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Combined statistical physics and computation modelling give new in-
struments for the study of non-equilibrium systems. We briefly review
generalized Eden and Diffusion-Limited Aggregation models as applied
to spreading phenomena. We indicate the occurrence of non-universal
behaviors.
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1. Introduction

Spreading phenomena are common non-equilibrium processes in nature:
surface wetting, viscous fingering, liquid invasion in porous media, grain
coalescence in alloys, fracture propagation, but also evolution of territories
or population of insect swarms, virus propagation. For spreading processes
driven by cooperative or non-linear evolution rules, the systems develop
patterns which often reach a high level of complexity [1].

In modern statistical physics, the understanding of a wide variety of nat-
ural spreading phenomena is approached by inventing simple models. The
complexity generated by these models is often studied in terms of “critical-
ity” [1]. The signatures of strict criticality are known to be e.g. the fractality
of a pattern or the power law behavior of the size-distribution of spread-
ing events [2]. Such power laws reflect in fact the presence of long-range
correlations in the system resulting in the formation of complex patterns.
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In so doing, many models have been imagined. Here, we review a few
of our endeavors and those of others in the field of growth models.

2. Eden and multicomponent Eden models

The most simple non-equilibrium spreading model is the Eden model
which describes the aggregation of identical particles on a lattice. The model
was developed in order to mimic the growth of bacterian cells colonies [3] and
was generalized to simulate other one-component spreading phenomena [4-
6]. A single step of the Eden growth consists of randomly selecting a particle
on the surface of a seed, a cluster thereafter, and randomly filling one of
its empty neighbors by a new particle (more generally called an “entitiy”).
This irreversible growth rule generates compact and round clusters which
tend to fill the entire available space on the lattice. A typical Eden cluster
made of N = 4000 identical particles is drawn in Fig. 1. The surface of
Eden clusters was found to be self-affine [4].

Fig. 1. A typical Eden cluster made of 4000 particles.

However, in most systems, the relevant entities usually present addi-
tional degrees of freedom. Examples of multicomponent systems are alloys,
fluids, magnets, ceramics, polymers, bacterian cells, viruses.

We extended the simple Eden model in considering that each entity had
an internal degree of freedom, called a spin [7-10]. In the multicomponent
Eden model 10}, the elements of the growth were represented by scalar
“spins” o; taking g states and coupled by a dimensionless energy taking
two values J and 0 like for the Potts model [11]. The parameter J can be
related to the affinity of aggregation between different species of particles,
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or more generally J represents the “intensity” of the internal competition
occurring between the ¢ species.

The growth rule is defined as follows. Starting from a single spin of state
op = 1 as seed, the growth consists in successively selecting at random one
site 7, then the spin of state 1 < o; < ¢, on the cluster surface. From this
site ¢, a new spin is glued on an empty nearest neighboring site j chosen
at random. The state value of this new spin is 1 < ¢; < g chosen with
a probability

exp(Jbo;0;) (1)

exp(J)+¢-—1

among the ¢ states and where 4. , is the Kronecker function. After being
glued, each spin is frozen forever. This model is quite different from the
classical Potts model usually studied in an equilibrium state. As for the
Eden model, the so-called “Eden-Potts” model is history-dependent and
irreversible. The dynamics of the model is thus expected to be different
from the classical Potts dynamics [12].

While the overall cluster growth is strictly equivalent to the classical
Eden process leading to round and compact clusters, internal patterns are
generated. Domains (a domain is defined as a set of connected spins in
the same state) of the ¢ species are nucleating and are competing for ¢ >
1. Domains of the same spin species can also coalesce and block other
ones during the growth. Such an observation leads to raise the question of
a percolation-like mechanism for the seed species domain and whether any
critical p. or ¢, exist.

It can be also emphasized that the growth is thus more complex than
classical epidemic [5] or forest fire models [6] where only “immune”, i.e.
non-growing sites, constitute obstacles for the spreading of a single domain.

It is of interest to study this problem as a function of the normalized
probability p to glue a spin of the same species as the selected one, i.e.

- __ool) (2)
exp(J)+¢—-1
which reduces obviously to 1 for ¢ = 1 since the classical Eden model is
recovered.

Fig. 2 shows a typical g-component cluster of N = 10000 spins for ¢ = 4
on the square lattice and for p = 0.92. Each “color” in Fig. 1 represents a
spin species. Following the lines of thought of percolation theory [13], we
have analyzed the domain competition as a function of ¢ and p in order to
know whether the seed domain can grow forever, i.e. there is a connected
path of spins in the same state which connects the center and the surface
of the cluster. Various two-dimensional lattices have been investigated:
honeycomb, square and triangular lattices. The results are summarized in
Table 1.
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Fig. 2. A typical ¢ = 4 multicomponent Eden cluster made of 10000 spins for
p = 0.92. Each “color” represents a different spin species.

TABLE 1

The various dynamical regimes found for the multicomponent Eden model on var-

ious two-dimensional lattices.

Lattice q Mean domain size
Honeycomb 2 finite
3 finite
finite
Square 2 finite for p < p.
and infinite for p > p.
3 finite
finite
Triangular 2 infinite for all p values
3 finite

finite
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For all lattices and all ¢ values, the case p = 1 is trivial: since nucleation
of new domains is forbidden, the seed domain is the only growing entity
which corresponds to an Eden growth.

However, for p < 1 the seed domain dominates only the early stages
of the growth. After some steps, new domains of the ¢ — 1 other spin
species nucleate and infect the seed domain surface. The latter new domains
grow and the multidomain spreading phenomenon reaches a steady-state
for which the fractions ¢; to ¢, of the g kinds of species in the cluster are
equivalent and equal to 1/¢. This steady-state is reached exponentially and
the characteristic time of the transient regimes is proportional to exp(J),
i.e. proportional to p/(1 — p) [8].

In the steady-state, two different patterns can result from the competi-
tion dynamics between domains: (7) all domains can have a finite size and
the seed domain cannot span through an infinite cluster, the pattern is then
cellular and the mean domain size depends on p and g, or (%) if nucleation
is small and coalescence large enough, some domains can have an infinite
size, the mean domain size diverges then as the cluster grows. We found
numerically that the latter scenario can occur only for ¢ = 2 and for both
square and triangular lattices (see Table I).

On the square lattice, a transition between finite and infinite domains
takes place at a defined value p. = 0.83 £ 0.03 for ¢ = 2. On this transition,
the size-distribution n(s) of domains is a power law n(s) ~ s~ indicating
that the spreading phenomena are critical. The exponent 7 is estimated
to be 7 = 1.63 + 0.05. Moreover, the percolating domains are found to be
fractal with a fractal dimension Dy = 1.5 0.1. One should note that the
values of the exponents are somewhat different from classical percolation
exponents which are Dy = 91/48 and 7 = 187/91.

However, the dynamics is very different on the triangular lattice. In-
deed, the seed domain percolates for all values of 0 < p < 1. In fact, the
growth process generates a no-scale pattern for all values of p. The size
distribution exponent 7 is approximately equal to 2. The seed domains and
therefore all others are fractal with a dimension around Dy = 1.8. We have
observed some variation of the exponents with p indicating the presence of
finite-size effects. The multicomponent Eden model thus presents a non-
universal behavior: the dynamics and the values of the critical exponents
seem to depend on non-universal parameters like the lattice structure or the
value of ¢. This numerical work illustrates well the complexity emerging
from the introduction of internal degrees of freedom in spreading phenom-
ena. Such a kind of growth should be further analyzed for other lattice
types and for other euclidian dimensions. Actually, a general theoretical
framework for such multicomponent growth is still lacking.
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3. DLA and magnetic DLA models

The Diffusion-Limited Aggregation (DLA) model generates aggrega-
tion of particles on a cluster through a Brownian motion [14]. Particles are
launched far from the cluster and they diffuse on the lattice. If a particle
touches the cluster, the particle sticks immediately. The next particle is
then launched. The DLA model generates fractal structures with a fractal
dimension close to Dy = 1.7 which is known to be universal for various
Laplacian growths {15]. A typical structure grown with this model is pre-
sented in Fig.3.
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Fig. 3. A typical DLA cluster made of 4000 identical particles.

We introduced an internal degree of freedom, i.e. a spin taking two
states, in the DLA model extending it to the so-called Magnetic DLA
(MDLA) model {9]. The growth begins with an initial spin o9 (up or down)
on the center of the lattice. A spin is then launched far from the seed, the
cluster thereafter. This entity is assumed to diffuse on the lattice. At each
step, a choice is then made for both the next site and the next state orien-
tation of the diffusing spin, as the spin is allowed to flip or not flip. The
probabilities of jumping to one of the four neighbour sites (on the square lat-
tice) are defined as proportional to exp(—AE), where AE is the local gain
of the dimensionless Ising energy between the initial and the final states
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defined by
J
E:—«;E O'idj—HE g (3)

(4,5) i

in which the first summation occurs only for the nearest neighbor pairs (z, j)
while the second sum runs over all spins of the cluster. The probabilities
of the 8 possible configurations for each jump on the square lattice (four
directions times two different spin species) are renormalized. Then, one
specific configuration is chosen through a random number generator like for
a Monte-Carlo simulation. If the spin touches the aggregate, the spin sticks
immediately and is not allowed to flip later on. In fact, the state of the new
spin is only determined by the last step of the walk.

The MDLA model is still a purely kinetic growth model because the
diffusion and growth are driven by the probabilities exp(J) and exp(H).
But these probabilities lead to major differences in the dynamics and in the
resulting patterns. In the neighboring of the perimeter, i.e. for next nearest
neighbors of the cluster sites, the sticking and diffusing probabilities already
“feel” the cluster, leading to more constraints than in the DLA process [9].

Fig. 4. A typical MDLA cluster of N = 2000 spins for J = 3.0 and H = 3.0. A
blow up of a region of the cluster is also presented. Up spins are drawn in white
while down spins are drawn in black.

We have examined the square lattice MDLA model only. For finite size
systems, the “quenching” of the degree of freedom on the cluster leads to
branching or compactness depending on J and H. In the whole ferromag-
netic interaction regions (J > 0), the structure of the MDLA clusters is
DLA-like (see Fig. 4). In the antiferromagnetic regions (J < 0), the cluster
morphology can however become dendritic with an important thickening
of the branches (see Fig. 5). And sometimes, compact structures are gen-
erated depending on J and H (see Fig. 6). These more compact clusters
are provided with unusual (for DLA) internal lacunes and channels. In
other regions, “Eden tree”-like structures are generated (see Fig. 7). In
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fact, compact morphologies are generated for field values H larger than the

interaction coupling J [9].
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Fig. 5. A typical MDLA cluster of N=2000 spins for J = —3.0 and H = 1.5.
A blow up of a region of the cluster is also presented. Up spins are drawn in white
while down spins are drawn in black.

Fig. 6. A typical MDLA cluster of N = 2000 spins for J = —3.0 and H = 3.0.
A blow up of a region of the cluster is also presented. Up spins are drawn in white
while down spins are drawn in black.

We have found that the fractal dimension is close to Dy = 1.71 for
decoupled spins, on the 8H axis. However, the fractal dimension Dy takes
different values ranging from 1.68 to 1.99 in the other regions. These values
are obviously quite different from the ordinary DLA value. In particular, in
the 8J < 0 region, the coupling and field effects are in conflict. This leads
to a wide variety of processes and morphologies. Non-zero values of the field
H implies that internal perimeter sites can be more favored than tip sites.
This resulted in a thickening of the branches as seen in Fig. 5 and 6. For
very large values of H, the spin wandering on the whole “surface” before
sticking on it leads to more compact clusters (see Fig. 7).

It is also of interest to study how spin species are distributed in the
clusters for H = 0. Indeed, the growth starts with a seed species and it is
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Fig. 7. A typical MDLA cluster of N = 2000 spins for J = —3.0 and H = 6.0.
A blow up of a region of the cluster is also presented. Up spins are drawn in white
while down spins are drawn in black.

of interest to know whether this species can dominate the growth or not. In
fact, this is similar to multicomponent Eden growths. The first stages of the
growth are dominated by the seed species. Thereafter, new branches of the
other species infect the cluster leading to a steady-state where both species
coexist in the same proportion (for H = 0). The characteristic duration
time for these transient regimes is found to be proportional to exp(J) [9].

In summary, we found that the introduction of an additional degree of
freedom in the DLA model can lead to a wide variety of morphologies. Fur-
ther simulations are still in order for the MDLA model. Finally, the relevant
quantities allowing one to indicate which universality class, or classes, are
covered by such a MDLA model and obvious extensions should be deter-
mined. A theoretical framework corresponding to that of the usual DLA
[16] is also lacking for MDLA.

4. Conclusion

We presented here two examples of multicomponent models of growth.
They can show non-universal behaviors or morphologies depending on the
growth parameters and on the underlying lattice symmetry. This proves
the interest for studying multicomponent growth phenomena. This work
suggests also new ways of investigation for generalizing other dynamical
models like multicomponent sandpiles [17], magnetic tree growth [18}, a.s.o.
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