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In the lectures, the differentiation formulae (DF) for statistical aver-
ages is introduced in a compact form. The first part of these lectures is
devoted to a general description of the DF method. The procedure of
obtaining exact and closed equations for mean values and probability dis-
tributions of linear and nonlinear macroscopic systems driven by coloured
noise is illustrated. As models of coloured random perturbations, both
random jump processes (Kubo-Anderson and kongaroo processes) and
diffusion processes (Ornstein—Uhlenbeck, Rayleigh and Pearson processes)
are considered.

PACS numbers: 05.40. +j, 01.50. Ey

1. Introduction

The development of science of two last decades demonstrates more and
more wider interest and application of probability theory methods for the
description of processes occurring in nature. The simplest formulation of
a statistical description problem is to study some macroscopic system n
a given stochastic field. This field simulates surroundings (“whole other
world”), in which the considered system is “immersed”. Probability char-
acteristics of surroundings can be imposed directly or with the help of dy-
namical equations or kinetic (master) equations.
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One of the well-known physical system of this type is a Langevin model
of Brownian movement of particles in liquid or gas. It is described by a lin-
ear stochastic equation in which the interaction between a Brownian particle
and molecules of gas or liquid is modeled by Gaussian white noise. The most
“working” models of fluctuations are the white noise models with Gaussian
and Poisson statistics. There exists developed mathematical theory for them
allowing to make statistical description, i.e. to obtain exact and closed equa-
tions for different averages, including probability distributions [1-5]. Most
of real processes in physics, chemistry and biology are driven not by white
(non-correlated) noises but rather by correlated (coloured) ones and there-
fore a more adequate description is desired. Such a description can be
realized in the frame of nonlinear models with a multiplicative (or paramet-
rical) type of stochastic forces with non-Markovian statistics and non-zero
correlation time. Among models of coloured noise, the Gaussian Markovian
(Ornstein—Uhlenbeck) and Markovian dichotomous (D-noise) processes play
an important role. These “working horses ” of statistical simulation have
been used for testing various approximate methods of calculation of aver-
ages and for studying physical phenomena generated by noises of non-zero
correlation time or non-zero correlation radius (for example, noise induced
phase transitions) [6, 7). It has allowed to reveal the fact of a fundamental
role of noise correlations (like behaviour of order parameters in regions of
structural instabilities of nonlinear dynamical systems subjected to stochas-
tic correlated perturbations).

The subject of studying are dynamical systems, parameters of which can
randomly vary with imposed probabilistic characteristics. These systems
include the huge diversity of objects and processes occurring in nature and
evolution of which is described by systems of ordinary or partial differential
equations, or integro-differential equations. Such systems could be devided
into three groups:

1. The dynamical systems of evolutionary type (i.e., described by stochas-
tic ordinary differential equations);

2. The dynamical systems with boundary conditions;

3. Spatially extended systems.

Each of listed group has its specific features, including mathematical
methods used for their description.

The paper does not present all methods for treating all listed classes of
macroscopic systems driven by stochastic forces and fields. For statistical
description of such systems, a large numbers of concepts and methods have
been developed [7-13]. This review deals with the application of the method
of the differentiation formulae to linear and nonlinear macroscopic systems
driven by coloured noises of different statistics. It allows for statistical
analysis of these systems directly and systematically. The work should be
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considered as an introduction to this method. The reader is referred to
the books [14] and [15] where details on the description of the method and
its applications to a number of problems (including physical and chemical
kinetics) can be found. Related problems are also presented in [16] and [17].

2. Stochastic system of evolution type

Let us introduce the notation z(t) = (21(t), z2(t), ..., 2n(t)) for a vector
function. The set of variables z;(¢),¢ = 1,2, ..., n characterizes the main fea-
tures of the system of interest. Let the dynamics of this object be described
by a set of nonlinear differential equations of the type:

j":f(taz)a (1)

where the point over z denotes a differentiation with respect to time ¢,
f(t,2) = (f1(t, ), f2t, 2), ..., fu(t, )) is a nonrandom vector function. Evo-
lution of the state vector = of the system starts at time ¢ = 0 from some
fixed point z¢ = z|¢=0-

The systems like (1) describe the wide class of phenomena in mechanics,
physics, chemistry, biology, etc. Simultaneously with the action of deter-
ministic fields, stochastic forces drive the system. Their characteristics vary
by a random way. The values of stochastic forces belong to the space of
random events {2. To take into account the influence of random forces on
the system, additional terms in the equations of motion occur, namely,

¢ = f(t,z) + g(t, 2, a(t)), (2)

where ¢ is a vector function depending on random variables, which are
components of the random vector function a(t) = (a1(t),az(t),...,am(t))-
For a(t) is random therefore components of the vector z(t) are random as
well and now the process z(t) becomes a stochastic process.

The problem of statistical description of the system (2) is the calcula-
tion of various statistical characteristics of the dynamical variable z(t) in
dependence on statistics of the processes a;(t), where i = 1,2, ...,m.

According to Eq. (2), the solution z(t) at ¢ > 0 is a retarded functional
of the process «(t). It means that the macroscopic variable z(t) depends on
values of the process a(7) at 7 < t and it will be denoted by the symbol
2(t) = 2, [a(7)] or simply z4[c].

To illustrate this, consider two simple physical models:

(i) Brownian motion (an additive type of random perturbations)

&= -z + at),
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where z = V is a particle velocity, X is a friction constant, a(t) is the
Gaussian white noise with characteristics (a) = 0, {(a(t + 7)a(t)) =
2Dé(7). The solution of this equation is

t
z(t) = e_’\t:vo + /e_}‘(t"r)a(r)d‘r.
0

It is seen that the solution depends on the values of a by a retarded
way.
(1) The Kubo oscillator (a multiplicate type of random perturbations)

¢ = ta(t)z,

where e.g. z is a spin projection of some given atom, a(t) characterizes
a stochastic field generated by other atoms and acting on a given atom.
The solution of this equation is as follows

t

2(t) = exp | i / a(r)dr | zo.

0

The solution z(t) depends on the values of a by a retarded way.
In a general case, the problem of calculation of average values

(Pt )8V [a))

occurs. Here, F(t,) is a nonrandom function of ¢ and a, Qgret)[a('r)] is
a function of ¢ and a functional of retarded type of random process a(t),
where 7 < t. The symbol (...) means an operation of averaging over all
realizations of the random processes considered. It has been shown that

%(F(t,a)@gret)[a]> _ <3(F§£ret))> n <[1"-I+F] Qgret)> : (3)

where L is an infinitesimal generator of the process a(t) and the symbol
“ + ” means here the operation of conjugation. If for example L is the
forward Kolmogorov (or Fokker-Planck) operator then the operator L¥ is
backward Kolmogorov (or Fokker—Planck) operator.

As we see below, the formula (3) named as differentiation formula (DF
for short) is a convenient mathematical tool for transformation of the aver-

ages (F(t, a)égret) [a]).
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Let (a1, a2,...,ar) = ¥ be a value of the random process a at time
(t1,t2,...ytx) = T respectivelly. Let the function Q(a,t|¥,T) be a condi-
tional probability density, i.e., Q(a,t|¥,T)da is the probability that the
random process a(t) at time ¢ be found in the interval (a, a + da) under the
condition that at times ¢4, ¢, ..., {; the process a takes values ay, az, ..., o,
respectively. Supposing that ¢t ¢ 7', then following [18], one can write the
master equation for a(t) in the form

Mgtlzj’_) = 1Q(e,1|2,T), *)

where the infinitesimal generator of the process af(t) is presented in the
differential form (for simplicity we quote L for a one-dimensional case)

The kinetic coefficients Ag(a,t|¥,T) are conditional averages and read

o*

5ok Akl t|2,T). (5)

Ak(a’ t}Z" T) = P_% % /(a(t) - a(t - T))kQ(aatf"],t -7 ¥, T)d"" (6)

The representation (4), (5) can be considered as a master equation
in a generalized Kramers—Moyal reprezentation for random processes with
memory.

In particular case, when a(t) is assumed to be a diffusion process with
memory, only two first kinetic coefficients A;(a, t|¥,T) and A3(a,t|X,T)
do not equal to zero. In this case the master equation (4) is a generalized
Fokker-Planck equation. Considering a random processes with memory, we
can use in the differentiation formulae the conjugate operator,

or its generalizations for multi-dimensional cases.
It should be noted that the DF (3) is the differentiation formula of
first order with respect to time variable. One can introduce formulae of

differentiation of the averages <F(t a)di(ret){ ]> of higher order with respect
to time. The structure of these formulae is as follows [15]

i (Pl = (ZUEE) (e ) o

ak

k(aatlz’aT)W ’

(7)

;rl._
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The explicite form of L} is not presented here since we do not use it in
the paper. We refer the reader to paper [19] containing a discussion on the
existence of master equations of higher order with respect to time.

In the simplest case when a(t) is a random process of a Markovian
type the dependence of kinetic coefficients A on prehistoric (X, T) is lost
and Ap(a,t|¥,T) = Ag(a,t). Below, Markovian random perturbations
with finite correlation time decay imposed on a macroscopic system will be
investigated.

The formulae of differentiation for selected and widely used models of
Markovian processes are offerred in [20-22]. In these papers, the application
of DF to analysis of dynamical systems with fluctuating parameters was
given. General structures of DF has been established in [17] by use of a
semigroup method and for a class of Markovian random perturbations in
[23] in the framework of a functional approach. The unification of the DF
methods is given in [13, 14]. The generalization of formulae of differentiation
for the case of stochastic boundary problem is carried out in [24].

The paper is organized as follows. In Sections 2.1-2.3 we apply DF
to linear and nonlinear macroscopic systems driven by coloured noise of a
telegraphic type (Kubo-Anderson noise, kongaroo processes etc). In Section
2.4 we give application of DF method for statistical description of macro-
scopic systems driven by random processes of diffusion type. Examples
of random perturbations are Ornstein-Uhlenbeck, Rayleigh and Pearson
coloured noises. Section 2.5 is devoted to the application of DF method to
a dynamical system subjected to exponentially correlated Poisson noise. In
this section we investigate the relationship between DF and Ito approach
as well. Finally, in Section 2.6 we give the application of DF in cumulant
representation.

2.1. Dynamical systems perturbed by processes
of telegraphic type

2.1.1. Kubo-Anderson noises [25-27]

The most elementary representation of random telegraphic processes
is Markovian dichotomous noise. It is a jump random function of time
which takes the constant values +o and —o; the jumps from one value to
other happen in random time and independently from one another with an
average frequency v. The values o are equiprobable. The Kubo—Anderson
processes are a more general class of telegraphic-type random processes (KA
processes for short). They represent random step functions a(t) taking
values from some set cy,c2,..., ¢, at random time. The jumps from one
value to other are independent and distributed uniformly over time with
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density v ( i.e. on average, vdt jumps happen on interval dt). The density
v does not depend on from or to which value the jump proceeds. The
probability of occurrence N jumps on intervals At is given by the Poisson
distribution

P(N,t) = (vAt)N

07 exp[-vAt].

The probability density p(c) of amplitudes ¢; of the Kubo—Anderson
process a(t) is equal to:

p(e) = Y prblc—cx),
k=1

where pj, is the probability of values c;. The set {cy} can be both discrete
and continue or represents its mixture. KA processes model a stochastic
motion in microscopic many particle systems, in particular, relaxation pro-
cesses. The KA processes are a special class of Markovian processes that are
described by the Kolmogorov—Feller master equation. The kinetic operator
L for the KA processes has the form

Lf(t,a) = —vf(t,a) + vp(a) f f(t,a')da

The formula of differentiation for KA processes has the form

2 (Flta)#da) = ( (Pt )Bla)) v (FE) +v(F) @) ()

In that specific case, when F = (a(t))* (k = 1,2,...), the result (9)
reduces into the simple formula

c;it < AR ]> -v <ak4‘t> +v <ak> (®:) + <ak§t> , (10)

where $¢[a] = 0%¢[a]/0t.

When a(t) is D-noise then from (10) we obtain the 51mplest formula of
differentiation (because the remarkable property of D-noise -a Ht) = o? =
const holds)

d

= (adi[a]) = —v (ad,) + (aét[a]> . (11)
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2.1.2. Averaging of linear dynamical systems

We begin the consideration with linear systems. Let a(t) be KA pro-
cesses and a macroscopic variable z is a solution of the following stochastic
equation

¢=Az+ Baz + f, (12)

where A and B are matrices n X n. The vector function T = (21(t), z2(t),
cey Zn(t)) and the function fT(t) = (f1(t), f2(t)y---»fn(t)) is a deterministic
or stochastic process with given characteristics. The symbol (...)T means
here the transposition of a vector.

We consider the case of a scalar process a(t). First of all, we derive an
equation for average (z(t)) for a(t) being the D-noise. After averaging over
the statistics of a, one gets

(2) = A(z) + Blaz) + (f) . (13)

The obtained equation for average (z) contains known averages (z) and
(f) and new unknown average {(az), in which dynamical variable z(t) is a
retarded functional of the process a. Assuming $;[a] = z(t) and applying
to average {(az) the formula of differentiation (11) yields

;—t(ax) = —v{az) + (aZ) .

Now taking ¢ from (12) and inserting it into above equation and using the
property of D-noise a?(t) = 0% = const, we find a closed system for the
average (¢) and z1 = (az):

(2) =A(z) + Bz1 + (f),
&1 =(A — v)zy + 0*B(z) + (af), (14)

with initial conditions (z(t))|t=0 = (o) and z1(t = 0) = (a(0)=z¢). If z¢ is a
nonrandom variable then z,(¢ = 0) = 0 because (a(0)) = 0. The additional
averaging over the stochastic process f(t) does not change the structure of
the system obtained. The averages (f(t)) and (a(t)f(t)) are given by the
relations

() = / FP(f,t)df
(a(t)f(2)) = / / ofP(a, f,t)dfda,

where P(a, f,t) is a joint probability density for the processes a(t) and f(t),
P(f,t) is the probability density for f(t).



Simple Mathematical Tool for Statistical... 701

Let averages (f) and (af) do not depend on time. Then from (14) it
follows that in the stationary state:

(2)st = [A - o*B(A—v)"'B] 7 [B(A-v) Yaf) - (f)],  (15)

where (z); = ilim (z(t)) and the symbol (...)~! denotes an inverse matrix.
—00

Further we shall use this solution to calculate the stationary mean-square
of z(t) for a linear oscillator driven parametrically by D-noise (the oscillator
with fluctuating frequency).

Let us use the result (14) to derive an equation for the characteristic
functional x:[v(7)] of Markovian D-noise. The characteristic functional of
a random process o(t) is determined by the formula

xe[v(7)] = (Xelo(7)]) = <expi/v(f)a(7)df> ) (16)

where v(t) is a nonrandom function possessing necessary properties for ex-
istance of the average (16). The stochastic variable X¢[v(7)] is a solution of
the following stochastic equation

2~ st (1)

with initial condition ¥o = 1. This equation is a particular case of the

system (12). So, we can utilize the general formula (14) for the case when
z(t) = Xt, B = tv(t) and A, f = 0. The result is [23]

d?x. + (V dlnv(t)) dxt

dt? - dt

= + % (txe =0, (18)

with initial conditions: x¢ = 1, Xt|t=0 = 0. It has the similar form as the
equation for a linear oscillator with time-varying damping and frequency.
For an arbitrary function v(t), an analytical solution of this equation is not
known.

Let now a(t) be the KA process of a general kind. Then for dynamical
variables z;(t) = ( a®(t)z) (k = 1,2,...), with the help of the formula
of differentiation (10) and the stochastic equation (12), one can find the
following chain of equations

(2) = A(z) + Bz + (),
2y = (A= V)i + Bagss + (@*f) + v{a*)(a). (19)
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It is convenient to assume that z(0) = 0 and the dependence on initial
conditions can be transfered on vector function f(t). It is always possible
by performing a linear change of variables. Then 24(0) = 0.

2.1.3. Transformation of the chains
Transform (19) to the form
(2) = A(z) + Bz1 +(f),
2k = [(Beiy + (a* 1) + v(a®)(2)). (20)

Here the operator [ is defined by

t

. (d - "Y(t)dt

lg = (E-i-l/—A) ngG(t’t)g(t)dt ’
0

where G(t, t') is the Green matrix function representing the solution of the
equation

(%+V—A> G(t,t) = 0,G(t,t) =1,

(I is the unit matrix ). Making the iteration in the second equation of the
system (20), we get a closed equation for the average (z)

(2) = Alz) + v({a)BI + (a®)(B)? + ...){z)
+ ((F) + Bi{af) + (B)* (2 f) + ...).

Because (1 — cBI)™! is equal to

! _i14eBi+ (cBi)? + (¢Bi)® + ...
1—¢Bl

Instead of (20), one can write

(&) = (A + Aer)(2) + fer (21)

where

R [ d
Ay =v ¢BI A ::VB/ . ep(c)de ,
1—cBl az-f—V'-A—CB
c

1 d 1
fef_<<1—cBif>f>c: (E+V~A)//%+V—A—CB

x fP(t, fle)p(c)dedsf .
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The matrix A.; and the function f.; characterize the renormalization of the
system dynamics driven by random perturbations. This result is exact. For
constant A and B, Eq. (21) can be solved by the Laplace transformation
method.

We consider now a more difficult case, when the random parameter
enters by a monlinear way. Let dynamical variable z(t) be a solution of the
equation

¢=Ala)z+f, (22)

where A(a) is the matrix n X n, other notations and conditions on the
variables are the same as previously. The aim is to derive an equation
for the average (z(t)) when a(t) is the KA process. It is convenient to
introduce the variable z;, = (A*(a)z). As a result of the application of the
differentiation formula (9) for KA processes, we obtain the following chain

(2}) =21 + (f) )
Ep = —vEg + Teg1 + (A¥(Q) ) + v(A¥()) (=), (23)

with zero initial conditions, z;(0) = 0, (£ = 0,1,2,...). The structure of
the derived equations is identical as considered above (see (20)). Using the
same procedure, we have

1 1
1-v{———) | (&)= ———f>. (24)
{ <§;+v—A(a)>J <%+u—A(c>
Average of the right hand side is equal to
_ 1
v= <%+V—A(C)f>
t
= / / / (A=C=1) £p(¢ | fle)p(c)dt dfde.
0

Applying the Laplace transformation to (24) one obtains

X(s) = {1 —y <m>} ), (25)

where

X(9)= [ exp(—st)a(t)dt, p(s) = [ exp(-stip(t)it.
0 0
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2.1.4. Averaging of nonlinear systems

Let the behaviour of some macroscopic system is described by the equa-
tion
z = u(z,t) + a(t)v(z,t), (26)
where z(t) is a dynamical variable, u(z,t) and v(z, t) are nonrandom vector
functions of variable z and ¢, a(t) is a scalar random process of telegraphic
type. We suppose that the initial conditions are fixed at ¢ = 0. For nonlin-
earity of initial dynamic equations, the problem of finding of various average
from z is usually formulated in terms of probability distributions for the dy-
namical variables. The base of consideration here is the Liouville stochastic
equation in space of variables of the dynamic system (26). In particular, for
the stochastic density P(z,t) we have

8P(z,t)
ot

The average of the function P(z,t) over ensemble of realizations of the
process a(t) presents simply a one-point density of probability P(z,t), that
is P(z,t)dz = (P(,t))dz is the probability that at time ¢ the values of a
macroscopic variable z are located on an interval (z,z + dz). For (27) one
should impose an initial condition at ¢ = 0. After averaging both hand
sides of the Liouville equation over statistics a, one obtains

(gt-i»;--u)l’-i— %v(aﬁ) =0.

Here and below we use the notation

()—"Z ( i

Let a(t) be D-noise. Then the a.pphcatmn of the differentiation formula
(11) leads to the equation

i) ~ ~ dP
—(a(t)P(2,8)) = ~v(a(®)P(z,1)) + <a(t>3t—-> :

+ div[(u + av)]s(:c, )] =0. (27)

Using instead of P(z,t)/8t the right part of the Eq. (27) and taking into
account that a®(t) = 0% = const we get the exact set of equations for

distributions P(z,t) and auxillary average Pl(:c,t):(a(t)f’(z,t)):

a a a
(—6—t+5gu)P+a—z'UP1-—0,

9 9 e
(3t+V+5~u>Pl + 0 3:c'l)P-—0. (28)
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At t = 0 we have
P(z,0) = (P(z,0)), Pi(z,0) = (a(0)P(z,0)).

The obtained system is exact and closed.

In a one dimension case and time independent u and v the system (28)
can easily be solved at the stationary limit. A steady-state probability
distribution Ps¢(z) has the form

Pu(z) = N—B) oo [V / M—}, (29)

T o2 — w2 o?v? — u?

where N is the normalization constant.
Let now a(t) be the Kubo—Anderson process. Introducing additional

averages Py(z,t) = (akﬁ(z,t)), k =0,1,... and using the formula (10), one

obtains the chain
o 0 o
(52* a_zu)P“LEE”P‘ =0,

0 0 0 ok
(a +v+ 3_:cu) P, + %vl’k_u =v{a®")P,

with initial conditions Px(z,0) = (a*(0)P(z,0)). Similarly as it was done
for the linear case (12), from the above chain one gets

a . . ¢
— 4+ u+vv 3 - -
ot ptvtated/

where 1,7 are the operators the action of which on an arbitrary function
g(t,z) is determined as

P=0, (30)

) 0 . ')
ag = é;(ug) , Vg = %(vg).

The action of the operator inside (...). can be calculated through the Green
function method of an appropriate Cauchy problem.

We give now the results for a one-point probability density P(z,t) for
a dynamic system of the form

& = U(z,at)), (31)

where U(z, a(t)) is a nonrandom vector function, a(t) is the KA process.
The stochastic Liouville equation for the considered nonlinear dynamic sys-

tem is of the form N s
e P=0. 2
(8t+6:cU)P 0 (32)
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We introduce the notations
P W 0
P, = (U*F),0g = 5-(Ug),k=0,1,2,....

Applying to averages Pi(z,t) the formulae of differentiation (9) and using
initial equation (32) gives the chain of equations

oP
o Th=0
J .
(a‘*%l/) Pk+Pk+1 =V<Uk>P, (33)

(k= 1,2,... ). Since the process a(t) is a stationary random process then
we can use the Laplace transformation method. For the Laplace transform

o
P(z,s) = [ P(z,t)exp(—st)dt, we have
0

. ~1
P(z,s)= |s+v ——[-]———-.— <—§-ﬂ—713(z,0)> .
s+v+U . s+v+U c

2.2. Kongaroo type noises

The kangaroo processes are generalization of a class of Kubo-Anderson
telegraphic processes in the sense that frequency of jumps from a state to
another depends on the state from which the jump proceeds, t.e. parameter
v becomes function of the o, v = v(a). This feature makes this type of mod-
els more adequate in physical reality. The property allows to apply widely
the kongaroo processes in spectroscopy, for example for the description of
the Stark broading of spectral lines [28,29], of interaction of spin systems
with thermostat [30] etc.

The considered class of random processes referes to Markovian processes
controlled by the Kolmogorov-Feller master equation [27]

%?— = —v(a)Q + V_(a.(_)ll%ga—) / y(al)Q(a,tla',O)da' )

where Q(a, t|a', 0)da is the probability that the process a(t) at time ¢ takes
the value from interval (o, @ + da) under the condition that at initial time
t = 0 the value of the process is equal to a'. Various kongaroo processes
are characterized by various correlation functions,

K(t) = {(a(t) = (@))((0) — (a}))
- / (a — ()2 @ltp(a)da.

[24
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The distribution p(a) is defined in Section 2.1. When v(«) does not depend
on o then K (t) is an exponential function of time. Otherwise, K(t) depends
on the form of v(a) and p(a).

The formula of differentiation for the kongaroo processes has the form

%(F(t, a)&,[a]) = — (vF&,) + <1</—f>~)—(1/¢t) + <%{F§t)> . (38)

If the parameter v is independent of a then the formula of differentiation
(34) reduces to the formula of differentiation (9) for the KA processes.

2.2.1. Equation for averages

We begin the consideration with a simple linear stochastic equation
z=A(a)z+ f, (35)
where z(t) and f(t) are n-dimensional vector functions, A(a) = || 4;;(a) ||T
is a matrix depending on the random process a. The initial conditions can
be included to the function f. So, we suppose z(0) = 0.
We derive the equation for average (z(t)). It is convenient to use the
averages Zi,, = (V™ A*z). The average we are interested in is { z ) = Zgo.

Putting F(t,a) = v™A*, &; = z in the formula of differentiation (34) for
averages ., one obtains the hierarchy of the equations

Eem = Aem@01 + fem + Tht1,m — Thym+1 > (36)
where k,m = 0,1, 2,...,

m+1 4k
Apm = (_V_(V>_A_>_’ Jem = (VmAkf) .

The initial conditions for all #,,(0) are obviously also zero. Rewritting
(36) in the form

Cem = I(Akm®o1 + fem + Tht1,m — Th,m+1) s

where

t
ig= / g(t)dt
0
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and iterating the terms zx41,m — Tk,m+41, We get

Thm zj(Akmz()l + fkm + j(Ak+1,m$01 - Ak,m+1301 + fk+1,m

— freomt1 F1()) = i<{1 +I(A—v)+ 1A -v)? +..]
Vm+1Ak m 1k
X (—(;5——2301 +v™A f)> . (37)

After some calculations we obtain the closed set of two equations for
average (z(t)) = zgo and an auxiliary average 21

1 v 1
<$> = m <‘—_‘—“dit_ +V—A>cm01 + <d—7i;_+_ll- '_ Af>c )

1 2
o1 = d—y“*_ zo1 + Tz—f . (38)
(v) G+v-Al GHv-A ]

The additional averaging over statistics of the process f(t) (if f(t) is
a random) does not change the structure of the equations obtained. With
the help of the Laplace transformation, the set can be reduced to algebraic
equations

X(s) = (71/7 <;—+—::7>CX01(3) + <;1%2F(s)>c ,

1

Xo1(s) = w <£‘_—A>6X01(s) + <;+—:_—A‘F(3)>c » o (39)

where

(. F(s))e = / / FP(s, fle)p(c)deds

2.2.2. Nonlinear systems

Let us consider an example of a system described by a nonlinear equa-
tion depending on random process a(t)

i = U(z,a(t)), (40)

where U(z, a(t)) is a nonrandom vector function of argument z and the
scalar random function «(t) belongs to a class of kongaroo processes.
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We derive the equation for probability density P(z,t) = (P(z,t)). The
stochastic probability density P(z,t) obeys the stochastic Liouville equation

—+UP=0, (41)

where

~ ~

It is convenient to introduce a variable z(z,t) = P(z,t) — P(z,0) and aver-
ages Zgy, = (V™U¥2). The application of the formula of differentiation (34)
to averages zy,, leads to a chain of the equations:

szm ~
5 = Utmzo1 — Frm — Zk+1,m — Zk,m+1>

(k,m=0,1,2,...). Here

<ym+1 ﬁk)

{v)

The reduction procedure leads to the following closed set for averages

P(z,s) = — <—V————>CZ01(:c,s) + <—fﬂ—613(:c,o)>c ,

Ukm = aka = <me]k+lﬁ(z’0)> .

MW \s+v+U s+v+
Zo1(z,8) = L <—V—2-> Zo1(z,8) — —V—Lﬁ(%o) ,(42)
W \s+v+U/. s+v+U c

where P(z,s) and Zo1(z,s) are the Laplace transforms of probability dis-
tribution P(z,t) and of function Zo1(z,t), respectivelly.

2.8. Sum of telegraphic processes
2.3.1. Differentiation formula

Let us consider a random process «(t) which is a sum of statistically
independent telegraphic type random processes a(t),

N
alt) =Y ak(t)- (43)
k=1
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The statistical independence of the processes aj(t) means that a one-
point probability distribution P(a,t) and a conditional density Q(a,t|a',0)
for the joint process a(t) factorize into products

P(a,t) = PD(ay, )PP ay,t)... PN ap, t),
Q(a$ t|a" 0) = Q(l)(al, t!all) O) .. Q(N)(aNa t!a;\h 0) s
where the functions P(’“)(ak, t) and Q(k)(ak, tlalk, 0) are a one-point proba-
bility distribution and a conditional probability distribution of the random

process ai(t). For the sum of statistically independent processes ay(t) the
master equation reads

O0P(a,t)

5 = LP=(Li+Ly+ ..+ Ly)P(ayt),

where L is a kinetic operator of the random process ag(t). The master
equation for the conditional probability denstity @ has the similar form.
Now one can write down the differentiation formula for the case under con-
sideration

N
(F(t a)®a]) = ( (F@st +<[Zi;:F] @t>. (44)
k=1

Let us consider two simple examples of application of this formula.
2.8.2. Central limit theorem

Let ap(t) are Kubo-Anderson random jump processes with the same v
and p(a). Using explicit form of the kinetic operator for KA processes, one
reads

2 F(0)@al) - (5 (F &)

_ g<[/Ftak+c)p(c)dc—F]¢t>
é:: <[ / F(t, & + o)[p(c) — 6(ctx — c)]dc] 4st>
- Z:;ll_<3 FFta)g, Z/(e-—ak)” (c)dc>, (45)
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where @ = ai(t) = a(t) — ag(t). We assume for simplicity (ax(t)) = 0.
Consider further a limit case when N — oo and a; — 0 in such a way that

A
apl < —= 46
| Icl = \,/]Tf ’ ( )
where A is a positive constant. Under this condition the dispersion of the
process a(t) is bounded,

N

0% = (a?) = Nhlnw,;(ai) < AZ. (47)

The moments of higher order tend to zero in the limit N — oo,

Jim Zlak < Jim (:}%) N=0,(i>2).

Under these conditions the sum in (45) over n contains only two terms with
n = 1,2 different from zero.
From the expression (45) we obtain

d 4]
FFeaRla) - (5 (Fe))

N
F ) v , 0%\ O°F
= v(agat) + m, .3 (o2 ) 5ar®)
(48)

In particular case, when a(t) are Markovian Dichotomous noises we have
a2(t) = 0%/N and (48) yealds

c(iit<F¢t[a]) <‘§£(F¢t)> -v <a%§4‘t> +vo <g—2£d$t> ) (49)

The obtained formula of differentiation is DF for Ornstein-Uhlenbeck noise
(which is a Gaussian process). It can be shown that the convergence of
the formula (48) to a Gaussian form like (49) holds genera]ly In the case
when noises ay(t) are of different correlation times 7% ~ 1/v; then the
corresponding proceess tends to a Gaussian process but of non-Markovian
type. Thus, we have illustrated the proving of the central limit theorem
for a sum of independent KA processes by differentiation formulae and in a
formulae differentiation representation.
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2.3.3. Equation for means

Let us consider the application of the DF method to statistical analysis
of a macroscopic system driven by a sum of random telegraphic type pro-
cesses. For illustration we shell treat a linear system of the form (12), where
a(t) is a sum (43) of identical Dichotomous noises a(t) with characterictics
02 = 0?/N and 1/,:1 =yl

The purpose is to derive an exact equation for average (z). For treating
of the system under consideration we need a formulae of differentiation for
averages (a(t)az(t)...a(t)P:). From (11) and (44) one has

d
(E + kl/) (alag ...aksit) = <a1a2 ...ak(—?—{t-> . (50)

Denoting here zj, = (a3 ...a,z(t)) and using (50) and the equation for
z variable, one gets [23]

& = (A — kv)zp + Blajaz...ap(ar + ag + ... + an)z)
+Hagag...apf) = (A - kv)eg+ko’Bzy_y+(N — k)Bagiy+fe, (51)

k=0,1,2,..,Nand fr=(ajas...arf). The additional averaging over statis-
tics f does not change the structure of the set obtained. The system (51) is
a system of a finite number of equations. Under the condition that A and
B are constants, the set (51) can be analytically solved.

2.4. Dynamical systems driven by diffusion processes
2.4.1. Formulae of differentiation

In many physical situations the character of random perturbations is
essentially different from, considered in previous sections, the perturbations
of a telegraphic type. We refer to a class of diffusion processes. Examples
are the well known processes: Gaussian Markov, Rayleigh and Pearson pro-
cesses. We restrict our consideration to Markovian processes and to a one
dimension case. We will show that the method of formulas of differentiation
of statistical averages is effective for this type of random perturbation, too.

For description of Markovian processes it is enough to know an ini-
tial one-point probability density P(a,0) and conditional probability den-
sity Q(a,t|a’,tl). All other distributions of the process a(t) can be ex-
pressed by this pair. The master equation for diffusion type processes is the
Kolmogorov-Fokker—Plank equation

oP [ @ 1 9%

"3 * 0t 5522

== |32 b(o, t)| P. (52)
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In frameworks of statistical description of process af(t) it is necessary
to know the functions a(a,t),b(a,t), initial conditions and the boundary
conditions. In dependence on the latter the statistics of the process can
essential be different. The detail discussion about boundary conditions for
diffusion type processes can be found in [8, 31, 32]. Eq. (52) is the continuity
equation,

opP .
—a—t— + d‘l’UaS =0 9
where 1 5bP
$=F 2%
is the probability current of the process . It is a sum of systematic
S4r = aP
and diffusion
Sop e 19bP
4f = 72 6a

flows, respectively. The function a is a drift velocity of systematic movement
and b is a diffusion coefficient (it should be b > 0).

We present a general formula of differentiation for a class of diffusion
Markovian processes. It has the form

%(F(t,a)@t[a]) = <%(F¢t)> + <a%§@> + % <bg—2§¢t> - (53)

2.4.2. Models of processes

We counsider some examples.
Ornstein—Uhlebeck process. For such process (at {(a) = 0 )

a(a,t) = —va, b(a, t) = 2ve?, (-0 < a < ),

where 02 = (a?). The formula of differentiation of statistical average for
OU noise has the form

%(F(t,a)@t[a]) = <-§-t-(F¢t)> —v <a%¢t> +vo? <%g—¢t> - (54)

In applications one frequently uses the formula with F(t, «) =ak, k=
1,2,...

% <akd5t[a]> = <aki5t> - vk <aks§t> +valk(k — 1) <ak“2¢t> . (55)
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Here ét = BT?}.

It is seen that, in contrast to the case of KA perturbations a(t), the
average (a*®,) has more complicated character of relationships for different
k. The average (a*®;) for OU noise is related not to ($;) but to more
complicated structure {a*~2¢,).

Such a character of relationships leads (see below) to other exact rep-
resentation of an equation for the average (z).

Rayleigh’s processes [8, 31]. The drift and diffusion coefficients have the
form

v x2 2
ala,t) = sl yo(a,t) = vx*, (0 € a < ),

where the parameter x is connected with average (a) by expression x =

%(a). The correlation function of the process a can be expressed as

a sum of exponential decreasing functions with decrements proporional to
frequency v. The formula of differentiation for process the Rayleigh has the
form

dit(Fszst) = <%(F§t)> - g- <(a - X;) g%é» + '%‘—2- <ng};5pt> - (56)

Processes with Pearson distributions. Pearson’s processes are widely used.
There are several types of Pearson processes [33] (see also [31]). The drift
and diffusion coefficients are polynomial functions of first and second degree

a=ag+aja,b=>bg+ba+bal.

The classification of Pearson processes is based on classification of so-
lutions of the stationary kinetic equation (52) with given drift and diffusion
coefficients. Consider two types of Pearson’s processes:

The beta Pearson process (a symmetrical case). For this case

v
147

a=-va,b= (@ - a?),r > —1,(|a| < d).

The gamma Pearson process.

a=-v(a—(1+s)g),b=2vga,g>0,5>-1,(0<a< ).

2.4.8. Averaging linear stochastic system

Let the behaviour of a macroscopic dynamical system be described by
the system (12). We suppose now that the noise model is one of the listed
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diffusion process. The problem is to find a closed equation for average (z(t)).
Introduce the averages z; = (a*z) and suppose that in the differentiation
formulae F = a* and the retarded functional #;[a] is the dynamical variable
z. Then we obtain the following chain of equations:

— for the OU process

2r = (A —kv)eg + Bepyr + k(k - I)Vozzk_z + (akf) R (57)
— for the Rayleigh processes
. 1 1
& = (A - §ku)zk + Bzpyi + §k21/x2zk_2 + (akf), (58)
— for the Pearson process with symmetrical beta distribution

tr = (A—v(k+ex))zr + Brryy +vdierzi_o + (a®fy, (59)
where e, = k(k - 1)/2(1 + r),
— for the Pearson process with gamma distribution

ir = (A~ kv)eg + Bajyy + k(k + s)grvap_y + (a*f), (60)

where k = 0,1, 2, ... and for each chain of equations, the initial condi-
tions are zero. The above sets are sets of an infinite number of equations
and rather not tractable. What we want to find is o = (z). In the next
paragraph we present a general procedure of finding an exact equation
for zg = (z).

2.4.4. Truncation of chain and rapidly fluctuating field limit

We illustrate the procedure of reduction of equations for evearges zj
on example the chain (57) for OU noise. All others chains can be reduced
similarly. It is convenient to write the chain in the form

(¢) = A(z) + Bz1 + fo,
2 = ik(sz+1 + k(k - 1)V0'22!k_2 + fk),k =12,..., (61)

where [}, is the integral operator

. d -1

and f;, = (a®(t)f). We suppose that the chain (61) is equivalent to the
following chain

(2) = A(z) + Bz1 + fo,

2p = Lizpsr + Di(e) + @y k= 1,2, ... (63)
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The unknown variables can be found by comparison of the chains (61) and
(63). After some simple calculation, one obtains the recurrence relations

ik =[1-k(k- 1)V02ikj}k_2ik_1]_lik3 = S'kB R
ar = Sklfu + k(k = 1)vo?(gr—2 + Li—20-1)],
.ﬁk = k(k - 1)1"‘725’k(bk—2 +Lg9Dg_q). (64)

The initial conditions for the new chain are
ig = O,QO = O,Do =1.

Using the initial conditions and the chain (63) leads to the closed equation
for average (z(t)) of the form

(23> = (A +B i j;li}z...i-/k._lbk> <1!>

k=2

+fo+B (ilfl +3 Ll£2---tk—19k) - (65)

k=2

Thus, we obtain the exact equation for average («(t)) in the form (21)
where the effective operator A and function fer take the form

o0
At =B Lilg..Ly 1Dy,
k=2

oo
Jeo = fo + B (ilfl + Z iliz...i;k_lqk) . (66)

k=2

For fixed numbers k, the operators L,D; and functions g, are partial
units of branching continued fractions. In the same way one can obtain the
effective operators A¢¢ and functions fer for other noise perturbation models
listed above and many others as well. Such a representation for operators
A.s and function fe¢ is useful for evaluation of accuracy of approximative
methods.

To illustrate this statement, consider the limit of high-frequency fluc-
tuations. It means that noise correlation scales » (1/v is a characteristic
correlation time) is much larger all others time scales of the problem under
consideration. For dynamical system controlled by Eq. (12) with OU noise
perturbation a(t), this limit means that there should be small parameters

ol B w

e=—"—), 7]:1—/—<<1, (67)
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where w is a characteristic frequency of nonperturbed motion when a = 0,
|| ... || means a norm of a vector or matrix. Here we use the Euclidian
norm.

It can be shown that for the case when the solution ( 2(t) ) is stable
(Il {(=(2)) |]l< oo) the following inequalities hold

| B|* (k—1)1 ,

I Exda... Lo Dte) 1< L B0 )

€k—l

oo’ I (=) Il

k—l

(’c 2)!
Here (k — 1)!' = (k — 1)(k — 3)(k - 5)...

Thus, the series on the right hand side of the equation (65) is convergent
if the conditions (67) are fulfilled. One has an estimation

| Aet(z) + fer — fo ||

© k-1
<l B (oe toy ({__—2)—) (I @) I+ 1 fo -
k=3

In the white noise limit, when v — oo and & — oo but o%/v — const,
the sum with respect to k tends to zero, but the first term is equal to
lim, _,o(c€) = const || B {|. Under the assumption (67), keeping only first
k terms in the right hand side of the expression (65) means the truncation
of the chain (57) on step k (2343 = 0) with accuracy o(¢*~!). Another
procedure is used in the approach based on the differentiation formulae.
Consider DF (55) where &, =

(5-8)ws

= —v(k+ 1){aF12) + vo?k(k + 1){(a*12).

If the parameter ¥ — oo and the function (2(t)) is a smooth function
on time scale ¢ ~ v~ then from the above equation it follows that

(a*t12) ~ ko?(aF12). (68)

| Lilyelpaar || o || fo Il -

The application of the chain truncation rule (68) to z; = (a®z) leads to
the approximation z2 = (a?z) ~ o%(z). Let us list rules of chain truncation
followed from DF for (57)-(60):
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—- for OU noise
o~ 2
Ty R kozp_q,

— for Rayleigh noise
2rp1 = (k4 1)x%2k—1,
— for Beta Pearson noise

k

IO M
LT S )+ kT R

— for Gamma Pearson noise

Zrt1 = (k+ 1+ s)gz.

2.4.5. White noise limit

Consider Gaussian white noise as a limit of OU noise when

2

. o
v — 00,02 > 00, lim — = D = const.
v—o00 U

Under this condition the correlation function of OU noise reduces to
K(r) = (a(t + 7)a(t)) = 2Dé(r).

Our purpose is to derive the equation for a probability distribution
P(z,t) of some dynamical system subjected to Gaussian white noise. Let
the vector function z(t) is the solution of (26) with Gaussian white noise
parameter . Using DF (55) for averages Py = (a*P(z,t)), one obtains at
k=0,1,2.

8P OuP OvP

at + Oz + oz 0,

8P] 3’U.P1 61)P2

— P =

ot tvit dz + Oz 0,

8P2 6uP2 3'UP3 2 _
Bt +2VP2+E_+ 5z —2ve“P =0.

From last two equations we get in white noise limit

P = - lLim —l_Bva _ “DavP

v—oo UV 62 823 ’

Inserting this into the first equation, one has the following kinetic equation
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Thus, the formulae gives a simple method for obtaining kinetic equations in
the white noise limit.

2.5. Poisson processes, formulae of differentiation,
relation with Ito approach

2.5.1. Exponentially correlated Poissonian process

Let a stationary random process a(t) be a sequence of impulses of ex-
ponential shape
a(t) = Y 2,0(t ~ t)e (%), (69)
k

where ©(t) is the unit step function

1 t>0

0 t<0
The amplitudes z; and moments ¢; are assumed to be random. The mo-
ments ¢, are uniformly distributed over time and they are statistically in-
dependent of each other and independent of amplitudes z;. Impulses are
distributed according to the Poisson statistics, i.e. the probability P(n, At)
of n impulses on the interval At is

P(n,At) = gii'tl exp (—pAt).

The parameter y is a mean number of impulses per unit time. We assume
that random amplitudes z; are statistically independent and distributed
according to the probability density p(z). Let (z) = [ zp(z)dz = 0. Then
( a(t)) = 0. The correlation function of the process (69) is

(a(ty)a(tz)) = o2e VIt —tl (70)

2

where o is a dispersion of the a process,

o? = (a®) = g;/zzp(z)dz. (71)

The process a(t) is a Poisson process belonging to a class of Markovian
jump processes obeying the Kolmogorov— Feller type master equation

2(eties0) _, 2 (ag) 4 1 [1(a+ 2, ta',0) - Qe 0lp(2)dz.

(72)
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The conjugate operator L reads
- of
i+f = —vagl 4 [If(at2) - f(@)lp()dz. (73)

By use of the represenation (73) for the operator L* one can present the
differentiation formula for the exponentially correlated Poisson process. The
result reads

d o oF
EZ (F(t, a)¢t> = <§(F¢t)> l 4 <aa—45t>
+u [ (F(t.a(t) +2) - Flt,a®))#) p(z)d=. (74

We can introduce another representation for this formula using power series
expansion of integrand (74). One gets

d 0 OF
Et- (F(t, a)@t) = <3t (Fét)> <(15-;¢t>
— OF &
2—: < Sor > : (75)
Here (z™) = [ 2z"p(z)dz. In applications one frequently uses this formula
with F = a*, £ =0,1,2,
d k
E(akét) = —kv{aF @) + p Y CR(2")(@* ") + (o*dy) (76)
n=1
k!

where Cj = A —n)*
In the limit 4 — oo, (22) — 0 and p(z™) — 0 at n > 2 but the product
p{2?) is finite, Eq. (75) reduces to (54) for Ornstein—Uhlenbeck noise.

2.5.2. Equation for mean and reduction of the chain

Let us consider a linear dynamical system (12 ) driven by the Poisson
noise (69). The application of the DF (76) to Eq. (12) leads to the following
hierarchy of equations for averages z; = (a®z):

k
2 = (A ku):ck + B$k+1 + u Z Ck ‘ck —nt <a f> (77)

n=1
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We consider the zero initial condition for z variable. Therefore z(0) = 0
for all k. It is seen that the average z(t) for given k depends on a set of
all averages z,(t) with n < k. In paragraph 2.4.4 we have discussed the
procedure of exact truncation of similar hierarchies to an effective closed
equation (65) for average (z(t)). For the case under consideration the re-

currence relations for operators L, D and function ¢ are

k—1 -1
Li=|1- Z BrilgLiLiyr...Ly_1| 1B =5:B,
i=1
k—1
Dr =Si(p(z*)+ > BriDi + ZﬁkzL Diy1
=1 i=1
k—3
+ 3 BriliLiv1Dita + o+ Brk—1L1Lae.Ly—2Dy—1),
i=1
k-2
9k —Sk fk + Z Brigi + 2 ﬂkz idi+1
=1 =1
k—3
+ Z BriLiLit1giva + o+ B e—1L1L2.. L _2qk—-1)
i=1

where f;; = uCi(zF~*). The initial conditions for these recurrence relations
read

Iy =0B,q =l1f1,D1 = p(2)i;.

By the similar way one can construct a closed operator equation for
nonlinear dynamical systems driven by the exponential Poisson noise.

2.5.3. White noise limit
Let us consider a nonlinear dynamical system
& = u(z,t) + at)v(z,t) (78)

driven by the Poissonian white noise a(t). By the Poissonian white noise
we understand here a limit of the Poissonian Markov process

a(t) = zrg(t—te) = Y zvO(t - tx) expl-v(t —tx)],  (79)
P k

when v — oo. This definition differs from (69) by a coefficient v. When
v — oo then the function g(t — t) tends into Dirac §-function 8(t — tx).
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Thus, the sequence (79) is a sequence of delta impulses. It is assumed that
the product u(z™) is bounded for any integer n > 0 when v — oo as well.

Taking into account the definition (79), the formula of differentiation
(76) can be rewritten as

; .
(0’ = — kv(a® ) + (a*de)
k
+ Yy, CRv™ ("o ). (80)

Using a stochastic Liouville equation for dynamical system (78) and
apply~ing the DF (80), one gets a set of equations for averages Pi(a,t) =

( a*P(a,t)),
9P  GuP  dvh

ot o T or
%1%- + kv Py, + a;fk + 8”2}“ = u*(z*) P + ’g”iﬂkipk—i- (81)
In white noise limit the chain (81) transforms to
@%—1 = —kvPy + 't (z*)P. (82)

The chain (82) with the first equation of the system (81) can easily be
reduced to the closed Kolmogorov—Feller-type kinetic equation

%1; + 6_;‘513 = [y./p(z) (em=dv - 1) dz] P. (83)

In the simplest case when function v is independent of z, i.e. v = v(t),
the operator exp(—-za%v) is a shift operator with respect to the variable z.
Under this asssumption we get from (83)

P or p,/p(z) (P(z — 2v,t) - P(z,1))dz. (84)

Thus, it is possible to analyse a dynamical system with the Poisson
white noise perturbations in the frame of DF approach.
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2.5.4. Relation with Ito approach

The Ito formalism is developed and widely used approach to analyse
stochastic differential equations [34] (see also [1, 8, 31, 32, 35]). The Ito
theory is based on two simplest models of random processes with indepen-
dent increments. They are the Wiener and Poisson processes. The Wiener
process w(t) having Gaussian statistics has been used for modeling of con-
tinuous components of a macroscopic variable z(t). The Poisson process is
responsible for random jumps of a macroscopic variable 2. The time evolu-
tion of a macroscopic variable z(t) is described by the following stochastic
integral equation [35]

t t t

z(t) = 2:(0)+/a(2:(7’),1')d1‘+ /a(z(r),r)dw(r)+ /@(z(r),d‘r), (85)
0 0 0

where z(t) = (21(t), ..., 2n(t)), a(z,t) is a n-dimensional vector- function,
o(z,t) is a positive definite matrix function n x m, dw(t) is the increment
of the Wiener process w(t) corresponding to a small time interval dt. For
arbitrary t; and ¢, the increments w;(t1) — wj(t2), 4,j = 1, m are Gaussian
variables with
(wilt1) — wj(t2)) = 0,
and dispersion
((wilt1) - wj(t2))*) = Dijlts — ta -

Here D;; is a positive definite matrix.

The last term on the right hand side of the Eq. (85) describes a jump
component of the process z(t). It can be presented in the form

] O(a(r), dr) = ] / o(2, 2, 7)p(dz, dr), (86)
0 o

where g(z, z,7) is an amplitude of jumps of the random process z at time
t. It depends on z and on the parameter z; p(z,t) = p(2,t) — ( p(2,t)). The
function p(z,t) is a random integer function of z and ¢ such that p(dz, dt) is
the number of z-process jumps in time interval (¢, + dt) when z values be
found in the interval (z, z + dz). The statistical dependence p on z variable
is arbitrary and on time variable ¢ is Poissonian. It means that on non-
overcrossing intervals of time the function p has independent increments
and on average udt jumps occur on the interval (¢,t + dt). The probability
that the increment p(z,t + dt) — p(z,t) = m is given by the Poisson low

(pdt)™

!

P(p(z,t + dt) — p(z,t) = m) = Te(_“dt)'
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For processes under consideration the generalized Ito formula reads [35]

G(z(t),t) =G(2(0),0) +/ (% +LF+ .t;) G(z(7),7)dr
0

9G(z(7), 1)

t
+ /a‘,-j(:c('r),*r) 52, dw;(T)
0

+ 0/ [16((r) + g(alr),z,7).m) — Gla(m), Doz, dr),
(87)

where G(z,t) is a vector function of z and ¢ variables and operators I:Jj and
L;f read

- 2
LIG(z(t),t) :a;(z,t)g—g + %aiz(z,t)crlj(z,t) (;11;:6;' ’ (88)
£56(a(t),1) = [[6(a(t) + o(a(0) 2,1),0) - Gle(0).0)

+ gi(z(t),z,t)aG—(;g)—’—Q]w(t, dz). (89)

Here 7(t, dz) is the probability density for amplitudes of the Poisson process.

Let in the generalized Ito formula (87) z(t) = a(t) and G(=z(t),t) =
F(a(t),t)®:[a], where $;[a(T)] is a function of ¢ and a retarded functional
of a(7) with 7 < t. Note that in (87) the derivative of F with respect to
t is calculated over a(t)-dependence only, but not a(r)-dependence where
T < t. Taking into account this and after averaging of (87) over statistics
of the Wiener and Poisson processes, we obtain the following differentiation
formula

2 (Fla,teda) = ( rea) + ([(L +55) o) . o)

The action of the operators f}j and L7 on an arbitrary function F(a,t) is
defined by the formulas (88), (89).

Thus, by using generalized Ito formula and special choice of G' one can
derive a differentiation formula for a general class of the Markovian random
processes generated by the operators L4 and j}p.
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2.6. Differentiation formulae of cumulant functions and their applications
2.6.1. A general notations

In the previous section we have considered the application of DF for
moment functions. In many cases it is more convenient to use another
representation of DF, namely the cumulant representation. The cumulants
of arandom process a(t) appear as coeflicients of a functional Taylor series of

1
the logarithm of the characteristic functional x:[v] = <exp if 'U(’T‘)a(T)dT>:
0

t ot
oo .k
. i
In x¢[v] = Z F/.../go('ol,vz,...,vk)(a(tl),a(tz),...,a(tk))dtldt2...dtk.

k=179

Here ¢(v1,v2,...,v;) is a symmetric function of the variables vy, va,..., vk
and equal to

<P(vla U2y erey vk) = (P(’U(t]), 'U(tg), Sa3) v(tk)

_ 6% In x4 [v] |

T Sa(ty)...ba(ty) )=ovi=1k "
where the symbol E—g—t.—) denotes the variation derivative. The cumulants of
a random process a(t) (a(t1), a(tz),...,a(ty)) = (a1, az2,...,a) ! are con-
nected with moment functions {(a(t1)a(t2)...a(ty)). The relations between
cumulants and moments and some related questions are contained in the
books [5, 8, 9, 36]. The cumulant of the first order (it can be denoted

as (,a) or (a,)) equals the mean (a). The cumulant of the second order
(a1, a2) is equal to the correlation function of the random process

(o1, a2) = (aaz) — (a1){az).
For cumulant of the third and fourth orders one has
(a1, az,a3) =(pazaz) — (ayaz){as) — (c1)(azasz)
— (a1az){az) + 2{a1){az){as),
(al, az,as, aq) =(0110£20130t4) - {(al)(a2a3a4)}4
— {{a1az)(azaq)}s + 2{(a1){az){asas)}e
— 6(a1){az)(az){as).

1 We use here and further the notation accepted in the book [36].
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where {...}; means a sum of different terms with all kinds of index trans-
position. The number of such terms is equal to k. For example

{{a1){azazaq)}s = (1) {azazay){az)(arazay)+

+Has){arazay) + (aa)(a1azas) .

The cumulants of third and fourth order are usually used to characterize a
symmetry property and shape of the probability distributions. For exam-
ple, the cumulant of third order at the same times is called an asymmetry
coeflicient ; or “skewness” [37],

aldl
Y1 = W- (91)

It characterizes symmetry of a one-point probability distribution P(a,t).
Here and further the notation (a{k]) means (a{k]) = (a, @y ..., ). The equal-
N e

k
ity 71 = 0 indicates that the function P(a,t) is an even function of a vari-
able. The positive sign of 4; indicate that the distribution has longer right
tail then left. In opposite case 43 < 0 the probability distribution P has
longer left tail.
Using cumulant (a[4]) one can create a coefficient 42 named as kurtosis
[37]

(92)

The sign of the coefficient v, characterizes a shape of probability distribution
P(a,t) near a maximum point in comparison to a shape of the Gaussian
distribution. When 2 > 0 the probability distribution P(t, a) has sharper
peak then the Gaussian distribution. This case corresponds to leptokurtic
shape of the distribution. The negative sign of the kurtosis indicates the
platykurtic shape of the probability distribution P(t,a) near a maximum
point. In this case the shape of the distribution is more flat then Gaussian.

Let us put (e, ) = M(t), (@1,a2) = K(t1,t2) and (ay,...,ar) = 0 at
k > 2. Then, from series expansion of In x[v], one easy obtains

xt[v] = exp i/M(T)v(‘r)d-r— %//v(rl)v(rz)K(Tl,Tz)drldrz
0 00

The characteristic functional is well-known for a Gaussian random process.
In this case the set of two first cumulant functions characterize completely
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the statistical properties of the Gaussian process. The simplicity of Gaussian
random processes in cumulant representation and universality have created
approximate methods for description of probability distributions by means
of a series with respect to deviation from the Gaussian distribution. The
measure of such deviations is smallness of higher order cumulants. As an
example we refer to an Edgeworth series [38].

The discussion about apllications of cumulant technics for analysis of
dynamical systems under influence of random perturbations can be found
in [9, 12, 13, 39-42].

Now we shall use the cumulant representation to derive formulae of dif-
ferentiation of cumulant functions and apply them to a macroscopic system
driven by random perturbations. We need some properties of cumulants.

2.6.2. Some useful properties of cumulants
1. Cumulants are invariant to any transposition of arguments, for example
(Oll, Q2 eeny ak) = <az, Qlyeeey ak) .

2. If ¢}, is a deterministic variable or an operator acting on the variable ay,
only, then

m m
<Z ChOky Amt1s ...,an> = Z Cl{Qky Am41y ees On) - (93)

k=1 k=1

3. A joint cumulant of a set ay, as, ..., @, 8 of random variables is equal to
zero if the set contains at list one variable statistically independent of other
random variables

(o1, 02y ey, B) = 0. (94)
The expression (94) holds in a particular case when § is a nonrandom vari-
able. Let the set c; be a set of nonrandom parameters. Then as a conse-
quence of Egs. (93), (94) one has
(a1 + e1,0z + €1y ey @n+ €1) = (@1, @2, .0y Qp) (95)
4. We shall use the following important formula [36]:

(Cl], A2y eney Ofy 2y> = (al s X2geeey QAfy T y>

k
+ E{(ala A2y 000y Ay z)(‘lk—l—}—l: weey Oy y)}ci . (96)
=1
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where the symbol {...} cl denotes a sum of different terms with all kinds of

index transposition. The number of such terms is equal to C,lc = 7,(—:}1—)—,

In the particular case a; = a3 = ... = a} = « one has
k
(M, 2y) = (¥, 2,9) + 3" Cf (al0,2) (ally) . (97)
=1

2.6.3. Differentiation formulae of cumulant functions

Let us consider a cumulant of the special structure

(a1(t), az(t)y ..., am(t), B:]a]) , (98)

where the variable #,[a] is a retarded functional of the random process
a(t)=(ai(t), az(t), ..., am(t)) The application of general DF (3) to average
(ajaz...am®Pi[a]) gives the following result:

d . .
E (alaz...amét) = <a1a2...am¢t> + <[L+(a1a2...am)] §t> . (99)
We use the representation (7) for operator L*. If a; = ag = ... = a0y = @

then from (99) and (7), one obtains

d . LA .

Z(a™®) = (am¢t> +3 ¢, <A,~am—’¢t> J(m=1,2,..). (100)
i=1

What is the analog of these formulae in cumulant representation? Using

property 2 from the previous paragraph one obtains, analogically to (99),

the form

d .

E(a]) A2y 00y Ay ¢t> = (ala A2y 000y Ay, ét)

+ { <Ala Q2, A3, ey Qp, Qt) }m

+ ot { (Ainak-}-l, Qpg2;00y Oy, ét) }C’I% + (Am, @-1,) . (101)

The analog of the formula (100) reads

%<°‘[m]’¢t> - <°‘[m]’ét> + icfn <Aiaa[m_i],¢t> : (102)
=1

There are two terms in sum on the right hand side of (102) ({ = 1 and
i = 2) for a particular case of diffision type random processes. Further
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we restrict ourselves to consideration of a Gaussian Markovian process or
Ornstein—Uhlenbeck noise. The differentiation formula reads

% (a[m],¢t> _ (a[ml,ét) — <a[m],45t> , (103)

This formula can be rewritten as
(m] &\ — __d [m]
<a ,¢t> = ( ; -|-m1/) <a ,¢t> . (104)

Its generalization is as follows

k k
<a{m], a_a;;l> = (% + mu) <a[m], @t) . (105)

For an arbitrary linear differential operator M (t, %):

ML) = 3 mi(t) a*
vdt) T TR gk
with nonrandom coefficients my(t), Eq. (105) leads to the form

d d
<a["‘],M (t, ZE) ¢t> =M (t, =+ ml/) (al™, 8, . (106)

2.6.4. Equation for mean

Let us apply the result (103) to the linear stochastic system (12). After
averaging both sides of the system equations, one obtains

(2) = A(z) + B(az) + (f)
= Af2)+ Bla,2) + ().
For the unknown cumulant (a,z), the formula of differentiation (103) can

be appleid. After differentiation of the cumulant (a, ) with respect to time
and using DF (103), we find

2 (o0®) = (@ #) - v{ar2) = (@, (4 + Baz + f))

—v{a,z) = (A - v){a,z) — Bla,az) + (o, f)
= (A= v)(a,2) + Blayay2) + 02 B(z) + (a, f).  (107)
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We take into account here that (a) = 0 and {a,a) = o%. It is seen that
a new cumulant (o, a,z) occurs. The same procedure is applied to this
cumulant,

i(a, a,z) =(a,a,z) - 2v{a,a,z) = (A — 2v){a, o, 2)

dt
+ Blaya,a,z) + 20 Bla, z) + (a, a, ) . (108)

We use here the following general formula obtained from (97) under condi-
tions that (a) = 0 and af(t) is a process with Gaussian statistics (( al*l) =
0,k > 2):

<a[k],am> = <a[k+1],:c> + ko? <a[k+1],:c> . (109)

Continuation of this procedure leads to the following hierarchy of equations
for cumulants z;, = (a[k],z):

&1 = (A— kv)ey, + ko’ Beg_1 + Begyr + fr, (110)

where fi, = (alFl, ), £ =0,1,2, ...

As an example of application of obtained results, let us consider a Brow-
nian particle motion in coloured noise being Ornstein-Uhlenbeck process.
The equation of motion was written in Introduction. We are interested in
mean and meansquare as t — 0o. The equation for variables z(t) and z%(t)
can be written in the form (12) where

;c:<;’2),,4=(_0A _‘;A),B=(3 g)f:(g )

In the stationary limit, we have equation (110) with ¢ = 0 and f;, =

(k]
(<a0 )) Because for a Gaussian process the cumulants (a[k+1]> = 0 for
k+1 > 2, that is for £ > 1, then for k¥ = 0 one gets (a[l]) = (a) = 0 and
for k =1, <°‘[2]> =2 Using explicit form for matrices A and B we have

o?
()t = 0, (2%)5t = m .

2.6.5. Application to equation of higher order

Formulae of differentiation for cumulants are rather convenient when
using Gaussian Markovian random perturbations. They can be easily ap-
plied to stochastic equations of higher order. Let us consider a macroscopic
system of the form

N (t, %) ¢+ a(t)M (t, %) e=f, (111)



Simple Mathematical Tool for Statistical... 731

where
d e d* d il d*
N (t, EE) = k_zo nk(t)apM (t, (—E) = ;mk(t)dt—k )

and m < n. The coefficients ng(t) and my(t) are nonrandom functions, a(t)
is the Ornstein—Uhlenbeck noise. The initial condition z(t = 0) = z¢ and a
function f(t) on the right hand side of the equation (111) can be random
and depends on « but in a non-advanced way.

The averaging both sides of the Eq. (111) with respect to the noise
statistical ensemble gives

N (t, %) (z) + (a(t)M (t, adz) z) = (f).

Taking into account (106), one obtains

N (t, %) (2) + M (t, gz + u) (a,2) = (f). (112)

Applying cumulant averaging to the Eq. (111), we can find

(@, N (t, %) 2) + (o, aM (t, %) 2) = (o, f),

d d
(a[k],N (t, E) z) + (a[k],aM (t, a—t) z) = (a[k], ).

Utilizing (109) to the averages (al*l, aMyz) where My = M(t, Edi) a new
averages of the type (a[kil], Myz) appear. The application of the formula

(106) allows to write a hierarchy of equations for averages z; = (ol 2)
(k=0,1,2,..)

Nz + My p1zp41 + ko?My_125-1 = fi, (113)

where

Ny=N (t,%+ ku) My =M (t,%+ ku) o= (e, . (14)

The chain obtained is a chain of an equation for a scalar macroscopic vari-
ables z;. Let us consider here a simplest case when the functions nj; and
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m}, are independent of time t. In this case we can use the Laplace transfor-
mation. Denoting

:ck(s):/ ~tg, (£)dt, Fiu(s) = /e-“fk(t)dt,
0 0

from (103), one obtains
Ni(8)zk(s) + Mit1(s)zi41(8) + ko® Mi_1(s)zi—1(s) = Fr(s), (115)

where
n

Ni(s) = Z ni(s + kv), My(s) = Z mi(s + kv)*.
1=0
We choose zero initial conditions for simplicity.
Let Fy and F; not be equal to zero. It means that we addmit nonzero
correlation (o, f). Then after some calculations we get an explicit expression
for desired average zq(s) expressed by the continuous fraction

Fi(s)  Fo(s)M(s) — 02N(s)

20(8) = 23(s) T M(s)(N(9) — 2(5)) (116)
where
2(s) = “1(31)‘2(5) ’
Nz(s) - ’u3(8)
Na(s) = Ns— ..

is a continuos fraction with uy(s) = ko? My (s)Mj_1(s). The first applica-
tion of the formulae of differentiation for cumulants was done in [43] for a
linear oscillator with fluctuating frequency in the form of OU noise.

In this part, we considered some examples of applications of differenti-
ation formulae to macroscopic systems driven by Gaussian OU noise. The
DF for others coloured noise models leads to the hierarchy of equations
for averages of more complicated structures. For example, the application
to (12) gives the chain of equations where the time derivative for average
z) = (a[k], z) contains a set of variables z; with j = 1,2,..., k. Nevetheless,
the cumulant DF can be considered as one of general approaches to trun-
cation of such hierarchies, especially for random perturbations with short
correlation time. The cumulant representation in analysis of system per-
turbed by random forces with short correlation time has been developed
and used in {12, 13].
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3. Summary

We have described the general framework of the DF method. Advan-
tages of the method for obtaining exact and closed equations for mean
values and probability distributions of linear and nonlinear macroscopic
systems perturbed by coloured noises of different statistics have been illus-
trated. We have considered both Markovian jump processes (such as the
Kubo-Anderson and kongaroo random processes) and diffusion processes
(OU noise, Rayleigh and a set of the Pearson processes). It is shown that
for listed models of Markovian jump processes the application of the DF
leads to a hierarchies of equations for averages. The hierarchy obtained can
be presented as a series. The important feature of this series is that the
series is an operator resolvent expansion. It can be factorized to a closed
form. As a result we get a closed and exact representation for equations cor-
responded to averages of macroscopic variables. Among this averages there
are several moment functions and probability distributions as well. Utiliza-
tion of the DF method does not require an additional procedure connected
with consideration of conditional averages [27].

The application of the DF method to dynamical systems driven by
diffusion type processes leads to hierarchy of equations for averages. The
structure of these hierarchies are different from that we have for jump noise
perturbations. Nevertheless, in this case one can derive an exact and closed
equation for averages as well. The contribution of the noise perturbation
to averaged dynamics of the system is represented as a series. Each term
of this series is a unit of a branching continuous fraction. This representa-
tion is convenient when applying approximations, especially when random
perturbations have small correlation time. It is important that for this case
differentiation formulae contain some rules for a hierarchy truncation. The
given representation of the DF for cumulants is very convenient at applica-
tion when random perturbations have Gaussian statistics.

We have illustrated a close relation between the Ito approach and DF
approach. Different generalizations of the Ito approach can be used for
getting new formulae of differentiation. The DF method gives a regular
procedure to analyse a macroscopic system driven by Gaussian and Pois-
sonian white noise. Thus, the DF method allows to study systematically a
macroscopic system perturbed by coloured random noises of different statis-
tics.

The discussion of DF applications to macroscopic systems with bound-
ary conditions, with retarded arguments and with many-parametric stochas-
tic perturbations is beyond the scope of the present paper. In the second
part of the paper we will consider examples of applications the DF method
to selected physical problems. We will investigate a fluid particles mo-
tion in turbulent flow, a Brownian particle in stochastic layered media, a
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test charged particle in random nonhomogeneous fields, a linear oscillator
with periodically modulated random frequency and plane wave transmission
through stochastic layer. Finally, two problems related to random switching
on and of between two different dynamics will be studied.

I want to thank Prof. A.Fulinski for inviting me to VIII Symposium
on Statistical Physics in Zakopane, Poland, 1995 and the Organizers of this
Symposium for financial support. I am indebted to Prof. J. Luczka for
discussions and for hospitality in the Silesian University. I wish to thank
Fundacja Popierania Nauki (Kasa im. J. Mianowskiego) for supporting my
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