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The mesoscopic description of systems with chemical reactions pre-
dicts that if the detailed balance condition is not satisfied then the nonequi-
librium spatial correlations between concentrations of reactants may ap-
pear. The present work is concerned with molecular dynamics simulations
of these correlations. The correlations appearing in a stationary state of
a multicomponent chemical system and in a time dependent state of an
“enzymatic” reaction are studied. Nomnequilibrium correlations between
reactants observed in simulations are compared with results of theory
based on the master equation for a spatially distributed system.

PACS numbers: 05.40. +j, 05.70. Ln, 82.20. Wt, 82.20. Mj

1. Introduction

Spatial correlations between concentrations of different reactants may
appear in chemical systems as the result of statistical nature of diffusion in
a multiparticle system and of the stochastic character of reactions at the
microscopic level [1]. These correlations are unrelated directly to specific
intermolecular interactions, but depend on the average quantities describing
mass flows (diffusion, reaction rates). A simple theory, based on the spa-
tially distributed master equation [2, 3] indicates that spatial correlations
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between concentrations of reactants may appear if the detailed balance con-
dition is not satisfied which means that the system is out of equilibrium
(and this is the reason that these correlations are called nonequilibrium
ones). Nonequilibrium chemical phenomena has attracted a lot of scientific
attention in the recent years, focusing community’s interest on chemical os-
cillations and chaos [4-7]. It is expected that the presence of nonequilibrium
spatial correlations may influence system’s evolution [8], however a standard
theoretical description of far-from-equilibrium chemical phenomena is based
on kinetic equations for the average concentrations and completely neglects
the problem. There are two factors justifying such simplification. First it is
difficult to measure the correlations between molecules of different reagents
directly in experiments. Second the range of applicability of the simplest
theory dealing with nonequilibrium correlations, which is based on the mas-
ter equation, is still a matter of studies. Moreover, even in the case of simple
systems, this theory leads to complex partial differential equations, which
describe time evolution of correlation functions.

Large scale computer simulations are very useful as idealized “experi-
ments” in which we know all the details on chemical processes in the system
and we have information on positions of all molecules in space. The first
computer simulations of nonequilibrium spatial correlations were performed
using the Bird technique for the stationary state of the first Schlogl model
[9]. The results of molecular dynamics calculations were presented in [10,
11]. These simulations have shown that theory gives a correct quantitative
picture of observed correlations, but, on the other hand if fails to predict
quantitative characteristics of the amplitude and correlations length. The
results presented in this paper continue research on nonequilibrium correla-
tions in simple chemical models.

In this paper I shall consider two different problems. One of them
are correlations in a multicomponent chemical system with two uncoupled
processes. In such a case the theory predicts that there should be no correla-
tions between reactants belonging to different processes and I have checked
if this feature is confirmed by results of simulations. The second problem is
related to time dependent correlations in the simplest “enzymatic” reaction.

This paper is organized as follows: a brief description of computer sim-
ulation method is given in Section 2. The next two Sections are concerned
with the stationary and the time dependent correlations respectively. The
final part (Section 5) contains discussion of obtained results.

2. Molecular dynamics simulations of nonequilibrium
spatial correlations

Systems, which involve binary reactions only can be easily simulated
using molecular dynamics technique for reacting hard spheres [12]. Accord-
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ing to this method reactants are represented by spheres with the same mass
(m) and diameters (o). The chemical identities of spheres are described by
an additional parameter which has no influence on the mechanical motion of
a sphere. These assumptions imply that the diffusion constants of different
reactants are the same.

Both reactive and nonreactive collisions between particles are consid-
ered in simulations. In order to control the values of rate constants for
different reactions I introduced steric factors, which describe the probabil-
ity that a collision between spheres representing reactants of a given process
is reactive. If a collision of particles, which may lead to a reaction, occurs a
random number generator is called and the obtained value is compared with
the steric factor for the permitted process. Depending on this comparison
the collision is regarded as reactive or not.

It is assumed that all reactive collisions are elastic from mechanical
point of view, so no kinetic energy is released or consumed when a reac-
tion occurs. Within this model a chemical reaction means only that the
chemical identity parameter of the spheres involved is modified after a re-
active collision. Therefore, the system of spheres as a whole is always in the
thermal equilibrium with respect to the translational motion. Maintaining
such equilibrium is very important from the computational point of view
because it allows one to extend the size of simulations using a prerecorded
equilibrium trajectory [10].

Any trajectory, which was calculated for a system of spheres character-
ized by the periodic boundary conditions, may be used to enlarge the size of
simulations. Therefore the simulated system may be periodically expanded
in any of the directions by any integer number of the box lengths. Of course,
if chemical identities of molecules are neglected then such expansion does
not bring us any new information. However, in a multicomponent chemical
system, in which the translational motion is not related to chemical identity,
the situation is different. First, different chemical composition may be ini-
tialized in various boxes by marking the equivalent (by periodicity) spheres
in a different way. Secondly, steric factors (if they are not equal to unity)
differentiate the time evolution in various boxes, as a collision between the
equivalent objects may be reactive in one box and nonreactive in another.
The periodic boundary conditions assure free motion of molecules between
boxes.

In the following I assume that the activation energies for all considered
reactions are equal to zero. The simulation technique may be easily adopted
for any activation energies provided that the computation is long enough to
give a large number of reactive collisions. However, it is well known [14, 15]
that every thermally activated chemical reaction creates a nonequilibrium
velocity distribution for the reagents involved and this effect is not taken
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into account by the theory based on the master equation for a spatially
distributed system presented in the next Section.

At the beginning of simulations the chemical identities of all spheres
are assigned in a random way, such that the concentrations of all reagents
correspond to their assumed initial values. Next information on consecu-
tive collisions is extracted from a prerecorded trajectory and the chemical
identities of particles undergoing reactions are modified.

The information on nonequilibrium correlations between reactants is
hidden in partial distribution functions, which are calculated from the statis-
tics of intermolecular distances in the following way. Let us consider the
interval of interesting intermolecular distances [o, R] which is divided into a
number of subintervals of the same length A. Let us focus our attention on
reactants N and M. At each moment of time simulations give us the aver-
age number of spheres representing reactant NV which distance from a sphere
representing reactant M lies within [0 + 1A, 0 4 (¢ + 1)A]. Let us denote
this quantity as Gnaz(¢). Similarly one may obtain the average number of
spheres (without considering their chemical identity) which distance from
a given one lies within the same interval (G(2)). In order to save computer
time and cover the most important part of correlation functions the cut-
off R in the range of considered distances between particles in simulations
discussed below is between 20 and 30.

The fact that simulated system has been obtained by periodic expansion
simplifies calculations of spatial correlations, because it is sufficient to calcu-
late interesting intermolecular distances between spheres within a single box
and the distances between the equivalent pairs of spheres in other boxes are
the same. Of course, because different chemical identities of spheres may be
assigned in different boxes, the equivalent pairs may contribute to various
Gnm(7). It is convenient to calculate in simulations the partial distribution
functions scaled to the equilibrium distribution function of spheres (xnar)
rather than the partial distribution functions (gnps) themselves. Let us
notice that: () Grmli) '

gNM\T NM\t) 20

xNm(r) = s00(r) n o G’ (1)
where ggo is the equilibrium distribution function of spheres at the consid-
ered packing fraction, n and zg denote the concentration of reactant N and
the total concentration of spheres respectively and r € [0 +iA, 0+ (i+1)A].
The value of x s is less affected by statistical fluctuations in the number
of intermolecular distances belonging to intervals [0 +iA, 0+ (i + 1)A] than
the values of gy ar and gog separately. Precise measurements of gog may be
performed in a separate program, which neglects chemical processes [16].
Next the partial distribution functions of reactants are calculated from:

gnm(r) = xnm(r) * goo(r) . (2)
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If the system is in a stationary state then it is sufficient to average gnps
along the calculated trajectory. If concentrations are time dependent then it
is necessary to fix time intervals covering interesting range of concentrations
and to calculate the scaled correlation functions in each interval separately.
For a time dependent system the data obtained from a single reaction path
usually do not give an accurate result and the procedure have to be repeated.

3. Correlations in a stationary state of a model
multicomponent system

Let us consider a system composed of four reagents: 4, B,C and D in
which two separate groups of chemical processes take place:

k
A+ A= A+B, (3a)

k_y

k
A+B=B+B, (3b)

-2

k
cC+C2C+D, (4a)

k_s

k
C+D=2D+D. (4b)

-4

The spatial correlations in a two component system with reactions (3)
or (4) were the subject of [10]. Here I check if the presence of an uncoupled
chemical process may influence correlations between reagents of another
process. Let us consider a stationary state of a system with reactions (3),
(4) and let us assume that the detailed balance condition is not satisfied
in each of these reactions. This assumption is necessary for existence of
nonequilibrium correlations (see [10]). It indicates that there are unspecified
processes (for example interaction with light or small particles which do not
affect motion of the considered reagents), which keep the system out of
equilibrium. The precise definition of these processes is not necessary for
the following discussion.

The mesoscopic description of spatial correlations is based on the mas-
ter equation for a spatially distributed system [17]. Let us consider a system
composed of cells characterized by volume 2 and let A4;, B;,C;, D; denote
the number of molecules of 4,B,C and D in the i-th cell. Information on
time evolution of the system can be extracted from the probability distri-
bution P(..., A;, B;,C;, D, ...,t) which describes the probability of finding
A; molecules of A, B; molecules of B,C; molecules of C', and D; molecules
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of D in the i-th cell at the time t. The master equation for the system (3),

(4) reads:
i (@) (@)
Sp=(%) P+(2%) P, (5)
di dt chem di diff

d
<~) P(..., Ai, B;, Ci, Di, .., 1)
di chem

where

_ 2k1 1 k_]_ k2 2k_o 1

cells
+

*P(‘.., A;, B, Ci, Dy, ..., t)

2k 1 k
+ (-?215(44, + I)Ai -+ EZ(A,' + 1)(B,‘ - 1)) P(...,A,‘ +1,B; — 1,C;, D;, ...,t)

k. 2k.» 1
+ (—.Q—}-(Ai —1)(B:+ 1)+ 02 5(31' -+ 1)31') P(..,A;—1,B;+1,C;, D;, ..., 1)
2k3 1 k. k 2k_41
N (Fsici(ci -1)+ ‘?‘)EC:'Di + ﬁCiDi + -‘hf—EEDi(Di - 1)) *

*P(, Ay, B, Ci, Dy, .o, t)

2ka 1 k
+ (‘ﬁi §(Cz -+ l)C;‘ -+ 54(01 -+ 1)(D; — 1)) P(...,A,‘, B, C;+ 1,D; — 1, ...,t)

+ (k—;;‘-(c,- —1)(D; + 1) + 21;4 %(D,- + 1)D,~) P(.., A Bi,Ci —1,D; +1,...,1)
and (6)
(%)diﬁP(...,Ai,Bi,C,-,Di, ey )
= Z —(d% A; + d Bi + d5;C; + dEDi)P(..., Ai, By, Ci, Ds, ..., 1)
+dj;(4; + 1)P(..., 4; + 1, B;, C;, Dj, ..., Ai — 1, B;, C;, D;, ..., 1)
+d2,(B; + 1)P(..., A7, B; +1,C;, D}, ..., iy B; — 1,Ci, D, ..., 1)
+45:(Ci + 1)P( 45, Bj, Ci + 1, Dj, oo, 43, B, €5 — 1, Dis oy 1)

+d%(D; + 1)P(..., 4;, B;,Cj, D; + 1,..., Ai, B;, Ci, D; — 1,...,1) . -

The factors: 2ky, k_1, k2,2k_2,2k3,k_3, kg4 and 2k_4 denote the probabil-
ities that a corresponding reaction of (3), (4) occurs within a time unit and
dfj, d?jv dfj, d‘iij describe the probability of a diffusive jump of a particle of

A, B, C or D, respectively between the i-th and the j-th cells.
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Calculating the average of % one obtains the kinetic equations for con-
centration of reactant N. In the following we shall denote these quantities
by a(r),b(r),c(r) and d(r) where r instead of i denotes the position in our
system. Considering the continuum limit, according to the standard ap-
proach [17], one may replace the diffusion term by the Laplacian of the
appropriate concentration. Thus the averaging gives:

‘;_‘;” = —k1a® + k_1ab ~ kpab + k_3b? + DV%a = f(a,b) + DVZa, (8a)
Z_i’ = k1a®> — k_jab + kzab — k_2b% + DV?b = — f(a,b) + DV?b, (8b)
% = —k3c® + k_szcd — kged + k_4d® + DV?c = g(c,d)+ DV3c, (8¢)
Eg = k3c? — k_gcd + kged — k_4d? + DV3d = —g(c,d) + DV?d, (8d)

where we assumed that the diffusion constants for all reactants are the same.
It is clear that a+b = z1(= const.) and ¢+ d = 22(= const.) are constraints
of these kinetic equations. In the following we restrict our attention to a
homogeneous, stationary state of the system (3), (4). It is easy to prove
that equations (8) admit a single such state a,, bs, ¢,, ds; Which is always
stable. In the stationary state the concentrations of reactants satisfy the
following relationships:

k1a? — k_jasbs + kaashs — k_2b% =0, (9a)
—k3c? + k_zcods — kgcods + k_gd? = 0. (9b)

The equations which describes the time evolution of spatial correla-
tions of reactant’s concentration can be derived in a direct way from the
master equation (Eq.(5)) [2, 3]. Let us consider the correlation functions of
fluctuations of concentrations defined as:

Inaliy gy t) = 9< (% - ") (% - m) >t

N: M.
= Z (ﬁl—ns) (Fj_ms) P(...,Aj,Bj, C;,Dj,..., Ay, B;, C;, Dy, vy t),

cells
(10)
where M and N denote one of reactants. The index ¢ denotes that the
averaging is taken with the probability distribution: P(..., A;, B;, C;, Dj, ...,
A;, B;,C;, D, ...,t) which depends on time.

A tedious, but direct calculation leads to equations describing the dy-
namics of ¥nas(%,7,¢t). In a homogeneous system the correlation functions
depend on the distance between boxes ¢ and j only. Introducing new corre-
lation functions ,,,, which do not take into account fluctuations within a
single cell:
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oaa(| * =7 |,t) = Zga(r,v',t) — a,é(r,7")
opp(| 7~ 7' |,t) = Zpp(r,r',t) — b,8(r, ')
occ(lr =7 |,t) = Zco(r,r,t) — c,é(r, ")
ogq(| 7 —r' |,t) = Epp(r,v',t) — d,é(r,r")
oap(| = 7' |,t) = Zap(r,r',t)
oac(|? =7 |,t) = Zac(r,v',t)
daa(l 7~ 7' |,t) = Zap(r,*',¢)
Tpe(| 7~ 7' |,t) = Tpo(r, 7', t)
apa(| 7 — ' |,t) = Tpp(r,r', 1)
oea(| r— 7' |,t) = Zop(r,r',t) (11)

and considering the continuous space variables  and »' instead of the dis-
crete ones ¢ and j one obtains equations describing dynamics of o5

d
Eaac(r,t) =2DV%04. + (—2k1a + k_1b — kb — 2k3c + k_3d — ked) 0ac

+ (k_la — koa + 2k_2b) Ohe + (k_3c — kgc + 2k..4d) Oad s
(12)

i”ad(ra t) ::2DV20‘ad + (—2k1a +k_1b— kob— 2k_4d + kgc — k_3c) Cud

dt
+ (k_la — ksa + Zk_gb) Tpd + (k4d —k_3d+ 2’636) Oacs
(13)

d
-Jt-a'bc(f’, t) :2szabc + (—2k_2b+ k2a — k_ja — 2kzc + k_3d — ksd) oy
+ (kgb —k_1b+ 2k1a) Toe + (k_3c — kqc + 2k_4d) Obd s (14)

d
a—t-dbd(r, t) :2DV20'bd + (—2k_2b +koa—k_ja—2k_4d + kgc — k_3c) Obd
+ (kzb —k_1b+ 2k10,) Oad + (k4d —k.3d+ 2k3c) Tpe - (15)

It follows from Egs. (12)—(15) that if at the beginning there are no cross
correlations between reagents involved in different pairs of reactions:

Oac(P,t = 0) = 0,4(r,t = 0) = op(r,t = 0) = opg(r,t =0) =0 (16)
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then these correlations will not develop and the relationship (16) will be
valid for any time. The initial condition for my simulations describes ran-
domly distributed reagents and therefore it is expected that cross correla-
tions listed above vanish.

Equations describing time evolution of correlations between reactants
involved in the same group of reactions are exactly the same as derived in
[11] and they read:

-d—aaa(r, t) =2DV20,, + 2 (—2k1a + k_1b — k2b)0aq

dt
+2 (2k_2b +k_qa-—- kza) Oap + 2 (kzab - k.,zbz) 6(1‘) s
(17)

d
—oap(r,t) =2DV%0,y + (2k1a — k_1b + k2b) 04q

dt
+ (—-2’61(1 4+ k_1b—kob—~2k_ob+ k_1a— kga) Tab
+ (2k_gb+ k_1a — kz2a) opp — 2 (k2ab — k_2b%) 6(r),
(18)

d
Eo‘bb(r,t) :2DV20’bb + 2(—2k—_2b+ k2a — k_ja)opp

+2(2k1a + kab — k_1b) 0gp + 2 (kaab — k_2b%) §(r),
(19)

and by symmetry

d
—0ce(r,t) =2DV20 . + 2(~2k3c + k_3d — kad) occ

dt
+2 (2k_4d + k_3c b k4C) Ocd + 2 (Ic4cd - k...4d2) 6(1‘) .
(20)

d
—O‘cd(‘l', t) =2DV20'Cd + (2k3c —k_3d+ k4d) Cce

dt
+ (—2k3€ + k_3d—kgd ~ 2k _4d+ k_3c— k4c) Oecd
+ (2k_4d + k_3c - k4C) Odd — 2 (k4cd - k...4d2) 6(1’) N
(21)

d
Ea'dd(r, t) :2DV20‘dd + 2(—2k_4d + kgc — k_3c)o4q4

+ 2 (2ksc + kad — k_3d) acq + 2 (kacd — k_4d?) §(r).
(22)
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In the case of stationary (time independent ) correlations the solution
of Eqs.(17)-(22) is simple and reads [3, 10]:

Oaa(ryt = 00) =opp(r,t = 00) = —0ogp(r,t = 0)

_ (kg ;:l')'la’b’)[lTlexP(‘m ' ]), (23)
Oce(r,t = 00) =044(r,t = 00) = —o4(r,t = )

s obaed) Lopmir), ()

where the constants kj, k2 are defined as follows:

1
K} =55 (2k1a, — (k1 = k2)(bs — @) + 2k_2bs), (25)
K,g :-—})—(2’6363 — (k—3 - k4)(ds - 63) + 2k“‘4d‘s) ’ (26)

and they are positive because the steady state of system (3), (4) is a stable
one.

The theory presented above predicts that if spatial correlation between
reactants of different reactions are initially absent then they will not develop
in time and the correlation function for reactants involved in one group of
reactions is not influenced by reactions of different group. Now let me
compare these results with molecular dynamics simulations. They were
performed for the system of 500, 000 spheres, which was obtained by periodic
expansion of a trajectory calculated for 500 spheres. The packing density
of the considered system was 0.082. The steric factors for corresponding
reactions were:

k] - 0.2, k_l = 0.1, kz = 0.1, k_z = 0.1 Iy
ky = 0.4, k_3=02, ki=01, k_g=04.
The partial radial distribution functions calculated in simulations sat-
isfy the relationship:
as’9a4 + %988 + ¢s90c + ds*9pp
+2(asbsgaB + ascsgac + asdsgap + bscsgpo + bsdsgBD + csdsgop)
= (a's + bs + e+ ds)ngO s (27)

whereas for the correlation functions o s we have:

oaatoBpt+occtopp+2(ca+0ac+oap +0Bc +9BD + O'CD)(: (;
28
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Fig. 1. Results of molecular dynamics simulations of correlation functions between
reactants belonging to different reaction groups (3), (4);04c — the dotted line,
o4p — the short dashed line, op¢ - the long dashed line and o 45 — the solid line.
All correlation functions are scaled by the square of the total density of particles.

Relationship (28) is automatically satisfied if one identifies:

onm = nsms(gNmM — Joo) (29)

The results of molecular dynamics simulations for the system (3), (4)
are presented in Figs. 1-5. The correlation functions for reactants belonging
to different reaction groups are shown in Fig. 1. As predicted by the theory
they are very small and fluctuate around zero. The correlation functions
OAA4,04B,0BB are shown in Fig. 2. Here also the theory gives correct
relationships between correlations, because the absolute values of all these
functions are the same; moreover the function o 4p is positive whereas 044
and opp are negative as seen from (23) The similar relationships are
satisfied by occ,0cp and opp as seen in Fig. 3.

The functional form of correlation functions ( < exp( —Kr) ) predicted
by theory Egs. (23), (24) fits well the observed correlatlon functions as it
is shown for o4p and o¢p in Figs. 4 and 5, respectively. The dashed
lines represent results of simulations and the solid ones show numerical ap-
proximation based on the form given above. The amplitude Y and decay
constant x were chosen to fit the short distance part of correlation functions
(r € [0,1.5% 0]), where the accuracy of simulation result is the highest. It
may be noticed that the k overestimates the decay of correlations for long
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Fig. 2. Results of molecular dynamics simulations of correlation functions between
reactants belonging to the reaction group (3);044 — the dotted line, 45 — the
dashed line, 6gp — the solid line. All correlation functions are scaled by the square
of the total density of particles.
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Fig. 3. Results of molecular dynamics simulations of correlation functions between
reactants belonging to the reaction group (4);0cc — the dotted line, ocp — the
dashed line, opp — the solid line. All correlation functions are scaled by the square
of the total density of particles.
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distances. The similar effect was observed for the other simulated systems
[9, 10). On the other hand, if the decay constant fits the long distance
correlations then the decay at short distances are underestimated. Formulae
(25) and (26) may be used to calculate the decay constants. Using the
diffusion constant, the rate constants and the densities of the simulated
system one obtains:

K1,theory — 0-417%) K2, theory — 0-704'} ’
whereas the numerical fit gives us:

— 1 — 1
K1 fit = 1.4-5:, Ky fit = 20;

0.004

o
=]
S
[
Il
'

0.002

bdedt it 1 b gy

TU ST O RO |

0.001

correlalions between AB

[}
jo
o
[l

O bttt
@)

2.2
distance /sphere diameter

Fig. 4. The comparison between molecular dynamics simulations of o4 ( the
dashed line) and its numerical fit based on the function ¥ exp(—xr) (the solid
Iine).

Although the theory underestimates the short distance decay constant
by the factor of three, the ratio of the decay constants predicted by theory:
K'Z,theory/“"l,theory = 1.69 is quite well represented by simulation results
(K2,f¢/K1,8c = 1.43).

The formulae (23) and (24) cannot be literally used to describe corre-
lations measured in simulations, because they are valid for any distance,
whereas in simulations, because of the excluded volume effect, correlations
have no meaning for » < 0. However, we can compare the ratio of ampli-
tudes of correlations associated with different groups of reactions predicted
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Fig. 5. The comparison between molecular dynamics simulations of o¢cp (the
dashed line) and its numerical fit based on the function ¥ exp(—xr)( the solid
line).

by the theory for 7 = 0 with the simulation results for » = o. The theoretical
value is 6.29 whereas simulations give 5.50. The agreement is remarkable,
considering the simplicity of theoretical approach.

4. Correlations in a time dependent state of a model system

Now let us consider another system composed of three reagents: A, B
and F in which the simplest “enzymatic” reaction takes place:

A+EXBL+E. (30)

The master equation for the process (30) has the same form as in the
previous case (5) but now:

d k
(’J‘t')ChemP(-..,Ai,Bi,Ei,...,t) = EH: — G4 BiP(-, Ai; Bis By .0 )
k
+ (Ai + DEP(y Ai +1,Bi = 1, By s 1), (31)

and
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)

— P(...,A-L',Bi E;,...,1)

(dt diff T

=Y —(d;A; + d%B; + d5;E) P(..., Ai, By, B, ..., 1)

cells
t’}

+ d;“i(Aj +1)P(...,4;+1,B},Ej,..., A; — 1, B;, E;, .., 1)
+d5,(B;j +1)P(..., Aj, Bj + 1, Ej, ..., A;y, B; = 1, Ey, ..., 1)
+ d;i(Ej +1)P(...,A;,B;,E; +1,..,4;, B;, E; — 1,...,t).  (32)

The kinetic equation for the time evolution of concentrations has the

form: d &b
a
— = —— = —kae 33
dt dt ’ (33)
where, like in the previous case, the small letters denote concentrations of
corresponding reactants. The solution of Eq.(33) is simple:

a(t) = a(t = 0) exp(—ket), (34a)
b(t) = b(t = 0) + a(t = 0)(1 — exp(—ket)). (34Db)

Time evolution of correlation functions of concentration’s fluctuations
are given by the set of equations:

%aee(r,t) =2DV?0,., (35)
d 2
Eaae(r,t) =2DV*04e — keoge — kaoee — kaed(r), (36)
%abe(r,t) =2DV%qy, + kedge + kaoe. + kaed(r), (37)
%aab(r,t) =2DV20,; + keoy, — keogp + kao,e — kaoy.,  (38)
ggaaa(r, t) =2DV20,, — 2keo,, — 2kacg., (39)
%abb(r, t) =2DV2ayy, + 2kecy, + 2kacy, . (40)

In the simulated system all correlation functions are equal to zero at
t = 0. Eq.(35) says that if there are no correlations between the enzyme
molecules at £ = 0 (as in simulations) then they will never develop in time so
Oee(t) = 0. The solution of the other equations is simple if one transforms
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them to the reverse space. The time evolution of Fourier transforms of o,
is described by:

d
Et—a'ae(q,t) = —2D(2rq)%04.(q,t) — keoac(q,t) — kae, (41)
d
Ezobe(q, t) = — 2D(27q) 0pe(q,t) + keaae(g,t) + kae, (42)
d
Ezaab(q,t) = - 2D(27rq)2aab(q,t) + keogq(g,t)
- keaab(q’ t) + kaaae(q’ t) - kaabe(q, t) 3 (43)
d
—0aal(q,t) = — 2D(27rq)2am(q,t) ~ 2kedaa(q,t) — 2kacge(q,t), (44)

dt

d

EZ”””("’ t)=-— 2D(21rq)2crbb(q, t) + 2kea,p(q,t) + 2kaope(q,t). (45)
For the initial condition:
oaa(q, t= 0) zoab(q, t= 0) :abb(q, t— 0) = a’ae(q, t—= 0) :O'be(q, t= 0) =0

the solution of Eqs. (41)—(45) reads:

o'ae(q’ t) == abe(Q) t) = 5%%_5!2)2(1 - exp(-2D(21rq)2t)) ’ (46)
a'aa(qa t) zo'bb(q, t) = _aab(qa t)
260.2
= @ipkzz—r%)tz))—z— (1-(1 +2D(27qg)*t)) exp(-2D(27q)*t)). (47)

In simulations I considered a system of 691,200 spheres, which was
obtained by a periodic extension of a trajectory obtained for 400 spheres
placed in a cube with the side length 12.50 ( therefore the packing fraction
was 0.107). At the beginning 40% of all spheres are marked as E, all the
others correspond to reactant A. The steric factor for reaction (30) is equal
to 0.2. The results shown in Figs. 6 and 7 were obtained after averaging
over 140 different reaction paths. Fig. 6 shows the correlation functions
OEE, 0AE and opg at the moment of time when b = 0.1. As predicted by
the theory the values of g obtained in simulations are very close to zero,
which reflects the fact that there are no nonequilibrium correlations, which
are introduced by the presence of reaction (30). The correlation functions
oar and ogg are plotted using the solid and the dotted lines in the same
figure. Their signs are opposite and their magnitudes are almost the same as
follows from Eq. (46). The same results were obtained for the other values
of b at which the correlation functions were studied (see also Fig. 7).
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Fig. 6. Results of molecular dynamics simulations of correlation functions between
the enzyme and reactants for the process (30); gz — the dotted line, cpg — the
dashed line, o045 — the solid line. The correlations were calculated for b = 0.1 and
they are scaled by the square of the total density of particles.
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Fig. 7. Results of molecular dynamics simulations of correlation functions between
the reagents of the process (30); cpg — the dotted line, opp — the short dashed
line, o4 — the long dashed line, 045 — the solid line. The correlations were
calculated for b = 0.3 and they are scaled by the square of the total density of

particles.
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The correlation functions ¢ 4 g and o g g are the most important because
they appear directly as the result of chemical reaction ( notice the source
term kaed(r) in Egs. (36), (37)). These correlation functions become the
source for the correlations between molecules of 4 and B (Egs. (38)-(40)).
As expected, it is observed in simulations that the correlation functions
oag and o 4 grow first and the functions 0 4 4,0 4 and o pp appear later.
Moreover the absolute value of ¢ 45 ( or opg) is larger than for the other
functions. The correlation functions 045 and opp are shown in Fig. (7).
According to the theory (Eq. (47)) the sign of o 4p is opposite than those
of 044,058 but all these functions should have the same absolute values.
The results for b = 0.3 (Fig. 7) show that both o4 and cpp are negative
and their values are different. A disagreement with Eq. (47) was observed
for other moments of time and also for simulations performed for reaction
(30) proceeding in a system characterized by different density. The origin
of this discrepancy is a subject of further studies.

5. Conclusions

In this paper I presented a numerical technique based on the model of
reactive hard spheres, which may be used for molecular dynamics simula-
tions of nonequilibrium spatial correlations between molecules involved in
chemical reactions. The method was applied to two simple models of reac-
tions. The results of simulations were compared with a simple theory based
on the master equation for a spatially distributed system. Although the de-
tailed qualitative comparison between both methods is not possible because
the excluded volume effect is neglected by the theory it was interesting to
study if there is a qualitative agreement between results.

A model with two independent reaction groups was considered as an
example of a chemical system in a stationary state. In this case a good
qualitative agreement between correlations measured in molecular dynamics
simulations and these described by theory was obtained. The correlation
functions computed in simulations obey the symmetries predicted by the
theory. Moreover, the calculated values of the decay constants and of the
ratio between amplitudes of correlations related to different groups reaction
give a fair approximation for results of simulations.

The interpretation of results obtained for time dependent correlations
related to a simple enzymatic reaction is more complex . The most im-
portant correlation functions between reactants and enzyme are correctly
(qualitatively) described by theory. There is however a discrepancy in cor-
relations between substrate and product because the functions obtained in
simulations do not obey the symmetries predicted by theory. The effect
may be associated with a limited size of simulated system, but further in-
vestigation of this problem is necessary.
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