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Properties of two sets of finite deterministic cellular automata are
compared: the set of local homogeneous one-dimensional automata and
the set of all possible automata (random map model). We investigate the
following properties: relaxation time, number and length of limit cycles
and the distribution of the size of bassins of attraction.

PACS numbers: 02.50.Ey, 05.45.+b

1. Introduction

Cellular automata (CA) formalism is known [1, 2] to be a relatively
new technique of computer simulation, with numerous existing and poten-
tial applications in various branches of technology and science. A good deal
of problems of modern theoretical physics can be expressed within this for-
malism; in particular, our understanding of complexity [3], self-organization
[4] and chaos [5] has been improved with the application of CA. Most gen-
erally, cellular automata can be divided into deterministic and probabilistic
ones, but in this paper we shall not discuss probabilistic CA. Let us recall
a standard definition of a deterministic cellular automaton as a triade: a
discrete space (lattice), a set of its states and a rule of evolution of lattice
states in discrete time. In most cases rules are local, i.e. they are defined
as dependent on states of neighboring lattice cells. The language of CA
is particularly useful when one intends to discuss the analogies between a
physical process and a calculation [6]. Some general characteristics of both
are hoped to be captured; then, asymptotic behaviour of complex physi-
cal processes could be simulated and foreseen, if their essential features are
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properly described in terms of simple rules of CA. It is appealing to recog-
nize all possible results, which could be obtained at least within a limited
family of CA. That is why people are interested in the problem of classifi-
cation of rules [7]. Various schemes of classification of asymptotic states of
CA have been proposed [7-13]. It is known, however, that in general case
one cannot predict the future of a lattice before performing simulation [14].

The random map model [15] can be treated as a cellular automaton with
randomly selected rule, defined on a whole lattice. This model is defined
as a random mapping of a set of states onto itself; once the mapping is
chosen, the trajectory is deterministic. This model is equivalent [16] to the
Kauffman model [17] with maximal connectivity K (K = N), where K is the
number of cells which influence a state of a given cell, and N is the number
of lattice cells. The Kauffman model was introduced many years ago [18]
to describe biological process of cell differentiation. It can be treated as a
mixture of all possible cellular automata [19]. The random map model is
even older (for a review see [20]) and it was taken as a reference model for

the Kauffman model [16].

Recently, relaxation time t of an automaton was discussed [21] within
the Kauffman model for the above mentioned case of K = N. The relaxation
time of an automaton was defined as a number of time steps needed to reach
a limit cycle (limit point). As the discussion was limited to finite systems,
no other attractors were possible. Obviously, relaxation time depends on
an initial state; then, we have to average over all possible initial states and
over all possible mappings. A probability distribution P(t) was proved [21]
to be the same as the probability distribution P(c) for the length ¢ of limit
cycles, i.e. for a given system P(c) = P(t + 1). The distribution P(c) was
investigated analytically [15, 20] in the limit of infinite V. These results on
P(c) are valid for P(t) as well.

Relaxation time of an automaton can be of interest because it is a simple
analogue of a physical relaxation time, important feature of irreversible pro-
cesses. The aim of this paper is to compare the distribution P(¢) obtained
within the random map model with the same distribution obtained for more
limited class of CA. The latter class is chosen to be one-dimensional, ho-
mogeneous CA, when rules are defined on three cells: a central one and its
two nearest neighbours. This simple family of automata was investigated
carefully by many authors ({1, 8, 11, 22] and references therein). Below
we demonstrate that the definition of relaxation time allows to distinguish
some subclasses within this well-known class of automata.

For the completeness of the comparison we investigate also some other
quantities, namely the average number of attractors and the parameters of
the distribution of the size of bassins of attraction. We believe that such
analysis could be helpful also for other families of CA. In any case, the
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definition of a given family of CA is a constraint of the whole set of CA,
which constitute the random map model. The comparison shows, then, the
consequences of such a constraint.

2. The results

Average relaxation time () is calculated for two sets of CA: all possible
mappings of the space of global lattice states onto itself, and all homoge-
neous local (LH1D) one-dimensional automata, defined on a ring of N cells
(periodic boundary conditions). The former case is just the case of the
random mapping model (RM). For this case, the distribution P(t) depends
on the number w of all possible states of lattice; the number of states of a
cell is not determined. The latter LH1D family of CA is parametrized by
N. To compare the results on RM and LH1D automata in one figure, we
have to put for both cases the same function f of the number of states on
the horizontal axis. The calculations for LH1D case are performed with an
assumption of two states per cell; so, the number of states in this case is
equal to 2N. For reasons which will be given below we choice f = log2w
for the case of RM. Then, we compare (t) as dependent on log 2w for the
case of RM with (t) as dependent on N for the case of LH1D. The former
curve is obtained just from the analytical formula [21]

w w 1

w' e wk
(t) = ppcTES Mok Z o (1)
k=0 =0
and the latter one from direct verification of 256 automata and 2%V initial
states. The result is given in the Fig. 1. We see that for the random
map model, average relaxation time dependence on w can be satisfactorily
approximated by its asymptote [15]

()~ () —, (2)

even for small values of w. (The coefficient (7/8)1/2 is erroneously written
as 1/2in [16, 17].) We checked also some moments of the distribution P(t);
n-th moment seems to be proportional to w™/? for n = 1,2, 3,4. The results
obtained for LH1D automata seem to be linear with N. The logarithmic
scale is chosen just to demonstrate this proportionality. The proportionality
coefficient slightly depends on whether N is even or odd; for upper parts of
the curves its values are 0.255 and 0.248, respectively.
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Fig. 1. Average relaxation time of LH1D automata (N even and odd), compared
with the results of the RM model.

In paper [21], the distribution P(t,c) for random mapping model was
obtained analytically. The formula is

P(tc) = Plt+¢) = oy _"c’;!wmﬂ . (3)

Obviously we have w¥ automatons and w initial states; then we can get
the number of cases N(¢,c), just by multiplying the distribution P(t,c) by
w¥t1, We are interested in the number N, of attractors per an automaton;
it is easy to obtain it from the following formula:

1 <~ N(t=0,c)
c=1

because N(t = 0,c) is the number of cases, when an initial state belongs
to an attractor of length ¢. Dividing it by the attractor length, we get 1
for each attractor. Eq. 4 is useful for any set of CA, and not only for the
random mapping model, if w" is substituted by the number of automata in
a given class.

To compare the RM and LH1D classes, we calculated the N(¢,¢) func-
tion for LH1D automata. The results on N(t,c) are presented in Fig. 2,
both for LH1D (Fig. 2a) and RM (Fig. 2b). Next we used the Eq. 4 to cal-
culate N, as dependent on the number of cells V. The results are presented
in Fig. 3. For the RM model it is known [20] that the asymptotic curve for
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Fig. 2. The function N(2,c) calculated for (a) LH1D automata, (b) RM model.

large N is N/e. This asymptote is included to the plot. The vertical axis
is in logarithmic scale. As before, the results on LH1D are different for N
even and odd, but now this difference is much more distinct. We observe
also a small deviation of both curves from an exponential one (linear in the
applied scale). We should add, however, that the number of points is much
too small to conclude any asymptotic behaviour.

In Fig. 4 we show the average length of a limit cycle for LH1D automata.
This should be compared with the same quantity obtained within the RM
model. As the latter distribution is the same as for the relaxation time
(Fig. 1), only the asymptotic curve is given in the plot.

We have also found the distribution of the size of bassins of attractor
for LH1D automata for N = 3,...,9. This distribution can be partially
described [15] by the parameter

(Y2> = <ZW32> ’ (5)

where § counts bassins of attraction, W is the ratio of a size of a S-th bassin
to the number of all possible states, and the average (...) is taken over all
LH1D automata. The value of (Y2) describes a multivalley structure of
attractors; it tends to zero if there is no “dominating” bassins of attraction
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Fig. 3. Average number of attractors per an automaton, calculated for LH1D
automata (V even and odd) and compared with the results of the RM model.
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Fig. 4. Average length of limit cycles for LH1D automata (N even and odd),
compared with asymptotic curve for the RM model.

[15]. This parameter has a definite meaning in the spin-glass theory. The
obtained values of (Y3) are given in Table I. They should be compared with
the same value obtained for the RM model, which can be expressed by the
Euler integral; it is equal to B(2,1/2)/2. There, the asymptotic value of
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Fig. 5. Action of a “chaotic” automaton (00101101) from a single seed in a homo-
geneous, initially empty state.
(Y,) for N infinite is equal to 2/3 [15].

TABLE I

The values of (Y3) for LH1D automata, as
dependent on the number N of cells in a ring.

N (Y2)

0.568
0.487
0.518
0.389
0.416
0.302
0.297

WO 0o ~1 O OV W

3. Discussion

Direct comparison of the properties of LH1D automata with the proper-
ties of all possible automata (RM) shows that the conditions of locality and
homogeneity strongly influence the properties of CA. LH1D automata have
shorter relaxation time, more attractors and relatively long limit cycles, if
compared with “average” automaton, represented by random mapping. The
data on the parameter (Y;) (Table I) confirm the result on the large number
of attractors for the LH1D CA; the values of (Y>) are smaller than 2/3 and
decrease with N. The difference between LH1D automata for even and odd
numbers of sites can be interpreted as a finite size effect; the step value is
equal to 2 because we have assumed that there are two states of a cell. The
existence of such a step value was found also for other automata, e.g. “Life”
[23] or Ising CA [24]. On the contrary, there is no characteristic scale for
the random mapping model, as seen in Fig. 2b.
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In Fig. 2a we observe a structure of maxima of the number of automata
against the length c of limit cycles. The period of this structure is just the
number N of cells in a ring. We have checked that this structure is partially
due to a subclass of automata whose action is mainly to shift the whole
configuration of cells, one step right or left. While shifting, the structure can
be reversibly modified, what doubles the value limit cycle length. However,
the largest values of ¢ are produced by another class of automata, which
could be termed as “chaotic” [11]. Their action can hardly be described in
a general way; for small initial disturbance of a homogeneous state (all “0”
or all “1”) they form asymmetric and irregular fractals, expanding along
a ring (Fig. 5). To separate out these automata, we just check which CA
produce the longest limit cycles. For N = 5,6,7 and 9 these automata are
found to be the same: 45 (00101101), 75 (01001011), 89 (01011001) and
101 (01100101), in the notation of [11] and [8], respectively. As we see,
“hot bits” [11] are set reversely in all of them: 000 gives 1, and 111 gives
0. We have checked that both “chaotic” and “shifting” CA have very short
relaxation times.

We have demonstrated that the RM model can be treated as a reference
automaton to be compared with more limited families of cellular automata.
We believe that such a comparison can give valuable and simple information
on a given family of CA. In particular, the introduction of relaxation time
of an automaton is found to be helpful. There is also some interesting,
although far, analogy between the RM model and diffusion: let us consider
relaxation time as a time which is necessary to fulfill the subset of state
space, available for a given automaton. Then we can see the RM model as
a model of diffusion in the space of states. Average length of a trajectory in
such space is found to be proportional to square root of w, ¢.e. square root
of the number of steps to be made to reach limits of the available space. On
the other hand, average length of a trajectory of a random walker is known
to be proportional to square root of the number of steps.

Let us also remark some applications of the RM model; as was men-
tioned above, this model is equivalent to the Kauffman model for the case of
maximal connectivity. The Kauffman model can be used to the evaluation
of the size of sets of genes, which take part in human reaction. Time of
reaction of a human genetic system was evaluated [25] to be about 10 min-
utes. People have 10° genes. Each gene can be on or off. If the trajectory
of a genome contains all possible states, the reaction time would be much
longer than the age of Universe. Therefore, only some islands of genes are
expected to be active [16]. Their size N can be evaluated from the Eq. 2:
(tyawl/? = 2N/2 ~ 10min /us = 6 * 108, where 1 us is a lower limit for
one step [25]. This gives N to be about 58 genes per an island. Another
possibility is that only a limited set of automata should be active during the
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reaction; to look for the appropriate constraint of CA [26] is an attractive
task. The Kauffman model has also some relations to the spin glass theory
[27] and to the Ising CA [28], but a discussion of these relations exceeds the
frames of this paper.

Concluding, we postulate the random map model to be a standard
“average” algorithm to be compared with any deterministic automaton or
a family of automata, which could be of interest.
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