £y2
"Ha T 1672 i Mgt d ;(gm) ! 5 el

[ 4
o _ 1 _E 2 2 21 A2
724 - 1671’2 i 5 g ++az=l(ga) + 5 (g )

also vanish in the reduced system. As it has already been mentioned before,
these conditions are necessary and sufficient for finiteness at the two-loop
level [22].

In most of the previous studies of the present model [26, 27], however,
the complete reduction of the Yukawa couplings, which is necessary for all-
order-finiteness, was ignored. They have used the freedom offered by the
degeneracy in the one- and two-loop approximations in order to make spe-
cific ansdtze that could lead to phenomenologically acceptable predictions.
In the above model, we found a diagonal solution for the Yukawa couplings,
with each family coupled to a different Higgs. However, we may use the
fact that mass terms do not influence the RG functions in a certain class of
renormalization schemes, and introduce appropriate mass terms that per-
mit us to perform a rotation in the Higgs sector such that only one pair
of Higgs doublets, coupled to the third family, remains light and acquires
a non-vanishing VEV [27]. Note that the effective coupling of the Higgs
doublets to the first family after the rotation is very small avoiding in this
way a potential problem with the proton lifetime [42]. Thus, effectively, we
have at low energies the Minimal Supersymmetric Standard Model (MSSM)
with only one pair of Higgs doublets satisfying the boundary conditions at

Mgyt

8 6
gt = ggz +0(¢Y), gi=¢"= 592 +0(g*) , (55)

where g; (i = t,b,7) are the top, bottom and tau Yukawa couplings of the
MSSM, and the other Yukawa couplings should be regarded as free.
Adding soft breaking terms (which are supposed not to influence the
B functions beyond Mguyt), we can obtain supersymmetry breaking. The
conditions on the soft breaking terms to preserve one-loop finiteness have
been given already some time ago [24]. Recently, the same problem in two-
loop orders has been addressed [25]. It is an open problem whether there
exists a suitable set of conditions on the soft terms for all-loop finiteness.
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7. Predictions of low energy parameters

In this section we will refine the predictions of the AFUT and FUT
models, taking into account certain corrections and we will compare them
with the experimental data.

As mentioned before, at low energies we want the MSSM, with one pair
of Higgs doublets, and we will assume that at the supersymmetry breaking
scale all the superpartners are degenerate.

Since the gauge symmetry is spontaneously broken below Mgyt, the
finiteness conditions in the case of the FUT model do not restrict the renor-
malization property at low energies, and all it remains is a boundary condi-
tion on the gauge and Yukawa couplings at Mgur, ¢.e., Eq. (53). Clearly the
same holds also in the AFUT models. So we examine the evolution of these
couplings according to their renormalization group equations at two-loops
with the corresponding boundary conditions at Mgur.

Below Mgyt their evolution is assumed to be governed by the MSSM.
We further assume a unique threshold Mgsygy for all superpartners of the
MSSM so that below Msysy the SM is the correct effective theory. We
recall that tan § is usually determined in the Higgs sector, which however
strongly depends on the supersymmetry breaking terms. Here we avoid this
by using the tau mass M, as input, which means that we partly fix the
Higgs sector indirectly. That is, assuming that

Mz « M; < Msusy , (56)

we require the matching condition at Mgsusy [43],

atSM = a; sin? 8 , aEM = ap cos’f, agM = «, cos’f,
3 2 =
@) = %(gal + ay) cos® 203 {(57)

to be satisfied, where o™ (i = t,b,7) are the SM Yukawa couplings and o,
is the Higgs coupling. The MSSM threshold corrections to this matching
condition [44, 45] will be discussed later. This is our definition of tan 3, and

Eq. (57) fixes tan 3, because with a given set of the input parameters [46],

M, = 1.777 GeV , Mz = 91.188 GeV , (58)
with [47]
8 M,
-1 _ L fiald
sin? Ow (Mz) = 0.2319 — 3.03 x 107°T — 8.4 x 107877 | (59)

T = M,/[GeV] - 165 ,
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the matching condition (57) and the GYU boundary condition at Mgur
can be satisfied only for a specific value of tan 5. Here M., M;, Mz are pole
masses, and the couplings are defined in the MS scheme with six flavors.
The translation from a Yukawa coupling into the corresponding mass follows
according to

1
m; = Egi(u)v(u) , t=t,b,7 with v(Myz) =246.22 GeV , (60)
where m;(1)’s are the running masses satisfying the respective evolution
equation of two-loop order. The pole masses can be calculated from the
running ones of course. For the top mass, we use [43, 44]

4 az3(M;)

M, = my(M;) l:l + 3 a3 (M) a(My)

+10.95 (——)2 + kt-——} , (61)

s s 7T

where k; ~ —0.3 for the range of parameters we are concerned with in this
paper [44]. Note that both sides of Eq. (61) contain M, so that M, is defined
only implicitly. Therefore, its determination requires an iteration method.
As for the tau and bottom masses, we assume that m.(u) and m(u) for
1 < Mz satisfy the evolution equation governed by the SU(3)cxU(1)em
theory with five flavors and use

4 az(s) (M) 124 (Qa(s,f)(Mb))z] ’
e

My, = mb(Mb) [l-l- 3 -

M,
M, = m.(M,) |1+ EEM_(?(__) , (62)

where the experimental Vvalue of my(M,) is (4.1 — 4.5) GeV [46]. The cou-
plings with five flavors entered in Eq. (30) a3(s) and agm(sr) are related to
a3 and OEM by

- - 1 M,
gy (Mz) = o5 (Mz) - 3. In F; ,
- _ 8 M, _
aEIt/I(Sf)(MZ) = apm(Mz) - o In M;_ : (63)

Using the input values given in egs. (58) and (60), we find

m(M;) = 1.771 GeV ,m.(Mz) = 1.746 GeV ,
s (Mr) = 133.7, (64)
and from Eq. (60) we obtain
2
oSM(Mz) = I = 8.005 x 1078, (65)

Ar
which we use as an input parameter instead of M, .
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The matching condition (57) suffers from the threshold corrections com-
ing from the MSSM superpartners:

Ol,iSM—>04iSM(1+A?USY)7 i:l,Q,...,T- (66)

It was shown that these threshold effects to the gauge couplings can be
effectively parametrized by just one energy scale [48]. Accordingly, we can
identify our Msysy with that defined in Ref. [48]. This ensures that there
are no further one-loop threshold corrections to a3(Mz) when we calculate
it as a function of agm(Myz) and sin? 8y (Mz).

The same scale Mgsysy does not describe threshold corrections to the
Yukawa couplings, and they could cause large corrections to the fermion
mass prediction [44, 45] . For m;, for instance, the correction can be
as large as 50% for very large values of tan 3, especially in models with
radiative gauge symmetry breaking and with supersymmetry softly broken
by the universal breaking terms. As we will see, the SU(5)-FUT and AFUT
models predict (with these corrections suppressed) values for the bottom
quark mass that are rather close to the experimentally allowed region so
that there is room only for small corrections. Consequently, if we want
to break SU(2)xU(1) gauge symmetry radiatively, the models favor non-
universal soft breaking terms [49].

To get an idea about the magnitude of the correction, we consider the
case that all the superpartners have the same mass Msysy = 500 GeV
with Msysy > pg and tanf > 50. Using A’s given in Ref. [45], we find
that the MSSM correction to the M; prediction is ~ —1 % for this case.
Comparing with the results of [45, 50], this may appear to be underestimated
for other cases. Note, however, that there is a nontrivial interplay among the
corrections between the M; and M, predictions for a given GYU boundary
condition at MgyTr and the fixed pole tau mass, which has not been taken
into account in refs. [45, 50]. In the following discussion, therefore, we
regard the MSSM threshold correction to the M; prediction as unknown

and denote it by
MSSMp (67)

In the case of the AFUT models, the non-observation of proton decay
favours a solution close to AFUT3.

In Table II we present the predictions for M; for various Msysy, in the
case of the FUT model.

! It is possible to compute the MSSM correction to M directly, ¢.e., without construct-
ing an effective theory below Msusy. In this approach, too, large corrections have
been reported [50]. In the present paper, evidently, we are following the effective
theory approach as e.g. Refs. [44, 45].
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TABLE II
The predictions for different Msysy for FUT
Mgsyusy [GeV] as(Mz) tan 8 | Mgur [GeV] mb(Mb) [GeV] M, [GeV]
300 0.123 54.2 2.08 x 1016 4.54 183.5
500 0.122 54.3 1.77 x 106 4.54 184.0
103 0.120 54.4 1.42 x 106 4.54 184.4

As we can see from the table, only negative MSSM corrections of at most
~ 10 % to my(Mp) are allowed ( m; P (M) = (4.1 — 4.5) GeV), implying
that FUT favors non-universal soft symmetry breaking terms as announced.
The predicted M; values are well below the infrared value [51], for instance
194 GeV for Msysy = 500 GeV, so that the M; prediction must be sensitive
against the change of the boundary condition.

We recall that if one includes the threshold effects of superheavy particles
[52], the GUT scale Mgyt at which o; and ay are supposed to meet is
related to the mass of the superheavy SU(3)c-triplet Higgs supermultiplets
contained in H, and H,. These effects have therefore influence on the GYU
boundary conditions.

TABLE III
The predictions for the AFUT model
msusy [GeV] a3(Mz) tan 8 | Mgur [GeV] my [GeV] my [GeV]
300 0.120 47.7 1.8 x 1018 5.4 179.7
500 0.118 47.7 1.39 x 1016 5.3 178.9

In Table IIT we present the predictions for the AFUT viable model
(AFUT3). For these model the corrections mentioned above have been
calculated [16] and are of the order of < 2%. The threshold effects of the
superheavy particles were estimated to be of the same order as in the gauge
sector, which leads to an uncertainty of ~ +0.4 GeV in M;. The struc-
ture of the threshold effects in FUT is involved, but they are not arbitrary
and probably determinable to a certain extent, because the mixing of the
superheavy Higgses is strongly dictated by the fermion mass matrix of the
MSSM. To bring these threshold effects under control is challenging. Here
we assume that the magnitude of these effects is ~ +4 GeV in M;, which is
estimated by comparing the minimal GYU model based on SU(5) [16].
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Thus, for the FUT model the prediction for M; [16] will be
M, = (183 + 6MSSMpL, £ 5) GeV (68)

where the finite corrections coming from the conversion from the dimen-
sional reduction scheme to the ordinary MS in the gauge sector [62] are
included, and those in the Yukawa sector are included as an uncertainty of
~ +1 GeV. The MSSM threshold correction is denoted §MSSM ML, which has
been discussed in the previous section.

In the case of the AFUT model the prediction is [16]

M, = (181 + 6M5SMAL, 4 3) GeV . (69)

Comparing the M; prediction above with the most recent experimental
values [53],

Mtop = 176.8 :t4-4stat i4-8syst GeV CDF
Miop = 169.0 + 8.0a; 805 GeV DO (70)

we see it is consistent with the experimental data.

It is interesting to note that the consistency of the finiteness hypothesis
is closely related to the fine structure of supersymmetry breaking and also to
the Higgs sector, because these superpartner corrections to m; can be kept
small for appropriate supersymmetric spectrum characterized by very heavy
squarks and/or small pp describing the mixing of the two Higgs doublets
in the superpotential 2.

The predictions for M; versus Msysy for the two sets of boundary con-
ditions given above (AFUT3 and AFUT4) together with the corresponding
predictions of the FUT model, are given in Figure 1. In a recent study [16],
we have considered the proton decay constraint [55] to further reduce the
parameter space of the model. It has been found that the model consis-
tent with the non-observation of the proton decay should be very close to
AFUT3, implying a better possibility to discriminate between the FUT and
AFUT models, as one can see from Figure 1.

% The solution with small pz is favored by the experimental data and cosmological
constraints [49]. The sign of this correction is determined by the relative sign of
un and the gluino mass parameter and is correlated with the chargino exchange
contribution to the b — sy decay [44). The later has the same sign as the Standard
Model and the charged Higgs contributions when the supersymmetric corrections to
mp are negative.
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Fig. 1. M, predictions of SU(5) FUT and AFUT3 models, for given Msysy around
100 and 500 GeV. For the FUT model &; = 1.6, &, = 1.2, and for AFUT3 a;, = 0.97,
ap = 0.57.

8. Asymptotically non-free supersymmetric Pati-Salam model

We present now a model where the reduction of couplings is applied, but
that does not have a single gauge group, but a product of simple groups.
In order for the RGI method for the gauge coupling unification to work,
the gauge couplings should have the same asymptotic behavior. Note that
this common behavior is absent in the standard model with three families.
A way to achieve a common asymptotic behavior of all the different gauge
couplings is to embed SU(3)cxSU(2)LxU(1)y to some non-abelian gauge
group, as it was done in the previous sections. However, in this case still
a major role in the GYU is due to the group theoretical aspects of the
covering GUT. Here we would like to examine the power of RGI method
by considering theories without covering GUTs. We found [13] that the
minimal phenomenologically viable model is based on the gauge group of
Pati and Salam [1]- Gps = SU(4) x SU(2)rx SU(2)r. We recall that N =1
supersymmetric models based on this gauge group have been studied with
renewed interest because they could in principle be derived from superstring
[56].

In our supersymmetric, Gauge-Yukawa unified model based on Gpg [13],
three generations of quarks and leptons are accommodated by six chiral
supermultiplets, three in (4,2,1) and three (4,1, 2), which we denote by
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guir gnd @72[)”“. (I runs over the three generations, and p,v (= 1,2,3,4)
are the SU(4) indices while ig , i, (= 1,2) stand for the SU(2)r g indices.)
The Higgs supermultiplets in (4,2,1), (4,2,1) and (15,1,1) are denoted
by H*‘®R | H, ; g and L¥, respectively. They are responsible for the sponta-
neous symmetry breaking (SSB) of SU(4) xSU(2)g down to SU(3)¢xU(1)y.
The SSB of U(1)y xSU(2), is then achieved by the nonzero VEV of h;,;,
which isin (1,2, 2). In addition to these Higgs supermultiplets, we introduce
GY . (15,2,2), ¢ (1,1,1) and X,* (15,1,1). The G ; _, is introduced
to rea]lee the SU(4)><SU(2)R>< SuU(2 )L version of the Georgi-Jarlskog type
ansatz [57] for the mass matrix of leptons and quarks while ¢ is supposed to
mix with the right-handed neutrino supermultiplets at a high energy scale.
With these things in mind, we write down the superpotential of the model
W, which is the sum of the following superpotentials:

3 . _
Wy = 3 yIJW,(f)tR AL T

I,J=1
=(2)ir v j
Wes = g, "Gy w@v it
; :
WNM = D 91 €igin ¥ M)R H* IR ¢ |
I=1,2,3

Wsp = guH, i 25 H” iﬂ+%Tr[Z3]+g§Tr[(2/)2E]’
WTDS —_ ggeiﬁjﬁeil’jl‘ Tr [GiRiL EG]RJL } ?

Wy = mph? +mg G2+ my¢* + mpHH 4+ ms 5% + myi ().
(71)

Although W has the parity, ¢ — —¢ and X’ — -3, it is not the most
general potential, but, as we already mentioned, this does not contradict
the philosophy of the coupling unification by the RGI method.

We denote the gauge couplings of SU(4)xSU(2)rx SU(2)L by a4 , azr
and oy, respectively. The gauge coupling for U(1)y, o, normalized in the
usual GUT inspired manner, is given by 1/a; = 2/5a4 + 3/5a2r . In
principle, the primary coupling can be any one of the couplings. But it is
more convenient to choose a gauge coupling as the primary one because the
one-loop B functions for a gauge coupling depends only on its own gauge
coupling. For the present model, we use a3y, as the primary one. Since the
gauge sector for the one-loop 3 functions is closed, the solutions of the fixed
point equations (21) are independent on the Yukawa and Higgs couplings.

One easily obtains pi =8/9, p(l) 4/5, so that the RGI relations (25)
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at the one-ioop level become

. Q4 8 . a 5
- —_—— = — = — T2 - . 72
Qy 0L 9° o, oL 6 (72)
The solutions in the Yukawa-Higgs sector strongly depend on the result
of the gauge sector. After slightly involved algebraic computations, one

finds that most predictive solutions contain at least three vanishing pgl)’s.
Out of these solutions, there are two that exhibit the most predictive power
and moreover they satisfy the neutrino mass relation m,, > m,, , m,,.

2600 T r

2400 |

2200} ° g
.

2000 |

0.0 500.0 1000.0 1500.0 2000.0
SUSY

Fig. 2. The values for M, predicted by the Pati-Salam model for different Msysy
scales. Only the ones with Msygy beyond 400 GeV are realistic.

For the first solution we have p(l) = p{l = p1) = 0, while for the second
16 — Pag = Px =Y,

solution, p&) = pg;) = pg) = 0, and one finds that for the cases above the

power series solutions (25) take the form
Gy ~ 1.67 — 0.0544 + 0.004624 — 0.9065 + - - -
&7 =\ 2.20 - 0.08éz4 — 0.056G + - - - »

Gon o { 3:3340.05G14 +0.21G54 — 0.02G5 + - -
3 =\ 3.40+0.05d14 — 1.63d¢4 — 0.001aG +---

e { 1.43 — 0.58Gy4 — 1.43a54 — 0.03d&x + - -
3% = ) 0.88—0.48;4 + 8.83d54 + 0.0lGg + -+
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&y ~ 1.08 — 0.03614 + 0.10G24 — 0.07G 5 + - - -
=\ 251 - 0.04G4 — 1.68Gg4 — 0.128G + -+

ar = { 0.40 + 0.01G14 — 0.45G54 — 0.10dG + - -+
_ f 4.91—0.001d;4 — 0.03G4 — 0.46G 5 + - -
= 830+001&1¢+172&2¢—036&G+--- ’

aG ~ { 5153 i‘“ 0. 020114, — 0. 040’205 - 1. 330(2 + .- ‘ (73)

We have assumed that the Yukawa couplings g¢r; except for gss vanish.
They can be included into RGI relations as small perturbations, but their
numerical effects will be rather small.

The number Ny of the Higgses lighter than Mgysy could vary from one
to four while the number of those to be taken into account above Mgysy is
fixed at four. We have assumed here that Ny = 1. The dependence of the
top mass on Mgysy in this model is shown in Figure 2.

9. Asymptotically non-free SO(10) model

We will show in this section a model based on SO(10) in which also the
reduction of couplings can be applied [14].

We denote the hermitean SO(10)-gamma matrices by I, , o = 1,---, 10.
The charge conjugation matrix C satisfies C =C~', C-'I'TC = ~T,,
and the I is defined as I';; = (—i)° 112 1F with (I11)? = 1. The chiral
projection operators are given by Py = ( 1+ I,).

In SO(10) GUTs [3, 58], three generations of quarks and leptons are
accommodated by three chiral supermultiplets in 16 which we denote by

wl(16) with PLol = @l (74)

where I runs over the three generations and the spinor index is suppressed.
To break SO(10) down to SU(3)cxSU(2)1,xU(1)y, we use the following set
of chiral superfields:

S{aﬁ}(54) ' A[a;@](45) ’ ¢’(16) ’ 5(1_6—) . (75)

The two SU(2);, doublets which are responsible for the spontaneous sym-

metry breaking (SSB) of SU(2),xU(1)y down to U(1l)gm are contained in

H,(10). We further introduce a singlet ¢ which after the SSB of SO(10) will

mix with the right-handed neutrinos so that they will become superheavy.
The superpotential of the model is given by

W = Wy +Wsg +Wgs + Wny + Wi, (76)
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where
1S I
Wy = 2, > guvCr,v’ Hy
I1,J=1
WsBzg Y aﬁ¢Aaﬁ]+ Tr53 gATrA2S,

Wys = Q_IE H, Siapy Hp Wj{]‘M = Z gINM!pIQS‘F’ )
I=1
Wy = 2 “HH? Lm0+ my 0+ —-—S"’
and I,p) = i((I'alp — I'3l5)/2. As in the case of the SU(5) minimal model,
the superpotential is not the most general one, but this does not contradict
the philosophy of the coupling unification by the reduction method. Wsp
is responsible for the SSB of SO(10) down to SU(3)¢xSU(2)w xU(1)y, and
this can be achieved without breaking supersymmetry, while Wyg is re-
sponsible for the triplet-doublet splitting of H. The right-handed neutrinos
obtain a superheavy mass through Wxs after the SSB, and the Yukawa
couplings for the leptons and quarks are contained in Wy. We assume that
there exists a choice of soft supersymmetry breaking terms so that all the
vacuum expectation values necessary for the desired SSB corresponds to the
minimum of the potential.
Given the supermultiplet content and the superpotential W, we can
compute the 3 functions of the model. The gauge coupling of SO(10) is
denoted by ¢, and our normalization of the § functions is as usual, i.e.,

dgi/dlnpy = ﬂgl)/16ﬂ2 + O(g®), where y is the renormalization scale. We
find:

BN =174%,

27 63
B =gr (Wlgrl* + Flgnsl® + loswml* ~ Sa*)

ma

= A%, (77

77,

48 1 1 1
B5,) = 96531942 + Tl9al” + Slowml® + Slaavml® + Slganml* - o 6%),

84 3
B = gs( 3!95|2 +12|g4]* + “|9HS|2 - 60g%) ,
28 116
'8,4 =g4(16]gy|* + *“'95'2 |9A|2 -lgHs|2 - 52¢%),

Bk =gns(8lar® + *lgs|2 + 4'!}Al2 + lsmsl2 - 38¢%),

45 45 ,
5§2M=91NM(7|9¢| +9g1ivml? +7192NMI +7|93NM1 - 59 %),
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45 17 17 45
ﬂg}\ZM:.‘hNM( 5‘|g¢|2 + 3|£J1NM|2 + 9\ganm|® + —5|93NM(2 - ?92) ,

1 45 17 17
ﬁ:gl\}M":g:%NM( 5|gT|2 + ‘Q—|g¢|2 + 3‘|91NM|2 + 7|y2NM|2

45
+9)ganml? — ?92) . (78)

We have assumed that the Yukawa couplings gr; except for gr = gs3 vanish.
They can be included as small perturbations. Needless to say that the soft
susy breaking terms do not alter the 3 functions above.

We find that there exist two independent solutions, A and B, that have
the most predictive power, where we have chosen the SO(10) gauge coupling
as the primary coupling:

_ [ 163/60 ~2.717 _ { 5351/9180 ~ 0.583
PT=1 0 P 1589/2727 ~ 0.583 ’

_ [ 152335/51408 ~ 2.963 [ 31373/22032  ~1.424
P§ = 1 850135/305424 ~2.783 *PA T \ 186415/130896 ~ 1.424 °

_ [ 7/81  ~0.086 B _ [ 191/204 ~0.936
PHS =\ 170/81 ~2.099 ’ PINM =P2NM =19 191/303 ~0.630 °’

0 A
PaNM = { 191/303 ~0.630 { B (79)

Clearly, the solution B has less predictive power because pyr = 0. So, we
consider below only the solution A, in which the coupling asnas should be
regarded as a small perturbation because psyasr = 0.
Given this solution it is possible to show, as in the case of SU(5), that
the p’s can be uniquely computed in any finite order in perturbation theory.
The corrections to the reduced couplings coming from.the small pertur-
bations up to and including terms of O(&2y,,):

a7 =(163/60— 0.108 - --Ganns + 0.482 - -@npr+--) + -
8y =1(5351/9180+0.316 - - -G3nnr + 0.857 - @inpr+-+-) + -+,
&s=(152335/51408 + 0.573 - - -Ganps + 5.7504 - - - @npr+ ) + -,
&4 =(31373/22032 - 0.591 - -Ggypr — 4.832 - @npr+ o)+
aps=(7/81—0.00017 - -Ganar + 0.056 - - - &npr + -+ 2) + -+,
Ginm = Ganp = (191/204—-4.473 - - -G@anpm+2.831 - &nps + )+,
(80)

where - .- indicates higher order terms which can be uniquely computed.
In the partially reduced theory defined above, we have two independent
couplings, @ and asnas (along with the Yukawa couplings ary , I,J #T).
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At the one-loop level, Eq. (80) defines a line parametrized by @anas in
the 7 dimensional space of couplings. A numerical analysis shows that this
line blows up in the direction of &g at a finite value of azyas [14]. So if we
require &g to remain within the perturbative regime (i.e., gs < 2, which
means &g < 8 because agyt ~ 0.04), the Gznas should be restricted to be
below ~ 0.067. As a consequence, the value of &r is also bounded

2.714 < &7 < 2.736 . (81)

This defines GYU boundary conditions holding at the unification scale
Mgyt in addition to the group theoretic one, ar = ¢ = a, = o5 .
The value of &r is practically fixed so that we may assume that ér =
163/60 =~ 2.72, which is the unperturbed value.

189 T - T - 1 - T y o —

188 + .
)
]
1)
E..-

187 | b

1 86 i L i 5 I I}

0 500 1000 1500 2000 2500 3000

MSUSY [GeV]

Fig. 3. M, prediction versus Mgysy for ar = 2.717.

Figure 3 shows the prediction for M; in this model for different values
of the supersymmetry breaking scale Msysy. It is worth noticing that the
value for M, predicted is below its infrared value (M;op_1r ~ 189 GeV) [14],
but it is slightly above the recent experimental values (70).
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10. Conclusions

As a natural extension of the unification of gauge couplings provided
by all GUTs and the unification of Yukawa couplings, we have introduced
the idea of Gauge-Yukawa Unification. GYU is a functional relationship
among the gauge and Yukawa couplings provided by some principle. In our
studies GYU has been achieved by applying the principles of reduction of
couplings and finiteness. The consequence of GYU is that in the lowest
order in perturbation theory the gauge and Yukawa couplings above Mgut
are related in the form

gi:KigGUTai:1a233767"'77»b7t7 (82)

where g; (¢ = 1,---,t) stand for the gauge and Yukawa couplings, ggut
is the unified coupling, and we have neglected the Cabibbo-Kobayashi-
Maskawa mixing of the quarks. So, Eq. (82) exhibits a set of boundary
conditions on the renormalization group evolution for the effective theory
below MguT, which we have assumed to be the MSSM. We have shown [15,
16] that it is possible to construct some supersymmetric GUTs with GYU
in the third generation that can predict the bottom and top quark masses
in accordance with the recent experimental data [53]. This means that the
top-bottom hierarchy could be explained in these models, in a similar way
as the hierarchy of the gauge couplings of the SM can be explained if one
assumes the existence of a unifying gauge symmetry at Mgur.

It is clear that the GYU scenario is the most predictive scheme as far
as the mass of the top quark is concerned. It may be worth recalling the
predictions for M; of ordinary GUTs, in particular of supersymmetric SU(5)
and SO(10). The MSSM with SU(5) Yukawa boundary unification allows
M; to be anywhere in the interval between 100-200 GeV for varying tan 3,
which is now a free parameter. Similarly, the MSSM with SO(10) Yukawa
boundary conditions, i.e. t — b — 7 Yukawa Unification gives M; in the
interval 160-200 GeV. We have analyzed [16] the infrared quasi-fixed-point
behaviour of the M; prediction in some detail. In particular we have seen
that the infrared value for large tan 3 depends on tan 3 and its lowest value
is ~ 188 GeV. Comparing this with the experimental value (70) we may
conclude that the present data on M; cannot be explained from the infrared
quasi-fixed-point behaviour alone (see Figure 4).

Clearly, to exclude or verify different GYU models, the experimental
as well as theoretical uncertainties have to be further reduced. One of the
largest theoretical uncertainties in FUT results from the not-yet-calculated
threshold effects of the superheavy particles. Since the structure of the
superheavy particles is basically fixed, it will be possible to bring these
threshold effects under control, which will reduce the uncertainty of the
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Fig. 4. The dependence of the top mass M, with k?, at fixed Mgusy = 500 GeV.
As we can see, after kZ ~ 2.0 the top mass goes to its infrared fixed point value.

M, prediction. We have been regarding SMSSMM, as unknown because we
do not have sufficient information on the superpartner spectra. Recently,
however, we have demonstrated [63] how to extend the principle of reduction
of couplings in a way as to include the dimensionfull parameteres. As a
result, it is in principle possible to predict the superpartner spectra as well
as the rest of the massive parameters of a theory.

One of us (G.Z.) would like to thank the Organizing Committees of the
Schools for their warm hospitality.
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