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The chosen local interaction- the voting {majority) rule applied to
the square lattice is known to cause the non ergodic cellular automata
behaviour. Presented computer simulation results verify two cases of non
ergodicity. The first one is implicated by the noise introduced to the local
interactions and the second one follows properties of the initial lattice
configuration selected at random. For the simplified voting rule- non
symmetric voting, the critical behaviour has been explained rigorously.

PACS numbers: 05.40.4j, 05.45.+b, 05.70.Jk

1. Introduction

The cellular automaton systems are discrete dynamical systems. Space,
time and states of the system are discrete. Each point in a regular spatial
lattice, called a cell or site, can have one of finite number of states. The state
of a cell is updated according to some local rule. All cells on the lattice are
updated synchronously. Thus the state of the entire lattice, called configu-
ration, changes in discrete time steps. A simply described local interaction,
operating iteratively from a simple initial lattice state, often gives rise to
variety of complex configurations at large time. These features make cellu-
lar automata particularly attractive systems for modelling physical complex
systems [1, 2]. Therefore, there exists a huge number of computer observa-
tions.

In general, the main interest in cellular automata can be divided into
two main parts:
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studies of cellular automata global characteristics

This part contains, for example, problems with classification of cellu-
lar automata [3-7], problems with the construction of, so-called natural
measure, [8], — the measure which is reached be cellular automata in
the long-time evolution [5] ({9, 10] with the presence of some noise), and
other very first questions when one considers a new object. The twenty
main questions about cellular automata have been enumerated by Wol-
fram in [4] in 1985. However, it has appeared that the world of cellular
automaton phenomenon is more difficult, or at least computationally
more involved than the naive, first look, treatment. The mentioned
twenty questions has been lately repeated by Wolfram [11] since they
are still waiting for being answered. It is not surprising that this little
progress in last decade has caused the little decrease in activity of scien-
tists in this field. However, there is shared a hope, informally expressed
by McIntosh [11], that maybe the time has come to reconsider the basic
topics of cellular automata. The last papers of Gutowitz or Wuensche
[12] as well as the Wolfram wish to come to cellular automaton subjects
(see A Note from the Publisher in [1]) look like signs of this wider and
wiser second look.

transferring (expressing) problems of other scientific activity into cellu-
lar automata systems

It is a constantly increasing number of fields where the cellular automata
ideas have been successfully applied. Let us mention, as examples, some
very popular cellular automata applications like: lattice gases [13] which
involves kind of hydrodynamics [14] and reaction-diffusion chemical sys-
tems [15], models of social [16] or biological and ecological systems [17]
and finally to encrypt messages [18] (see [11] for more bibliography).
All together makes the cellular automata field still focusing much at-
tention, as one can easily verify by joining any of discussion lists present
on the computer network. This part of cellular automata interest in-
cludes also the Ising problem transferred to cellular automata by Do-
many [19] — the problem of ferromagnetic interactions. Much effort is
made for finding the local rules which applied to the d-dimensional lat-
tice restore all global properties known from the theoretical predictions
of d-dimensional Ising model [20]

This paper concentrates on such cellular automata, so-called Toom

model (9], which can provide the solution to some three dimensional Ising
problem. It is because, there is a natural way [19, 10] to rewrite d-dimension-
al time development of cellular automata layers into the d + 1 dimensional
equilibrium statistical model. However, the direct move from cellular au-
tomata to equilibrium statistical mechanics is possible if only cellular au-
tomata local dynamics is performed with some errors (so-called probabilis-
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tic cellular automata [9]). In particular, the discrete-time dynamics of the
Toom model perturbed by some noise on the square lattice is equivalent
to the equilibrium statistical mechanics of the Ising model on hep [19] or
fec [10] three dimensional triangular lattice. Therefore, it is interesting
to examine the properties of Toom model, specially because the stationary
measure for neither probabilistic nor deterministic models is known [21].

Thus in the following paper we will concentrate on two-level systems
(called: spins, denoted o € {—1,1} or down and up, respectively) placed
on the two-dimensional lattice. An every spin has a finite set of neighbours
whose states determine its next time step state. The system is homogeneous
— alocal interaction does not depend on a lattice index. The updating spin
state process is performed at discrete time steps and independently of other
lattice nodes.

We will test the uniqueness of the cellular automata state in the time
limit ¢ — oo. This is the roughest, qualitative aspect of predicting the long
time behaviour of complex systems. Systems which have the unique limit
behaviour and converge to it from any initial conditions may be said to
forget everything, when time tends to infinity. In such cases the statistical
analysis of time series, by dealing with time averages, defines an unique
ergodic measure. We call the system ergodic with respect to this measure [8].
In case of cellular automata such a measure is expected to be concentrated
on an invariant set of Lebesgue measure zero [9]. However, there are systems
which remember for ever some of its initial properties and its limit behaviour
is not predictable. Such systems are called non-ergodic [9, 10, 21].

It is obvious that any voting system has at least two invariant config-
urations: all spins up (notation :(+)) and all spins down (notation: (—)).
Therefore, the ergodic problem means here looking for conditions under
which these invariant states are the stationary configurations and whether
there are any other non trivial stationary configurations.

It is known [9], that the class of deterministic non-ergodic cellular au-
tomata systems is related to so-called eroders. It is said that the determin-
istic cellular automata system is the eroder if any finite island of one spin
state is turned into the surrounding sea state, after finite steps of time. It
appears that the evolution of cellular automata which are not eroders can
easily be stopped by reaching some stationary configuration different from
states (—) or (+). It usually happens that finite islands quickly grow and
change and finally reach the shape in which the sea cannot influence them.
However, if the system makes errors, then for any ¢ > 0 getting out of
these traps is possible at the finite time, so then the cellular automata state
relaxes to the pure sea state [9].
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The examination of ergodicity in case of cellular automata systems can
go two ways:

— by adding €- error to the deterministic dynamics

It means that after applying the voting rule, the state of each spin
makes an error with the probability ¢ to flip. This constitutes the prob-
abilistic cellular automata and therefore, thanks to the correspondence
of probabilistic cellular automata to equilibrium mechanics models, any
high-temperature theory for the Gibbs state will find its equivalent as
a high-noise theory for probabilistic cellular automata. It implies, for
example, that the stationary state is Gibbsian [10]. However, the prop-
erties of the stationary state changes critically when the noise is low.

— by varying the initial lattice state

To examine the correlations arising from the Toom interactions itself
the dependence on initial configurations is checked. Usually, the choice
of an initial lattice state is restricted to, so-called, typical initial states
[8]. These are configurations randomly prepared and their evolution
does not exhibit any extravagance. For example, invariant initial states
or states being the finite perturbation of them are not typical initial
states. The typical initial states model thermodynamic physical systems
with the highest disorder property. The time evolution leads cellular
automata to highly ordered lattice configurations. Generally, there are
two main attractors for Toom dynamics: all spins up and all spins
down. The critical behaviour, ergodic versus non ergodic, is related to
the parameter with respect to which the cellular automata change the
attractor.

Computer results are the natural prerequisite for theoretical work. This
paper is to establish them — Subsection 2.1. Most of them provide, at least,
some qualitative suggestions for the possible explanation. Some rigorous
calculus for a simplified voting rule is presented in the next Subsection 2.2.
The main conclusions of the article are repeated in the last section.

2. Cellular automata with voting (Toom model)

The cellular automata system with the voting local rule is a typical
example of a deterministic cellular automata system for which the obser-
vation of the critical behaviour can be examined. The local interactions,
roughly speaking, go as follows: at each lattice site and at each time step
there is made a vote — a spin takes the state of the majority of its nearest
neighbours.

The simplest version of voting on a square lattice Z? is cellular automata
with North-FEast-Centre majority vote. The local interactions follows the
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rule:
0i,;(t + 1) = sgnfo; j(t) + 0; j+1(t) + 7i-1,5(t)] 5 (1)

where o; ;(t), 05 ;41(t), 05-1,j(t) is Centre, East, North nearest neighbour
state, respectively.

One can consider the equivalent presentation of the model on the trian-
gular lattice. In this case each site is directly above the centre of a triangle
on the previous time layer (if the time arrow is directed up). Then the
deterministic Toom rule assigns to a spin at 7 site the majority of the spins
at the corners of the triangle directly above ( fcc lattice).

Depending of the choice of interacting neighbours the voting rule can
make cellular automata eroder or not. For example, the cellular automata
with NEC rule is the eroder while the cellular automata with NEWSC rule
(majority of North, East, South, West and Centre neighbours) is not the
eroder. For example, the following island will exist for ever on the cellular
automata configuration when NEWSC rule means the local interaction:

0000
0110
0110 ) (2)
0000

Generally, to have the eroder all the vectors of voting neighbours must be
mutually non-coplanar [9].

2.1. Computer results

The first class of computer experiments involves deterministic voting
rule perturbed by some error ¢ made at each time step and each lattice site.
Cellular automata evolution is supposed to generate correlations between
values at different sites. The very simplest measure of these correlations is
the two-point correlation function.

Starting with the stationary for deterministic Toom interactions con-
figuration of all spins up, we perform the Toom voting, with some error.
The ¢ describes the probability of errors in a local dynamics. We assume
that after some initial time steps (1000 steps) the system reaches its new
stationary configuration. We count the events when two spins separated at
some fixed distance are in the same spin state. This way, for each value of ¢
we obtain the dependence of probability to have two spins in the same state
on their distance. The examined dependence is related to the standard two-
point correlation function ¢(0,?) as follows:

C(O, 2) = 2P1‘0b{(+, s o(i—1)sites " *? +) U (—, “ e o(i—1)sites* "> —)} -,
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where C' =1 —2p(1 — p) and p is the probability to find spin at up state on
the stationary configuration.
By examining this function we expect to get hints about:

— the character of dependencies between spins separated far enough (long
distance influence);

— the decay of correlations for close spins.

The results for NEC and NESWC voting rules averaged over 250 000 time
steps for different values of ¢ are presented in Figs lab.

In simulations we found that the stationary configuration is disordered,
however at the larger scale than the single lattice site, in large interval of
¢ values and the Bernoulli parameter p characterizing the random state
depends on ¢ if ¢ is small enough (p = 0.94, 0.92, 0.90, 0.86 in case of
¢ = 0.05, 0.06, 0.07, 0.08, respectively) and becomes constant p = !/,
independently of epsilon when ¢ crosses some limit value. We can say like
that because the correlations between spins in these ¢ intervals are dumped
quickly — in less than 5-6 lattice units (Fig. 1c) and finally take the value
of the probability to find pairs of spins: ++4 or —— on the lattice state
characterized by the corresponding Bernoulli measure. In Fig. lc, there
is plotted the distance between spins for which the two-point correlation
function value differs by 0.02 from its stationary value. One can see the
rapid change of these two properties at ¢ =~ 0.09 in case of NEC rule, and
if NESWC rule is considered at ¢ =~ 0.14. The long range dependencies
between spins are present. So the lattice state for the ¢ € (0.08,0.12)-
NEC dynamics and € € (0.14,0.18)- NEWSC dynamics, is highly correlated.
The rate of the decay of two spin dependencies was estimated by using
Mathematica packet. The best fit, in our opinion — the exponential one,
is presented in Fig. 1d. It suggests a very complicated structure of the
stationary configuration.

The second class of computer experiments was made with random initial
states. As was mentioned before, the NEC dynamics has many invariant
states. However, only two of them: all (—) and all (+) seems to be accessible
from the typical initial conditions. To verify this suggestion we perform
experiments in which we examined the probability to find a spin in 0 = +
state on the stationary lattice state when different initial random states were
taken. To determine the influence of the periodic boundary conditions we
examine cellular automata with different lattice sizes. We simulate cellular
automata with L = 48, 96, 192, 384. Figs 2 and 3 collect averages of
results of evolution when initial states are described by the probability p to
find a spin in + state in the initial random lattice state. Fig. 2a presents
the probability to find a spin in + state on the final lattice state versus p
value. It is usually assumed that the computer results are satisfactory when
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Fig. 1. The probability to find two spins in the same spin state is plotted at different
errors ¢ for a) NEC rule, b) NESWC rule. Figure c) redraws the a) and b) results
with respect to the error. Figure d) suggests the exponential fit for the decay of
the correlations at the limit values of ¢ with y; and y, possible exponents for NEC
and NESWC rules, respectively.

they describe effects which are obtained in time shorter than a lattice size.
Therefore, Fig. 2b shows the probability to find a spin in 4 state but at
given moments of time: t = 48, 96, 192, 384 for each lattice size whenever
possible. The independence of corresponding values of the lattice size is
evident. The other characteristic of final stationary states can be made
when one compares their geometrical properties. We record the following
types of final configurations: (+), (—) and there are two separated areas —
parallelograms, of all spins in up state and all spins in down state. These
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Fig. 2. The configuration characterization via contents of ones: a) in the stationary
configurations, b) at the given moments ¢ = 48,96, 192, 384
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Fig. 3. The distribution into the three classes of stationary configurations for two
lattice sizes.
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geometrical properties of the stationary states of the cellular automata with
periodic boundary condition can be expressed by the following:
Proposition [7]

If ¢ is any typical initial state then the set of measures of stationary stales
M consists of the following measures:

peEM, = A either p({oigy oG-y N D=0

WcC22x{0,1,2,...} ((3,5), ) EW
|Wi<eo

or p({o(iiy #oG-19e-1) [N D=0
(L)) EW

or p({oiiy # oG- M D =0.
(L)) EW
(3)

Due to (3) the final pattern either does not change at all, or moves up,
or moves right by one lattice unit at each time step if only the evolution
starts from the typical initial state to exclude extraordinary behaviour. One
can easily see that both lattice states (+) and (—) satisfy all three conditions
while states with parallelograms fulfil only one of the above demands. In
Fig. 3 the distribution of final states among these three classes is presented
for different lattice sizes L = 48,384, and with respect to the initial value
of p. One can notice that the mixed states appear as stationary states only
if an initial state is characterized by p close to p = /2. For each lattice
size one can find the p value at which these states occur. This observation
indicates that the interval around p = !/, contains points of the transition in
the cellular automata behaviour. Therefore, the transition in case of cellular
automata with periodic boundary conditions means the final stabilization
of the lattice state at mixed patterns. Looking again at Fig. 2b one can
see that the periodic boundaries break the free development of randomly
scattered homogeneous islands built from one spin state. Earlier in time
the stop is made (the lattice size shorter), the bigger number of islands are
present on the lattice state. The periodic boundary condition makes the
non-zero probability for an island to become a stationary parallelogram.
Furthermore, because with the increase of the lattice size, the transition
interval shrinks, then one can expect that finally single point p = 1/ is
the critical point for the unbounded lattice. It indicates that the set of
stationary measures M consists of two elements: one concentrated on (—)
and one concentrated on (+).

The other type of computer experiment within this class of computer
simulation is based on so-called coupled lattice method and it investigates
the damage spreading [21]. In this experiment one records the results of
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simultaneous simulations of two cellular automata, which differs initially at
one spin state. Brief studies of other lattices with the Ising type of interac-
tions {21] allow to expect that such a consideration provide the estimation
for the value of the dynamical critical exponent z which characterizes the
critical slowing down at the second-order phase transition.
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Fig. 4. The probability of propagation of a single state perturbation in three time
regions: a) very initial development 0...8 first time steps, b) in 8...50 steps c)
long living perturbations 100...300.

In Figs 4abc we present the probability to decay the single spin per-
turbation. The data come from experiments with the large lattice L = 500
and for typical initial states with p = 0.20, 0.40, 0.45, 0.49. The statistic
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was made over 182 000, 81 000, 168 000, 96 500, respectively, experiments.
One can see that the relaxation to the equilibrium stationary configuration
goes very fast in case of a small p (the maximum time observed for p < 0.40
was 23 steps). The complete decay of the discrepancies was also observed
for the next two values: p = 0.40 and 0.45. However with the increase of
p the number of perturbations long living on the lattice is greater. Results
of experiments when we start at p = 0.45 and p = 0.49 do not differ much
until about the 50th time step. If one starts the evolution on the random
configuration at p = 1/, then there is non zero probability that the per-
turbation will survive for ever. In case of finite lattices, it denotes that the
stationary states reached by coupled lattices were different.

2.2. Non-symmetric voling — rigorous results

Let us follow the simplified NEC rule — let only spins in down state
take part in voting while spins in up do not vote, although, they are flipped.
It means that the only situation when a spin state is changed is the following
one: a Centre spin is in up state while both its nearest neighbours North
and East are in down state. Let us examine thoroughly the propagation of
the flip of a single spin. Because of this flip, states of the other spins will
be adjusted at the next time step. The area of maximal influence of one
spin flip is shown in Fig. 5a. It forms an expanding with time triangle. The
place where the first flip occurs is the firm vertex of this triangle. The bond
of the triangle opposite the vertex (lying along the diagonal of the lattice)
moves one lattice unit per one time step in both directions West and South.
The maximal propagation of one spin flip occurs only if there exist a special
border. This special border consists of spins in down state
Remarks:

1: the maximal infection area never covers the entire lattice state. More-
over, any finite set of flipped spins cannot change the entire lattice
state.

u: the area of maximal infection grows with timeas 14+ 2+ ...+ ¢ =
ot(t + 1).

If the evolution starts with a random lattice configuration, then the
chain of spins being in the same state- down, is little probable. Instead, one
obtains infinitely many sources of infection which are scattered randomly all
over a lattice. Each flipping spin is the origin for the infection and it owns
its infection area. The individual infection area is randomly cut off from
the maximal infection area. These cuts are random because of a random
lattice state. However, one can formulate directives for marking the whole
infection area:
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Fig. 5. a) The maximal infection area when one spin flips. b) The example of the
construction of North_ and East. Sides on some random configuration. North. Side
starts at N spin and goes West-South. East_ Side starts at E spin and moves to
South- West. This is an example of the close border. The infection process stops
after 8 time steps. If there is any other random infection area inside the presented
one, the infection will stop earlier. ¢) The results of simulations for simplified

voting rule: (u) represents the rate of spins in —1 state, (f} the average time steps
to reach the stationary state.

Having an origin for the infection process — a single spin which will flip at
the next time step, to determine North_ and East_Sides for the spin infection
area one must go as follows (Fig. 5b):

— the North_Side starts at the North neighbour of the origin and it moves
West by one lattice unit to the next column. The nezt vertex of the
side is chosen as the site of a spin in (=) state in the following order:
one lattice unit above, at the present position, one lattice unit below,
two lattice units below, etc. This procedure repeats every next vertex
selection.

— the East_Side starts at the East neighbour of the origin and it moves
South by one lattice unit to the nearest row. The next vertezx of the side



Cellular Automata with Voting Rule 689

is chosen as the site of a spin in (=) state in the following order: one
unit to Fast, at the present position, one unit to West, two units to
West, etc. This procedure repeats every nezt site selection.

Generally, the sub-sequential points of North_ and East_Sides can be
represented as the following random processes:

m:E?V‘f'{tETS’),
(4)

where ey, es are lattice versors directed to West and South, respectively,
and ¢ and 7 are independent random variables with properties:

—
S(t) = WtWV + 8_,)5',

—1 with probability (1 — p)

0  with probability (1 - p)p
£, me = { 1 with probability (1 - p)p?
k  with probability (1 — p)p**?

p is, as usual, the probability to meet (+) state in the initial random lattice
state.
This way the North_and East _Sides are represented by the following lattice

sites:
North_Side = {(0, —1), (1, 61)’ (2, fl + 52), .. '}’
East_Side = {(-1,0), (n1,1), (m + 72, 2),...}.

The condition that these two sides will cross somewhere is:
Observation:
There exist such k and m,

kkm=1,2,... that

£1+---+£m2k (5)

Hence, if we start with a random prepared initial configuration, then
the expectation values of one step North_Side and East_Side vectors are:

for m+...+n,=m is

o0
(W) =ew + (€)es = ew + (1 - p)es[-1+p° Y kp*™]
k=1
=aw+ 2g
1-p
and:
— e 2p-1_5
(8) = (nt)ew +es = ew + es.
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Therefore, after k steps along North_Side we reach ke + kgie__TlEf’g and

after m steps along East_Side we get meg + mzﬁla’v. According to (5) it
provides the following condition for crossing:

2p — 12

T 21 (6)

This condition is satisfied for all p € [%/s, 1]. This result matches the result
of simulations. The computer experiment was performied on a lattice I = 98
and the probability to find a spin in (4) state on the initial lattice state p
was increased by 0.01 from [0,1]. There were 500 experiments for each p.
The results by means the averages of the total final magnetization and the
average number of time steps which was done to get the final stabilization
are presented in Fig. 5c. The rapid change of both properties at p = %/3 is
evident.

3. Summary

The analysis of the stationary states obtained in cellular automata evo-
lution with local interactions described by North-East-Center nearest neigh-
bours voting, yields the following statements:

1. the stationary state of probabilistic cellular automata, i.e. when the
dynamics is perturbed by some noise measured by ¢ in case when ¢ €
(0,0.08) U (0.12,1) is random at the scale of lattice blocks larger than
5. Moreover, the Bernoulli parameter p of that random state takes the
value p = 1/ for all ¢ > 0.12. If ¢ € (0.08,0.12) then the long-range
correlations between spins, are present on the long-time configurations,
and it implicates that the stationary measure posses its own complex
structure. The exponential decay of two-spin dependencies suggests
that the measure is of the Gaussian type.

2. The phenomenon of obtaining as stationary configurations the mixed
configurations: clusters of all spins up and clusters of all spins down is
the effect of the periodic boundary lattice conditions and it seems that
those configurations are not reachable by unbounded systems which
start at typical initial configurations.

3. The cellular automata evolution which starts at the typical initial con-
figuration characterized by the Bernoulli parameter p = 1/;, is chaotic
in the sense that there exists non-zero probability to reach the different
stationary state when the infinitesimal change to the lattice configura-
tion is introduced.
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