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The renormalization of supersymmetric gauge theories requires solution
of either the problem of handling canonical fields of vanishing dimensions or
the problem of non-linear symrmetry transformations. Since the supersym-
metric extension of the standard model has become a realistic option the
use of the respective supersymmetry Ward identity represents a relevant
issue in phenomenology.

PACS numbers: 11.30. Pb, 12.60. Jr

1. Introduction

More than twenty years after its invention supersymmetry ([1], textbook
[2]) has become a realistic candidate for the extension of the standard model
(s.[3] for review and references). Since in the latter radiative corrections are
undoubtedly measured [4] for any supersymmetric model too its consistent
renormalization is mandatory. For this to achieve it is not sufficient to cal-
culate say one-loop corrections in a general gauge theory having susy field
content and then to specialize to supersymmetric values of couplings and
masses. Rather one has to establish at the same order a Ward-identity ex-
pressing supersymmetry itself. The reason for this is the non-existence of
an invariant regularization scheme maintaining both gauge invariance and
supersymmetry which would permit naive multiplicative renormalization.
Since 75 occurs not only in vertices (like in the standard model), but also in
the transformation law the lack of naive invariance of dimensional renormal-
ization is much more dangerous than in the standard model. This necessity
understood one faces immediately the following alternative:
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— Supersymmetry transformations can be formulated linearly in terms
of superfields; then one has to deal with fields of canonical dimension zero
which lead (in the massless case) to infrared problems already off-shell and
require managing at every dimension infinitely many terms.

— Supersymmetry is formulated in terms of ordinary fields of canonical
dimensions (“component formulation”). Then the transformations become
non-linear, do only close after use of equations of motion and lead to an open
gauge algebra. Whereas the first route has been followed in the years 1978-
1986 [5], the second was opened only fairly recently [7,8]. A comparison
of the results obtained seems thus to be adequate and is the subject of
the present review. Following Ref. [5] we first describe supersymmetric
theories as formulated in superspace. The necessary ingredients for this are
the supersymmetry algebra, superfields and invariant actions. In chapter
2 perturbation theory in superspace is shortly sketched and applied to all
relevant types of models. In chapter 3 we turn to the component treatment
and present the results as they have been obtained in [8]. We finish with
some conclusions.

2. Susy-algebra, superfields and models
2.1. Susy-algebra and superfields

The fundamental relation defining supersymmetry is the algebra

{Qa,Qa} = 204, Py, (2.1)
{QarQs} =0 = {Qu @y} - (2.2)

In
ot =(1,g), " =(1,-9) (2.3)

one has collected the Pauli-matrices ¢ and the 2x2 unit matrix. P, is the
total momentum operator of the system and generates space-time transla-
tions. The operators Q,((Q4) transform as Weyl-spinors (o, & = 1, 2)

[Muu»Qa] = —%UuuaﬁQﬁ7 (2'4)

[M;waQ-d] = _%5.#‘/0'1[[;@',3’ (25)
T, _ _

Ouv = 5(0';1.0'1/ - auau) ) (26)

1 _ _
Ouv = §(au0u - Uuau) ’ (2'7)
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and generate the supersymmetry transformations. In order to guarantee
the respective Jacobi identities we require

[Qa,s Pu] =0= [Q—d’ PM] ’ (2.8)

and deduce immediately

[Qas P?] = 0 = [Qs, P?]. (2.9)
The simplicity of this result contrasts remarkably with its importance: as
long as supersymmetry is not broken superymmetry multiplets are degener-
ate in mass — the nightmare of every application. In field theory we want to
represent Qq, Qa, Pu, M, v as charges of conserved Noether currents, to find
the algebra as a consequence of field commutators and to have multiplets
on which the symmetry is linearly realized. In formulas this means

i[X, 8] =8¢ for X e€{Q,Q,P,M)} (2.10)

with closure off-shell
[6%1, §%2] = §%3 (2.11)

(independent of ¢ i.e. without use of eqns. of motion). In order to find such
representations one uses the analogy to the Poincaré-group, writes down a
“group element” o

G(a, £, &) = (@ Putt®Qatiad®) (2.12)

and studies the group action
G(a,&,G(z,0,8) = Gla+z + i€of — i0&,0+ £,0+ &) . (2.13)

Here we have used .
eAeB = 6A+B+5[A'B] (2.14)

which is true since the higher commutators vanish. The law (2.13) repre-
sents a motion in parameter space
(2,0,0) = (z +a+ €0l — 00,0+ £,0 + §) (2.15)

which can be reproduced on functions ¢ defined over this parameter space
by differential operators

P.¢ = —-iau(b,
Qué = i (a% + z'azéﬁ"'au) s,
Qud = ~il- gz = 002,006,
¢ = ¢(‘T? g, é) . (216)
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Hence the desired variations 6% read

55 = 0u,
69 = a—g&-—i—iaade—da,
5@ = _52"5 — i8%04a, (2.17)
and satisfy
{53,53} = —2i0* 67, (2.18)
0={69,63} = {62 JQ} [62,8F) = [62,8F]. (2.19)

Identifying the parameters of translations with usual space-time, we may
interprete the fermionic parameters assotiated to (Jo, Q% as fermionic coor-
dinates, consider (z,6,0) as a point in superspace, the functions ¢(z, 6, 6)
as superfields provided they transform correctly:

i[Qar 9] = 630,
Z[QayQ] = 5S¢,
ilPu, 9] = 55457 (2.20)

(6% as given above).
The anticommutativity of the fermionic coordinates

0,05 = —030, o,B=1,2 (2.21)
restricts the maximal power of 8’s occurring in a product to four:
60,058% = cap8%6% ;0907 . (2.22)
Hence one can expand every superfield in components
#(z,0,8) = ¢ (z) + 6% (z) + ... + 626262 (z) (2.23)

whose transformation law can be deduced from (2.20) by expanding lL.h.s.
and r.h.s. in @ and equating equal powers. As examples we reproduce
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supersymmetry transformations of

chiral field anti-chiral field
A=A(z,0) = A+ 0y +6*F A= Ay(z,0) = A+ 09+ 6°F
oA = Py 0 A =10 B
(Sa'lbg = -28agF 50’(/3,5, = 2ia§d8u{1
5. F =0 6.F = —ict 0,0
daA =0 SeA =00
5o = 2i0,,,0,A Ssthy = 2e44F
0a F = i0, 40l «F =0
(2.24)
real field
#(z,0,8) = C+60x + 0x + 16°M + 16*M + 60+6v,, + 36°0)
+36%0X + 16%6*D (2.25)
0ol = Xa 6.C =% _
daX3 = —€agM cEd)EB = gdBM
daXa = 044 vy +10,C) daXa = —0hs(vu — 10,C)
5.0 =0 5.0 =0
0o M = Ay — 1(0*0uX) o daM = Ay + t(FuxoH)s
Sty = (0, A)0 — i(o”ﬁ,,aux) (?dvu = 3(Aou)a + 200,0105 3;/)25

dadg = —2eap(D +140v) + 30550 dady=e44(D — z@v) 305 L
Sadg = waaa“z\/;[ A
0o D = —i(a*0,\) o 06D = 1(0yAo*)s -
In these examples we have already introduced superfields which are con-
strained in a way which is compatible with supersymmetry:

IQQ-'N

¢*(z,0,8) = &(z,0,8) “real superfield”,
Dyp = 0 ¢ anti-chiral superfield ,
Dyp = 0 ¢ chiral superfield .
Here
9 5
Da = W - ZO‘“ 0 8
_ d .
D= o 2.26

D Y +1i0% (9 ( )

are derivatives which are covariant with respect to supersymmetry i.e. if ¢
was a superfield D¢ or D¢ is also a superfield.
They satisfy relations which are very similar to those of the variations

{Da,E&} = 2i0% .0, , (2.27)
{Dy,Dg} = 0= {Dd,Dﬁ} . (2.28)
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As a consequence follows
DoDgD,=0. (2.29)

The construction of susy invariant actions is greatly simplified with their
help. We shall need in particular

DDDD = DDDD, (2.30)
DDDD - 4[DD,DD] = 80, (2.31)
[DD,DD] = —160 — 8iD&DJd
= +1600 +8iDo DA . (2.32)
2.2. Models

For the construction of supersymmetric models in terms of superfields
one starts from the observation that sums and products of superfields of one
and the same type (chiral, anti-chiral, real) lead again to superfields of the
same type. The only other needed ingredient is the observation that the
highest #-components of every type transform into total divergences hence
their space-time integrals are invariant. On the basis of this fact one defines
covariant measures in superspace which project on the desired components.

— 4 4 a
[as = /d ao aoa = [ d*zD"Ds, (2.33)
— 4 4 a 34
/dS fd aoaao /da:DD (2.34)
0 0 0 0 -
= 4 —— s e == 4 . .
Jv = [degomaras = [d*DDDD (2.35)

The simplest model is made up from one chiral field and its anti-chiral
partner obtained by complex conjungation. When written as real fields
they have the form

A= A+0¢y+0°F —i0000A - —02908¢ —9292(:1,4 (2.36)
A= A+0¢+6°F +i0080A — 59290811) - Z02§2D/§. (2.37)

The D-term of their product provides therefore an invariant kinetic term
% f dVAA = / dz(DADA + %&68@/) +FF), (2.38)

i.e. a complex scalar together with a Weyl spinor and an auxiliary field
forms an invariant.
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Mass and interaction terms can be constructed by taking products of
fields with the same chirality

%/dSA? + %/45/12 =-Z /dm (2(.AF+ AF) - %(z/m/w W)) :
(2.39)

_y_g (/dSA3+/d5/13) = _ii/dx (F.A"’ + FA% - %(AWH—AM))
(2.40)

That these terms give indeed rise to conventional mass and interaction terms
is seen by using the equation of motion for the auxiliary fields F, F":

S =F-mA- 9A2 (2.41)

They lead to AA, 4242% and trilinear terms. The parameters of the model
are: one common mass m, one common coupling g.
The generalization to several chiral fields reads

Iin = Y [ avAa;, (2.42)
Tehiral = /ds(’\iAi+miinAj + gijxAiA; Ag) +/d5m' (2.43)

For such models spontaneous breakdown of supersymmetry (and of internal
symmetries) is possible and can be detected by studying the tree potential.
The Ward-identities which express supersymmetry of the action I’ read

WF__/d.ScSA /dScSA 9 o, (2.44)

Wil = /d55 A5F+/d55 A5Z 0. (2.45)

In the case when supersymmetry is spontaneously broken, the fields 4, A
are shifted into A + 62 f, resp. A + 62 f.

The supersymmetric extension of QED can be constructed with the help
of one real general superfield (“vector superfield”) and two chiral multiplets.
Gauge transformations and associated field content can be understood by
supersymmetrizing transverse and longitudinal projection operators:

DDDD DDDD
PLo= -1 Pa= -3
py = 200D (2.46)

80J



3952 K. SiBoLD

They satisfy:
PZP] = (S”P] s 27] = L17 L27T7 (2'47)

and
P+ P+ Pr=1. (2.48)

Hence Pr; projects to a chiral field, Pry projects to an anti-chiral field, Pr
projects to a real field.
This suggests

0 = (A - /I)
= (A4 0% + 6PF — 0080 ~ ~6*050% + 4192(?25,4)
~i(A+ 05+ PF + 60604+ 50007 + i(ﬂ(?[]fi) (2.49)
as gauge transformation and

Rt = — / dVéDDDDé = / d (= f““ fut Sy D’2) (2.50)

as gauge invariant kinetic term for the vector field. Here appear the gauge
invariant combinations

A = M+i0dx,
D' = p+0OC,
F,, = 0,v, —0,v,. (2.51)

Another useful form of F(Vecmr) is given by
vector 7y 7 My 7 1 o = A
rlveeter) — o / dSDDD*¢DDDad + / dSDDDs¢DDD% . (2.52)
A supersymmetric gauge ﬁxing term takes the form

T = —5_12_8 / dveé{DD,DD} ¢. (2.53)

A version with chiral Lagrange multiplier field B is given by
Iy = 1—;—8- / dV (aBB + %(BDng + BDD¢)) . (2.54)

A gauge invariant and supersymmetric interaction with matter fields turns
out to be

Fl?ll:tter /dV A+69¢A+ + A_e 9¢A ) (2.55)
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for gauge transformations

6jAr = 0, 6jAy = TigAAy, '
(which respect chirality).
The invariant mass term is then
[matter 5:- / ASALA_ + % / dSA_A, . (2.57)
Parity transformations are realized by
d——¢, Ay oA, AL o A_ (2.58)
FiﬂV — F}Siv:ctor)-*_ Fé;:atter) + F::a;t,er (259)

constitutes the action of supersymmetric QED, combining scalar and spinor
QED, having one matter mass parameter and one coupling.

The supersymmetric extension of Yang-Mills theory can be found by
first choosing a multiplet of chiral fields with non-abelian rigid transforma-
tions

duAr = —iA%T A [re, 7] = if*ere
SuAr = 1A% AT, . (2.60)

and then building up the finite transformations

Ay — (e_iA)k{Az A= A%re
i S 2.61
Ak — Al(e’A)lk ( )
The interaction suggested from SQED becomes invariant
Ae®A — Ae®A (2.62)
if S )
e® o e et = ? (2.63)
is the transformation law for the non-abelian vector multiplet
¢ =7 (2.64)

Infinitesimally

¢ =o+6¢ (2.65)
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this law implies

66 = (A= A) + 29, A+ A+ (0,16, 4 A + O()
= iQ,(, A, A). (2.66)

The non-abelian extension of (2.52) reads

—-—1—2—8-Tr / dSFeF, = Tr / dz(~ F‘“’) --up,\+ D2+(’)(¢ )), (2.67)

where L
F* = DD(e™®D%¢%). (2.68)

The most general action invariant under supersymmetry and local gauge
transformations in thus given by

Tiw = Prm+ 35 [ VA A+ T+ Th, (2.69)
[ = mas / dS A, Ay + M / dSA, Ay, (2.70)
Iy = habc/dSAaAbAc+ ;"abc/dsvf'iafébficv (271)
(2.72)
here )
é=¢°T°, (2.73)

for a general representation of matter fields transforming as
SAL = iA°THA;, SAr = —iAATE (2.74)
and invariant terms Iy, [,
3. Perturbation theory in superspace
3.1. Propagators
The main motivation to formulate supersymmetric field theories in su-
perspace originated from the fact that one can there also formulate pertur-

bation theory and thereby embody the peculiar properties which supersym-
metric theories indeed possess.
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Extending functional derivatives and é-functions from ordinary space to
superspace’

é 1
mﬂ?) =dv(L,2)= '1—60%25?25(931 — 23), (3.1)
) _ o
_ — — = 1 2
sAmA® = 05(1,2) = DDy (1,2) = DDabv(1,2), (32
612 =01 — 0y, 612 =6, - 0, (3.3)
one can as usual derive propagators and obtains
_ .4més(1,2)
(TA(1)A(2)) = 4 Trm? (3.4)
- _ .DDjés(1,2)
(TA(1)A(2)) = O (3.5)

for chiral fields.

The explicit form of chiral é-functions and propagators of chiral fields
depends on the basis in which the fields are written and whose preference
depends on the context. As an example we write them down in the chiral
(resp. anti-chiral) basis:

55(1, 2) = -——;}9?25(1:1 - 1172) . (36)
The Fourier-transforms of the propagators read
m0f2

k2 —m?2’
6—26100}}‘:

k2 —m2’

(TA(1)A(2)) =
(TA(1)A(2)) = 1

wherefrom one can e.g. identify component propagators:

(TA(1)A(2)) = (TA(21)A(z2)) + (T8:%(21)029(22))
+(T61F(21)03F (22)) - (3.9)

The free propagator for the vector field with mass M takes the form

_16i { 1DDDD 1 {DD,DD
ToW)o@)=3p <‘§D+M2“T6 O+ ab?
8
O+ Mm?

}) Sv(1,2)(3.10)

(T(1)¢(2)|a=1= dv(1,2). (3.11)

! For conventions s. [5]
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In the massless case one obtains
i _ a _ . ‘
(To(1)p(2)) = 0 <DDDD -3 {DD,DD}) ov(1,2), (3.12)
(Te(1)9(2))]a=1 = %&41,2). (3.13)

The O2 signals infrared difficulties already off-shell in all gauges but a =
1 and goes along with the vanishing canonical dimension of the field C
(cf.(2.24)), i.e. of the superfield ¢. Dimension zero of ¢ permitted also the
appearance of functions of ¢ like €9 and will in higher orders pose the
problem of uniquely identifying such functions — a highly non-trivial task.

3.2. Diagrams, divergences

The propagators are the main ingredient for Feynman rules and dia-
grams in superspace. One reveals the fact that for supersymmetric theories
ultraviolet divergences are softened compared to generic theories. We shall
demonstrate this fact with the simplest examples, the one-loop contributions
to the 2-point-functions of chiral fields.

(1) 771(55(1,2) m53(1,2) _

‘ = 14
(TAMAER)D ~ IR = o (3.14)
because 6%,6%, = 0;
= 1 ~ 1
1)~ ’(fl"fz)f’————/dkf. 3.15
CADARY) ~ g [ dper—e2r g (3.15)
[ = iDD2bs(1,2;k)tDDyds(1,2;p— k)
- k? — m? (p—k)2—m2 °
= e—Enp
(B -mY)((p- k)P - mE)’
E12 = 010’51 -+ 920’52 - 201052 . (316)

We see that in the chiral-chiral example a logarithmic divergence is absent,
whereas in the chiral-antichiral example a possible quadratical divergence is
softened to a logarithmic one. This can in fact be generalized to all orders:
purely chiral (or purely antichiral) vertex functions are better behaved by
one in power counting (hence are finite); the chiral- antichiral vertex func-
tion is never worse than logarithmically divergent. Quadratical divergences
can only occur in the 2-point-functions of vector fields (and are reduced
there to logarithmic ones by gauge invariance).
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The above chiral-antichiral example leads to one more conclusion. One
can render the integral finite by replacing I by

R=(1-t)I, (3.17)

where t;“; is the Taylor operator up to and including power 2. Now the
integral exists. Due to the exponential exp(—E;2p) we find

1

...e-Elzp _ 40
= Y G )

(3.18)

which is a very important result: the exponential obviously contained the
entire supersymmetry structure of this radiactive correction and appears
untouched after performing subtractions. Hence momentum space subtrac-
tions maintain supersymmetry! Or generally stated: defining renormalized
vertex functions by (BPHZ-) momentum space subtractions we do not vio-
late supersymmetry — it is a naively invariant renormalization scheme. As a
consequence the susy Ward-identities (2.44), (2.45) hold to all orders of per-
turbation theory, where I' is the generating functional of vertex functions
and starts with the classical action

I'=Tq+hr'® 4 a2r@ 4 (3.19)

In SQED this naive invariance of the renormalization scheme still pays off
because we can circumvent the infrared trouble of the massless vector field.
With the help of the Zimmermann/Lowenstein convergence criteria one can
show that

(1) UV-subtractions alone are sufficient for convergence (off-shell);

(2) the gauge o = 1 is stable.

Hence susy is naively maintained (add fd‘/éaqﬁﬁ resp. deSg,qbg% to the
Wl-operators in (2.44),(2.45)) and the gauge Ward identities hold:

s 5 5 1
b ‘l'__-: _ — e — = - (, .2
wal <DD5¢ 9445+ 94 M_)f ODDé,  (3.20)

g
wil = (DDi_ FIRE S >r—EDDD¢> (3.21)
45 = 86 IEA, TI05a ) TR

One derives as usual from the gauge WI that the longitudinal parts DD,
DD¢ of the vector field ¢ are free, hence that the theory is unitary (in a
formal sense for massless vector field, in a strict sense for massive vector
field).

In SYM the off-shell infrared problem and the fact that to a given dimen-
sion infinitely many field monomials belong can no longer be circumvented,
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but must be solved. The latter is dealt with by expanding in the number of
fields in addition to the perturbation in the number of loops: we arrive at a
double expansion. The solution of the former proceeds along the following
lines. One first observes that every function

F(¢) = ¢+ a2¢” + az¢® + ... (3.22)

is as good-a field as ¢ itself. And indeed this generalized wave function renor-
malization is required for taming all divergences [6]. Also Qs of (2.66) can
be generalized by this substitution, still leading to BRS invariance (which
replaced gauge invariance). Qur theory has infinetely many parameters!
Fortunately it turns out that these parameters ay are gauge parameters.
And this then provides the clue for solving the off-shell infrared problem.
Performing a field redefinition

¢ — ¢ (1+ 34%6°0%) + O(¢*) (323)

maintains BRS invariance, breaks susy — but only softly and removes the
dangerous double poles in the ¢-propagator:

1 1 1

el - - 2
Dz—)DD+u2 (3.24)

(in the (CC) component). Hence u? is an infrared regulator which maintains
BRS and is a gauge parameter. Hence gauge invariant quantities which are
also gauge parameter independent will exist infraredwise: for them the limit
u? — 0 exists trivially.

The soft breaking of supersymmetry can be controlled algebraically.
This proceeds as follows. If in the classical approximation (softly broken:
~ 0) supersymmetry holds

Wolg~0 Wl ~0, (3.25)
then in one-loop the breaking is a local field polynominal
W,W ~A,, Wel)W ~ Ay, (3.26)
and the breaking terms have to satisfy

WaAc'x + Wo'(Aoz
Walg + Wal,
Wd&[é + W[;Ad

1R
o oo

(3.27)
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as a consequence of the algebra of the WI operators

{Wa,Wa} = 20*W[, (3.28)
{(Wa, W} =0 = {Wa, W;}, (3.29)

and the translation invariance of I'. Now it is a theorem(s.[5,9]) that the
only solution of (3.29) is

Ao ~ WA, (3.30)

Ay ~ WdA, (3.31)

where A is a local field polynomial. Hence redefining ') by —A removes
this breaking in the susy WI and establishes susy at one-loop. By induction
this works to all orders: supersymmetric theories of chiral, anti-chiral and

vector fields are free of anomalies.
The susy WI has the form

Wl = WhT - 2i / dop< o _o. (3.32)

)\

Here W/ collects all homogeneous superfield transformations and the in-
homogeneous term generates the breaking terms in form of derivative with
respect to the A-component of an external superfield u.

Next one has to study that identity which expresses BRS symmetry
on the functional level. We shall refer to the literature (s.[5] sects. 5,15)
and only quote the result. The Adler-Bardeen anomaly is absent if the
representations of (chiral) matter superfields are chosen in a suitable form

1 dz)k

1 k _'
s T T T £ 0 (3.33)

=
(sA, = T}, Ap; dijk is the totally symmetric tensor in the symmetry group;
d? = d“kd,jk) the usual condititon. In this case the theory is unitary
and Green functions of BRS invariant (and gauge parameter independent)
operators exist and are supersymmetric as well as u? independent.

4. Supersymmetry in the Wess-Zumino gauge
and without auxiliary fields

As mentioned above one can formulate susy gauge theones also in terms
of canonical fields of spin 0, 3 3» 1 with canonical dimensions 1,2 5, 1. But then
the susy and gauge transformations are non-linear, intertwined, do not close
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off-shell and form an open algebra, which makes itself felt on the gauge fixing
term: it is part of an infinite chain of operators [10]. The solution [7,8] of
these combined difficulties came with the introduction of ¢n-like fields for
all transformations? (not only for the rigid gauge transformations):

SAL = (Duc)i + Eaaua[.ixm + )‘iaauaﬁ'gﬁ’ - if"(?,,AL ’

SN = —fiikcizke _Levgmr o Rl — g% (@,Then) — i€4 0N — X

sba = —Tiyc' By + 26% Yoo — i€40,8, — Enda |

syl = —Tacvf — iauaggﬂ(Du@a + 26" Mabe)@pPe — 11D, UT + Sbn

s¢t = ~%f£jkcjck - 22'&‘“0:5?‘;142 - if"@uci,

s¢ = b — €49, ,

sbt = —27?5"0;‘&5‘3%3 —igra,b,

s€u = —2e%0 7

s = —npe®* |

sp=0. (4.1)

In this transformation law c,é and b are resp. the ghost, anti-ghost and
Lagrange multiplier field; ¢*,&#, 1 are the global ghosts associated to super-
symmetry, translations, R-transformation. Like for ordinary BRS transfor-
mations the algebra of the transformation law is contained in the nilpotency
of the transformations

s2¢ = field equation (4.2)

which closes for spinors only on the equations of motion, but this is sufficient
for having a manageable gauge fixing. So, in the Landau gauge one can
choose

Iyp =s / cOA = / (604" + 96 (Dye)' + £%0,,50% + X0, 52))
(43)
Like in ordinary YM theory on couples external fields to the non-linear
field transformations. In addititon one introduces in this external field part
terms which are quadratic in external fields. They render the problem of
off-shell closure solvable and correct for terms going with field equations.

Texer. = /(A*i“(sAL) + ,\*i"(s)“(i)) + :\;1(35\1;3)

2 We follow Ref. [8].
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87 (56a) + G5 (58a) + V1 (5%aa) + V24 (s9F)

Feri(set) - L (enasi NP2 L 2evyn e B*0) . (4.4)

2
The complete action
I =TIy + Fg.f. + Lexe f. (45)
then satisfies the Slavnov-Taylor identity

s(I=0, (4.6)
where (s.[7] Eq.(2.13))

s8I 5F+ s &I + o 6o
SA*HSAL " SXG X T 53wif 6
Jsrer  ersr  &r 8- 6r or
3% 0da | 005 00 OUL, OUT | gt 00,4

s(I) =

§r sr &I
il ry
 Youtd 50‘ ( - €% C) Y
&r
T _ :
+( 2u~:a Eac f“@b)&bl
_9cogt # 0 5F L e 90 (4.7)

af” 5gr ¢ S T Thse,

For the purposes of renormalization it is crucial that the linearized func-
tional BRS operator, to which it gives rise, is off-shell nilpotent:

o / 6r 5 . or 5
= J \sa-wsai " 54 A7

+ (bi _ iguﬁua") 5_552 + (—Qiaaaz,ée’éauf“ §"0 bz) 5(15;%

J o 0 17,
a ﬁ
—2e% “g o 8 — — e ﬁ@s ) (4.8)

It turns out that the ST identity can be extablished to all orders of per-
turbation theory by adding suitable counterterms in all fields, provided the
usual anomaly is absent (cp.(3.33)).

By construction the ST identity contains all relevant symmetries of the
model and it is very instructive to bring them to light individually. Since
sr contains all symmetries and s their algebra one expands in powers of
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the ghosts and reads then off the desired relations. A tool to formalize this
procedure is the filtration operator

0 0 . 0 6‘
—_ —_ — 4.1
N = saa+ 555 +€6§u 5 (4.10)
It counts the degree in the global ghosts:
sr=»_(sr)n with [NV, (sr)n] = n(sr)n - (4.11)
n>0

The generators of susy, translations and R-transformations (the “rigid sym-
metries”) can now be identified by the expansion

(st = e°Wa +s*"W~ +E4W, + nWr
& 0 o 0 0
o I»L
-2e%,, 8{“ —ne® 9ee + nEs 55 (4.12)
where the transformation law of the ghosts has been separated from the
ghost linear part. It is clear that these WI operators will in general be
non-local. The susy WI can be isolated as follows

6Ty  6Lo (6 0 )
—_— "t — | — = =0. (4.1
Z/(éu 9= ) et e (guges” o0 a3

Here the sum runs over u = A,, A\, A, ¢, ¢, %, ¥, c and Iy, |o indicates that
all ghosts have to be put equal to zero. The conjugate WI Ws(I') has the
analogous form with the replacement £* — &%. The nilpotency of sp (4.8)
yields at the orders 0,1,2

(sr)éd = 0, (4.14)
{(sr)o, (sr)1} = 0, (4.15)
(sry)? + {(sr)o, (sr)2} = 0, (4.16)
(sr)o coincides with the usual linearized ST operator and thus
(sr)o(@-I') =0 (4.17)

characterizes Q as a (gauge-) BRS invariant insertion. (4.14) expresses
the commutativity of the ordinary BRS transformations with (sr);. (4.15)
implies that on (gauge-) BRS invariant insertions (sr); is nilpotent

(sr)H(@Q-T) = —(sr)o(sr)2(Q-I) ~ 0. (4.18)
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(The tilde indicates equivalence under (gauge-) BRS: Q can differ from an
equivalent Q' by a (s1)0@Q.)

This relation implies now the algebra of the rigid transformations indentified
in (4.12)

{Wa') V_Va} ~ QGZde (4.19)
(Wr, Wa] ~ W, [Wr, Wa] ~ =W, (4.20)

(other (anti) commutators ~ 0).

And we thus have the result: on Green functions of (gauge-) BRS invariant
insertions supersymmetry, translations and R-symmetry is realized. One
can even show that the susy transformations are linear (s. app. A of [8]).

5. Conclusions

The quantization of N = 1 supersymmetric gauge theories requires the
solution of either one of two problems:
— in the case of linearly realized susy (superfields) one has to deal with the
vanishing canonical dimension of the vector superfield; this poses infrared
troubles and leads to infinitely many (gauge) parameters in the theory;
— in the case of realization by canonical fields (Wess-Zumino gauge, aux-
iliary fields eliminated) one has to deal with nonlinear symmetry transfor-
mations and an open algebra.
Both problems have been solved ([5, 7, 8]) and lead to qualitative agreement:
the Green functions of gauge invariant (and gauge parameter independent)
operators exist and realize supersymmetry linearly. Supersymmetry is in
both cases expressed by a Ward identity: (3.32), (4.13). The formulation of
susy in terms of superfields makes obvious the multiplet structure (e.g. for
composite objects), whereas the component formulation permits an easier
comparison with non-supersymmetric theories. Hence both are important
and deserve further study.

I am very grateful to the organizers of the school, in particular to
M. Jezabek, for the opportunity to lecture in such a pleasant atmosphere
and surrounding.
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