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1. Generalities

The purpose of statistical mechanics is the description of the mechanics
of large or even infinite systems. We recall that infinite (extended) sys-
tems in statistical mechanics arose as a result of thermodynamic limit. The
basic aim of this procedure is to give an unambiguous meaning of such
concepts as temperature, pressure, phase transitions, etc. (c¢f. [13]). This
makes clear that the existence of thermodynamic limit is one of the stan-
dard assumptions of statistical mechanics (cf. [14], vol. I). Consequently,
the idealization saying that the matter fills all space with finite density is
put on. Furthermore, the basic states of interest are equilibrium states. To
discuss the concept of states, we note that because the number of compo-
nents in a system is very large (or even infinite) we cannot hope to have a
complete description in the sense of classical mechanics. Let us recall that
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such complete description of a system at any instant is given by the phase
point

93=(Q1,---,qn,p1,---,Pn)(€ X) (1)
It is sometimes called a pure state. An incomplete description is called a
statistical description or mixed state and it is given by a measure x on the
phase space X.

The time evolution of the considered system can be expressed as a
one parameter family of transformations Ty : X — X of the phase space
(e.g. a hamiltonian flow), or as a one parameter family of transformations
defined on the set of measures on X (e.g. by Liouville equation, Markov
semigroups), or as a one parameter family of transformations on the set
C(X) of all bounded continuous functions on X. Thus, the following triple

(X’ T‘ta /'l') (2)

is considered as the basis of any considerations of (classical) statistical me-
chanics.

Having a defined (commutative) dynamical system (2) it is natural to
ask a question about its fundamental properties. Among those properties
of T, the ergodic ones are usually considered as the most important (cf.
[14] vol. L, [1]).

However it is an easy observation that the mere measurable structure of
the phase space is too weak tool for a study of such ergodic questions as an
existence and uniqueness of time invariant measure, return to equilibrium
etc. Even to formulate in a proper way a description of Markov (classical)
processes or semigroups some additional structure is necessary. This is
the point where L,-spaces come in. Namely, with the triple (X, T}, 1) one
can associate L,(X, i) spaces. Then, using the functional analysis one can
study the time evolution as a family of transformations on L,(X,x). In
particular, for the case p = 2, one can use the structure of Hilbert space and
its basic tool the spectral analysis. The idea of using Hilbert space method
to study classical mechanical systems is very old and goes to Koopman. For
a discussion of ergodic theorems in Banach space setting (which includes
L,-technique) we refer to [7].

2. Elementary quantum mechanics

To get a hint for a generalization of the L,-structure of classical statisti-
cal mechanics let us consider a description of dynamical systems within the
framework of elementary quantum mechanics, ¢.e. let us consider a quantum
system of certain (finite) number of particles. In this framework a quantum
system is specified by a triple (¢f. [3])

(B(H)a H, 9)7 (3)
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where H is a separable Hilbert space, B(H) the set of all linear bounded
operators on H and p is a density matrix. Let us assume that g is an
invertible operator, i.e. w(-) = Tr{g-} is a faithful state on B(H). It is an
easy observation that w can be considered as a quantum counterpart of a
measure. In physical terms, g can describe for example a Gibbs state at a
temperature 3.

When we use the Heisenberg picture, time evolution of the system can
be given by a (one-parameter) family of maps on B(H).

To generalize the classical Lp-scheme it is necessary to ask for “quan-
tum” L,-spaces. The traditional approach relies on the observation that the
set of all Hilbert-Schmidt operators Hp.s has the Hilbert space structure
with the inner product given by ((a,b)) = Tr{a*b}, a,b € Hyg—s. Further-
more, the set of all density matrices Fr (Hu—s, B(H) respectively) can
be considered as “quantum” L; (L2, L) spaces (see [4]). More generally,
the p-th Schatten class (see [11]) can be considered as quantum counterpart
of L,-space for elementary quantum mechanics (see [12]). This leads to a
conclusion that the general properties of L,-spaces can be used for a descrip-
tion of quantum dynamical systems. In fact, such approach to problems of
statistical physics is frequently used and sometimes is called quantum Liou-
ville space technique (see [4]). For a slightly different definition of L;-spaces
associated with a quantum state and their applications to “probabilistic”
description of quantum systems see Chapter 11 in [6].

Consequently, L,-technique can be generalized for the framework of
elementary quantum mechanics.

3. General quantum systems

Statistical mechanics, as it was mentioned in Section 1, deals with large
(infinite) systems. Moreover, classical statistical mechanics incorporates the
locality into its scheme from the very beginning (cf. (1)). Therefore, these
features should be taken into account in any attempt of quantization of the
“classical” scheme.

A natural formulation of a quantum schema which includes the locality
property can be given within the algebraic formalism of quantum mechanics
(cf. [5]). Namely, in quantum physics, (similar as in the classical theory),
one can use a concept of observables (or “fields”) to implement the princi-
ple of locality. Specifically!, to each (open) bounded region O in the space
we can associate the C'*-algebra A(O) representing physical operations per-
formable within O. Thus, the net of algebras, i.e. the correspondence

O — A(0) (4)

! In this lecture we are interested in non-relativistic description only.
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is the base of the mathematical description of the theory. Consequently,
A = UA(O), where the bar denotes an appropriate strong closure, represents
all quasi-local observables of the quantum extended system. It is natural to
view A as a noncommutative analogue of the space of bounded continuous
functions. Having the quantum counterpart of the set of bounded contin-
uous functions on the phase space, as a next step, it is necessary to give a
recipe for the time evolution of the system. This can be done as follows.
Let {O,} be a subnet consisting of an increasing sequence of open finite
subsets of R” or Z” such that for every open finite subset O there is some
finite positive integer n(O) with the property: O C O for all k > n(O).
Furthermore, suppose that the time evolution a}(f) = e*fnt fe~iHnt is well
defined in each O,, where H, is the Hamiltonian associated to the region
O, and f € Ap, . Let us remark that we have used the Heisenberg picture
again. The choice of H,, amounts to specifying the class of interactions
&(O,,) for the region O,,.

Then we should study the limit of af*(f) as n — oo where f is taken in
A(0O). If it exists, in the appropriate topology, and possess some necessary
properties, then the time evolution of the system can be defined,

a; = lim af. (5a)
n—oo
In a similar way, one can define an equilibrium (Gibbs) state w for an
extended system. We define

w = limw,, (5b)

where w,(-) = Z;! Tr{e #Hn.}, with B denoting the inverse temperature
and Z,, the corresponding partition function. The above program evidently
involves some convergence questions and works perfectly under some ad-
ditional conditions, e.g. for some class of interactions on a quantum spin
lattice.

Let us discuss briefly the sort of physical systems which can be described
by lattice systems. The typical example is provided by the Heisenberg model
of a ferromagnetic material (¢f. [2], vol IL.) Namely, the ferromagnetic
material can be considered as made up of atoms arranged in a regular lattice.
This picture can be perfectly justified if the temperature is low enough, so
that lattice vibrations can be neglected. Moreover, it is assumed that a state
of each atom is described by a spin state. This assumptions means that with
each site {z;} of the lattice we associate a set M, of all n X n matrices.
Finally it is assumed that the interactions between atoms of lattice sites,
say z; and z;, may be approximated by the product of corresponding spins,
i.e. by some selfadjoint element in M, .1 ® M{,_,:j} = M, ® M,,. That shows
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that the solid body problems provide concrete examples of physical systems
which can be studied within the framework described above.
Therefore we can conclude this section with the corollary that again a
triple
(A7 Qag, w) (6)

constitutes a basis for a description of many examples of infinite quantum
systems.

4. Quantum L,-spaces

Recently we have proved that it is possible to associate with (6) a quan-
tum counterpart of interpolating family of L,-spaces (see [8, 9]). It is im-
portant to note that the Schatten classes can not be used here as in general
the state w in (6) has not the form w(-) = Tr{e-} for some density ma-
trix p. Furthermore, even in equilibrium representation there are algebras
without a (faithful) trace. Hence, our construction, (reflecting the general
Haagerup’s theory of noncommutative integration), was based on the notion
of thermodynamic limit. In particular, we have proved

Theorem 1:

To every Gibbs state wg on A we can associate an interpolating family of
Banach spaces {Lp(wg; 5)}pe(o,00),s€[0,1] i Such a way that for any local
observable f € A(O) we have

WAIE (wasy = HmIFIT o 4y (7a)
P( B ) n p( »8)

where the local || - || -norm is given by

p
Lp(w™,s)
Hf“i,,(w",s) =Tr ](g(n))S/P - f- (Q(n))l—s/P|P (7b)

with o(™) being the density matric of w restricted to A(Oy,).
¢

As it was already mentioned, the interpolating family of L ,-spaces plays
an essential role in the construction and examination of classical Markov
evolution. On the other hand, except for a few models, essentially no re-
sult has been obtained before in a constructive and rigorous approach to
quantum Markov evolution of infinite systems. By a constructive approach
we mean one in which existence of the evolution of extended system is not
postulated, as in pure semigroup approach, but constructed on the basis of
the local character of evolution in the bounded regions O,, i.e. the evolu-
tion should be constructed as the thermodynamic limit of the corresponding
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finite volume dynamics with an appropriate control of the convergence. In
other words, we adopt the view that the dynamics of a extended quantum
system has to be derived from intrinsic local properties of the system.

Let us remind at this point that the efforts in the construction and study
of quantum Markov semigroups are as old as the equilibrium description
of quantum systems. Thus to get a progress it seems natural to use the
new approach — quantum Liouville space technique based on quantum L -
spaces.

Looking for some basic examples of explicitly constructed Markov semi-
groups we take the point of view that jump and diffusive processes are the
basic ones in the domain of stochastic dynamics. Having this in mind in
the following sections we describe a construction of corresponding Markov
generators for quantum lattice systems.

5. Spin-flip dynamics

In this section we introduce a family of Markov generators and semi-
groups for a quantum spin system on a lattice, which are similar to a block
spin flip stochastic dynamics of classical spin systems . We start with a
definition of finite volume dynamics. For O, a finite subset of the lattice,
let Eo 4: A — A be a map defined as follows

Eoa(f) = Tro (76,,41”70,11) (8)

with 12 1/

10,02 P (Tropa)/?, (9)
where Trp is the partial trace and p 4 the density matrix of a finite volume
Gibbs state w, and A is another finite subset of the lattice (see [9] for

details).
Let Lo, 4 be an operator on A defined by
Lo,af = Eoa(f)-f- (10)
We define
LAf = Loyjaf (11)
JEA

and the corresponding semigroup by P, i.e.
P = exp (tLA> .

It has the following properties.
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Theorem 2:

(i) Positivity preserving: For any f € AT

Pf20 (12)
(i) Unit preserving
PA1=1 (13)
(i11) Ly - Symmetry
(PLF)s 9wos = (£, PL(9))ws (14)
(iv)
”'p{lHLg(wA)—-rLz(wA) <1 (15)
(LXA(f), flug <0 (16)
(v) Invariance: For any f € A
wa (PA(S)) = walf) (17)

where (f,g)w, stands for the inner product of Lz (= Lz(wy4,1/2).
¢

It follows that P is a well defined Markov semigroup. Such semigroups
of block-spin flip type can be generalized for a thermodynamic limit of local
Gibbs states on an infinite lattice. In other words we are looking for a limit of
Y0,4 as A — Z¥. We proved (see [10]) that such limit, 7o, exists. However
in general, 70 is an element of the von Neumann algebra M = 7, (A)"
obtained in the GNS construction with w being a Gibbs state on the entire
lattice. Thus we can define

Lof=CEo(f)-f (18)

with
Eo(f) = Tro{vo fr0}» (19)
where f € M.

Theorem 3: ,

Suppose |B| < Bo, with By a critical temperature (so high temperature region)
or in one dimension that the interaction ® is of finite range. Then £p s a
well defined positivity and unit preserving map on M into M which extends
to a symmetric contraction on the quantum La(M,1/2)-space.

o
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Corollary:
The formula (18) gives a well defined Markov generator of flip-spin type
dynamics on infinite quantum system on a lattice.

¢

6. Diffusion type dynamics

To describe this type of dynamics let us begin with the introduction of
“noncommutative” derivation V, by the following formula

Va(f) = iz, f]

for z and f in A. We need to assume that the following condition is true.
We say that the system (A, ay) possess the Strong Asymptotic Abelianess
property iff

/ 1,0y (Dllds < 00 (20)
0

for f in a dense subalgebra A in A and z is taken from some specified subset
of A (see [9] for details). Let K(-) be a positive defined function belonging
to Li(R,ds) and suppose that the condition (20) is satisfied. Then an
elementary Dirichlet form £.(-, -) can be introduced in the following way.
Define on the domain D = D(£,) = A the form &;(-,-) as follows

gz(f’g) = /d’l’ ds K(T - s)<var(z)(f)’ Va,(:c)(g)>w (21)

with (-, ), denoting a scalar product in a quantum L;-space associated to
a state w. The subscript ¢ denotes that the noncommutative derivation is
performed in “z”-direction.

Suppose additionally that the function K is analytic in a strip Im z €
[0, 8] and satisfies the following conditions

K(s—-7r)=K(r—s+10) (22)

Then, under suitable technical conditions on the kernel K, one can prove
the following result, (see [9]).

Theorem 4:
The quantum Dirichlet form (22) is well defined. It defines the operator

L;; A — Ly(w) such that its closure (on the quantum Ly -space) is a Markov
generator.

o
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7. Conclusions

We would conciude this lecture with the following corollary. It s possi-
ble to define quantum L,-spaces as well to give some concrete and explicit
examples of Markov generators of stochastic dynamics for extended quan-
tum systems. In other words, Liouville space technique can be generalized
to general quantum systems. Moreover, we have found (cf. [9, 10]) that this
approach gives a possibility to study important ergodic properties (e.g. a
convergence to equilibrium) of the considered examples of dynamics. Con-
sequently, the proposed framework of quantum L,-spaces is an interesting
and useful tool for study of quantum stochastic dynamics.
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