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Stationary states of the Verhulst process driven by non-Markovian
dichotomic noise containing both Markovian and exponentially damped
explicitly non-Markovian components are investigated. Noise-induced sta-
tionary states are compared with such states induced by purely Marko-
vian dichotomic noise. It is found that the non-Markovianity of the driv-
ing noise may result in the appearance of new noise-induced stationary
states, but in some cases, especially for higher values of the determinis-
tic bifurcation parameter, non-Markovianity may result in the damping
of Markovian noise-induced states. Besides, non-Markovianity generally
diminishes the dispersion of noise-broadened states.

PACS numbers: 05.40. +j, 02.50. Ey

1. Introduction

Little is known about the properties of non-Markovian stochastic pro-
cesses, and still less about the properties of such processes driven by other
non-Markovian processes (noises). Two years ago the present author began
investigations of the general non-Markovian dichotomic noise (DN) and of
stochastic flows driven by this noise [1-4]. Recently, properties of an ex-
plicitly non-Markovian stochastic process (driven by two Markovian noises)
have been discussed by Bartussek et al. [5]. Earlier relevant references can
be found in Refs. [1-4].

* This work was supported in part by the Polish KBN grant No. 2 P03B 209 08.
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In these preceding papers the present author proposed a systematic
theory of explicitly non-Markovian dichotomic noise (DN) with exponential
damping of the memory, and of its “white” limits. In [1, 2] the general prop-
erties of such noises have been found, together with preliminary discussion
of the properties of processes driven by such non-Markovian noises. It was
shown in the subsequent paper [3] that the behavior of the relaxation pro-
cess driven by this noise exhibits some unexpected features and is distinctly
different from that of the process driven by Markovian DN. In last paper of
this series we have discussed in more systematic way the exact and approx-
imate master equations governing the behavior of the probability densities
describing the stochastic flows driven by non-Markovian DN [4]. One family
of these approximations has been found there to lead to exact results for
the probability density P(z,t) for the random telegraph process and for the
linear stochastic flows (relaxation processes).

It has been found, among others, that in the temporal evolution of
P(z,t) of the random telegraph process [2] and of the linear flows [3] there
appear transient regions of locally increased probability. Additional peaks in
P(z,t) are interpreted [6-8] as the noise-induced transitions between noise-
induced locally most probable states having no deterministic counterpart.
Assuming this philosophy to be true, the non-Markovianity may lead to a
multitude of such transitions: more and more new transient states appear
and subsequently vanish during the temporal evolution of the process driven
by non-Markovian DN, until the process itself dies out. Addition of deter-
ministic (sinusoidal) driving sustains the appearance and vanishing of such
states indefinitely, which, in turn, may lead to stochastic resonance effects
[3].

The question arises whether there are also genuine stationary additional
states induced by non-Markovian noise. For this purpose non-linear deter-
ministically bistable stochastic flows need to be considered. Such processes
are known to exhibit noise-induced transitions between additional station-
ary states of increased probability when driven by Markovian dichotomic
noise [6-8]. The present paper is devoted to the discussion of the problem
how the non-Markovian driving changes these additional stationary states:
whether it creates new ones, shifts or damps old ones, etc.

The rest of the paper is organized as follows: Section 2 contains general
formulation of the relevant master equations, together with the “best” ap-
proximations found in [4]. Also the argument for the choice of the specific
approximation is presented there. In Section 3 the stochastic flow (Ver-
hulst process) considered in this paper, together with its stationary master
equation and numerical results are discussed. Section V collects some fi-
nal remarks. In Appendix A are listed explicit formulas for the stationary
probability densities for the Verhulst process driven by Markovian noises.
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2. Non-Markovian master equations

Consider the stochastic flow:

X = f(X) + g(X)&(2), (2.1)

driven by the non-Markovian asymmetric dichotomic noise (DN) £(¢) (called
also the random telegraph signal), i.e. by the random two-state process with
Zero mean:

£(t) € {A1, -4z}, £ (t)= A%+ A&(t), (1) =0, (2.2)

where A% = AjA;, Ag = Ay — A,. Let A; and A, be the probabilities of
switching (per unit time) between states {; = A; and {2 = —A;. Therefore,
Ta = 1/Ao will be mean sojourn times in these states.

The master equations for the probability density P(z,t) for the process
(1) read [1, 2, 4]:

2 Plet) = 5o [£(2)P(2,1) + 9(2)Q(=, )] (23)
2:0(z,0) =~ L [1(z) + Aog(@)]Q(z,1) ~ 47 2 g(z)P(e,1)

t
- A/dt’K(t —t'Y Ry(z,t,t"). (2.4)
to

Here P(z,t) and the auxiliary correlation functions Q(z,t), R1(z,t,t')
are defined as follows (the averaging is over all possible realizations of the
process £(t)):

P(z,t) = (§(X (1, [£]) - 2)) » (2.5)
Q(=z,t) = (§(X (1, [£]) - 2)&(2)) , (2.6)
Ry(z,t,t') = (8(X(t,[¢]) — 2)E(t)) (2.7)
(Ri(=z,t,t) = Q(=,t)), the kernel K(7) reads:
K(1) =76(T) + me™"", (2.8)

v is the inverse memory time, and +,, ¥; describe, respectively, Markovian
and non-Markovian contributions to the process £(t).

The function R fulfills the master equation containing next higher-
order auxiliary probability density, and so on. This means that in the
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non-Markovian case we have to deal with an infinite hierarchy of equations,
and that, to obtain a workable scheme of calculation, some approximation
needs to be introduced.

In [4], two similar approximations have been found to lead to correct
(i.e., identical with exact) results for simplest stochastic flows: the random
telegraph process, f(z) = 0, g(z) = 1, and for linear relaxation, f(z) = —az,
g(z) =1 or g(z) = z in Eq.(2.1), namely the approximation:

Ry(z,t,t') ~ exp[—(t — t") 2 H(2)]Q(=, '), (2.9)

with either
H(z) = f(2) + 3409(2), (2.10)
H(z) = f(=), (2.11)

which leads to the equation for Q(z,t):

Q(z 0+ 55 {f(z)+ Aog(2)]Q(z,t) + A2-g(z)P(z t)
= —An /dt’K(t - t')e“(‘“i')é%H(“)Q(x,t'), (2.12)

to

or, after removing the integral,

[1/-%- ;% + E-H(:c)]

{5+ 2 (7(2) + A0g(2)) +204] Q(2,1) + 2% g(@)P(z,0)} = -1 A4Q(2,1).
(2.13)

Stationary master equation

As we have said, we are principally interested in the noise-induced sta-
tionary states. Therefore, in the following, only stationary (i.e., ¢ — 00)
values of P(z,t), Q(z,t), denoted by P(z), @Q(z), will be discussed. Sta-
tionary solution of Eq.(2.3), with natural boundary conditions, reads:

(=) p

o) P@)- (2.14)

Qa) = -
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Therefore, stationary master equation (2.13) can be written as:

v+ 5 1@+ paug(@]} [ 2 p(e) - 7,4 L) o)
= 71/1f8 (2), (2.15)

where 3 = % for the approximation (2.10), and 8 = 0 for the approximation
(2.11), and

Dest(z) = A%0%(2)- Ao f(2)g(2)- F4(=) = [Arg(2)+(2)] [Aagte)-1(e)

2.16

For further purposes, let us write also the Markovian limit of these

equations. At the level of Eq.(2.4) the Markovian version is just the same

equation with 43 = 0, 49 = 1. However, proper transition to Markovian
limit is given by the scaled transition of the memory time:

y1=(1-7)r, v—ooo, lim K(t-t)=26t-1t") (2.17)
Vo0
because when approximations are being used, putting yo = 1, v; = 0 may
lead to incorrect Markovian limit, whereas the procedure above will lead
always to correct results.
In this limit Eq.(2.15) becomes:

d Deﬁ'(z) _Af(z)P

—_— m(z) = m(Z), 2.18
= () (2) (@) (2) (2.18)
with the solution given by the well-known formula [9,6):
o 1 le@) 1) .
Pr(e) = N7 L5 e / et L]0 (Da(),  (219)

where N is the normalization constant, and @(z) is the Heaviside step
function, “expressing that the probability is zero in the ‘unstable’ region of
negative D” [9].

“White” noises

By “white” non-Markovian noises will be called stochastic processes
obtained from the non-Markovian DN by the following limiting procedures
(1, 4, 9]:

AI—AOO,, A1—>oo, Al/AIZAg//\zsz, (2.20)
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with wo kept constant, which defines the so-called white shot noise (WSN),
being the sequence of separated positive delta-spikes on negative back-
ground. The limit:

A=A =XA>00, A1 = A=A — 00, A?/2\ = Dy, (2.21)

defines the Gaussian white noise (GWN) as the dense set of positive and
negative delta-spikes, which — in the Markovian case — corresponds to the
Stratonovich interpretation of the Wiener process. GWN can be obtained
also from the WSN as the limit:

/\2 - 00, Az — 00, Wy :Az/Az —*0, Az’w(z) =2D0. (222)

The limiting procedures (2.8), (2.9) enable us to obtain corresponding
equations and formulas for stochastic flows driven by (asymmetric) white
shot noise (WSN) with exponentially distributed weights, and for Gaussian
white noise (GWN) — cf. Egs. (2.27) and (2.29) below.

For further purposes, let us quote known results for Markovian case.
From Eqgs.(2.3)—(2.4) we get in the WSN limit the known (9] equation:

J 3] K] -1
5 Pm(2,1) = ~5;{f(w) ~wpAzg(z) og(@) L+ wo s () }Pm(x,t),
(2.23)
with stationary solution [9]:
_ N o f f(z)dz 2)[Asg(z)— f(z)]) .
Pute)= =707 ) e Tase(er =] s (2) =1 iz)ﬁ;)

In the GWN limit we get simply the appropriate Fokker-Planck equation
(in Stratonovich interpretation):

0 g 0
- Pm(2,1) = 5=~ £(2) + Dog(2) 5-9(2)| Pm(2,), (2.25)
with well-known stationary solution:
_NTU (] fla)de }
P(z) = (@] exp{ Dog(2)2 ) ° (2.26)

Now, the GWN limit (2.21) of non-Markovian stationary master equa-
tion (2.15) is:

2(z z
Doly + 1 1(0)] eo(@P(e) = 103 L Py + 2 [ P, (21
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where 41 = vy¢ + 71. Markovian limit of this equation is identical with the
stationary form of the Fokker—-Planck equation above.

The WSN limit depends on whether 8 # 0 or 8 = 0, i.e., whether we
accept approximation (2.10) or (2.11). In the former case the WSN limit of
Eq. (2.15) reads:

d d d
wog(2) - [A29(2) - f(2)|P(2) = 10 - f(2)P(e),  (2.28)
which does not depend on non-Markovian noise parameters » and 71, and is
identical with the stationary form of the Markovian WSN master equation,
Eq. (2.23) above.

On the other hand, assuming 8 = 0, i.e., assuming approximation
(2.11), we get:

d d d z
wlv + 50 g2 [420(0) - F@]P(@) =0 $2)P() + L Pea).
(2.29)
This equation does depend on non-Markovian noise parameters, and, on
the other hand, leads to proper Markovian limit. Therefore, it seems that
the approximation (2.11) is better (more sensible) than the approximation
(2.10). Hence in the following we shall use only the approximation 8 = 0.

3. Verhulst process
Consider the stochastic flow (stochastic Verhulst process):
X =aX - bX3+£(t), b>0, (3.1)

driven by additive non-Markovian DN.

The choice of the third-order Verhulst process is due to the fact that it
is the simplest bistable model exhibiting — in the deterministic version —
the pitchfork bifurcation of the stationary solution (from X = 0 for a < 0
to X = £4/a/bfor a > 0 at the critical value a. = 0 of the bifurcation pa-
rameter a). Therefore, this model is well-suited for the investigations of the
noise-induced transitions, and in fact its different versions were frequently
used for this purpose (cf. e.g. ref. [6] — the complete existing literature is
much too numerous to cite).

Whereas the stationary solutions Py, (2) for the process (3.1) driven by
Markovian noises (DN, WSN, and DWN) can be found explicitly (cf. Ap-
pendix A), the equations (2.15), (2.27), (2.29) cannot be solved by quadra-
tures.
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Comparison of Eqgs.(2.15) (non-Markovian) and (2.18) (Markovian) sug-
gests to look for non-Markovian solutions in the form:

P(z) = Pp(2)S(2), (3.2)

which, among others, implies that P(z) # 0 only in the domain in which
Dg(z) > 0. Substitution of Eq.(3.2) to Eq.(2.15) and subtraction of
Eq.(2.18) leads to:

f(:z:)Deﬁ-(:c)di:ES(m)-}-{ [v+f'(:c)] D.,fy(a::)—i-'y(),/lf2 (z)}a%S(a:)—lef(z)S(m) =0,
(3.3)

The same procedure gives for WSN and for GWN the same equation as
for DN, with formal substitutions:

Deg/A— [Axg(z) - f(z)]g(:c) for WSN, Deg/A — Dog?(z) for GWN.
(3.4)

Parameter b in the flow (3.1) plays only the role of scaling of z, therefore,
in all calculations we have put & = 1. For simplicity, we have considered
symmetric DN (4y = 0) only.

Figs. 1-4 show the comparison of the dependence of Pp,(z) and P(z)
on the bifurcation parameter a for the Verhulst process driven by symmetric
DN, by WSN and by GWN. A few different shapes of P(z) (for symmetric
DN) are presented in Fig. 5. It is seen that the non-Markovian shapes may
differ the Markovian ones (drawn as dashed lines in Fig. 5). Especially, new
maxima of P(z) do appear in the non-Markovian case.

This is better documented in Figs. 6-8, where the loci of maxima of
P(z) and of Pp,(z) are shown as functions of z and of various parameters.
Fig. 6 presents comparison of the effect of purely non-Markovian DN, mixed
(Markovian and non-Markovian) DN, WSN and GWN. Dotted lines mark
loci of maxima of Markovian probability density, dashed lines — these of
non-Markovian probability density, and dot-dashed lines — the situation
when both coincide (at least within the graph accuracy). Figs. 7 and 8 show
the dependence of these loci (for the Verhulst process driven by symmetric
DN) on various parameters.

It is to be noted that both the shapes of P(z) and the loci of maxima
depend weakly on the parameters A (7.e. on the noise correlation time), on
v (i.e. on the memory characteristic time), and on the parameters y; and
Y0, in contrary to the time-dependent (transient) noise-induced states [3].



Noise-Induces Transitions in a Bistable Process... 775

i

w

f‘,*%.ﬂ,ﬂi l i
L

|

’H}H

il

FT%

Fig. 1. Dependence of stationary probability density P(z) on the deterministic
bifurcation parameter a, for symmetric DN. A: Markovian case, B: non-Markovian
case. 70 = 0.0, 11 = 1.0, A2 =1, A =5, v = 0.05.
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Fig. 2. The same as in Fig. 1, for WSN. 0 = 0.0, v; = 1.0, Ay = 1, wo = 0.2,
v = 0.05.
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Fig. 3. The same as in Fig. 1, for GWN. v = 0.0, v, = 1.0, Do = 1, v = 0.05.
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Fig. 4. The same as in Fig. 1, in dependence on the noise intensity. A2 4o = 0.0,
y1 =1.0, A = 5.0, v = 0.05, a = 2.0.
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Fig. 5. Comparison of shapes of Markovian (dotted lines) and non-Markovian
(full lines) P(z) for a few chosen values of parameters. A: v =0, v; =1, A2 =1,
A=5,v=5a=20. Biy=0,1=1,A42 =4 4A=5v=25,a=20 C:
Yo=0,71=1,A4%"=1,4A=5,vr=10,a=15. D:9%=0,7, =1, A2=1, A=5,
v =10.05a=10"%
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Fig. 6. Dependence on the deterministic bifurcation parameter a of the loci of
maxima of P(z, ) at the (z,t) plane, for the Verhulst process (3.1) driven by purely
Markovian (dotted lines) and non-Markovian (dashed lines) noises. A: symmetric
DN,7,=0,v1 =1, A2 =1, A =35, v = 0.05, B: symmetric DN, v = -1, 11 = 1,
A2 =1,4A=0.01,vr=0.05C: WSN, 7% =0, =1, 4, = 1, wo = 0.2, v = 0.05.
D:GWN,v9=0,91 =1, Dy =1, v =0.05.



© s -
<
£5 3
Ead . _
¥
.8
e=NN I
17
B <« )
2 -
P
§7 2
=T T
o]
= |
° & 5
5S4
s M a
o o o g BN @ ol o
] 1 ) <
uuuuuuuuuuuuuuuuuu g 8 -
e - o
& ey - ~ a —
S * - N a
R IR
o @ o
w © c2
2 R g < |l
Pt 3]
ot < Y
=] = .“ .o
By ol x - L' @)
. < ~ o < = -
< e i me-
I Bty -
R e i i g S L
b X 2 - @
i | © 8 s
—smERE ST I S
g e 4 =8
~ ~ =] o~
! B=ae]
&g
g < ..
© \INB
B
w A.. [}
B
Rl
b~
. Il
.g N
SN

780

T

L
0,
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Final remarks and conclusions

The general conclusions which can be drawn from these results are:

The non-Markovianity of the driving noise may result in the appearance
of new noise-induced stationary states (not only transient states [2, 3]),
especially for low values of the deterministic bifurcation parameter a.

In some cases, especially for higher values of a, non-Markovianity may
result in the damping of Markovian noise-induced states — cf. Figs.
5A, 6A,B.

Non-Markovianity generally diminishes the dispersion of noise-broadened
states (both noise-induced and deterministic).

For a < 0 non-Markovianity splits the stationary state = 0. This
state vanishes completely for highly negative values of a, and reappears
for low negative values of a, but accompanied by two non-zero peaks.
In general, the non-Markovianity adds very narrow very strong peaks
at left and right wings (extrema) of the probability distribution, both
for a < 0 and for a > 0. It is to be noted that these extremal values are
smaller than the extremal range of the domain D, (the latter is given
by the condition D.g > 0).

For higher values of a action of non-Markovian noises leads to the nar-
rowing of the whole distribution: most probable values of X, are much
smaller than deterministic ones and than these induced by Markovian
noises.

Appendix A
Markovian formulas

For the sake of completeness, we list here explicit formulas for Pp,(z)
for Markovian noises, calculated from Egs. (2.19), (2.24), and (2.26) for the
process (3.1), i.e., for f(z) = az — 2*, (b=1), g(=) = 1.

M-GWN: » (e — a?
Pn(z)=N exp{—W} , (A.1)
M-WSN:
-1
Pn(e) = e (e 80, 80041 - £(0), (A2)
M-DN:
A1

Pm( J(:B, Az, Az)](w; Al,—-Al)@ (L\Z—A()f(x)_f2 (E)) y

)= (A5 7()] [22—F(2)]
(A.3)
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with
z
Taimw) = exp{u [ T} = (o - 21)7 (2 = 22)"(e — 2)°
T 3 —az+w ’
(A.4)
where z; are solutions of the cubic equation 23 —az 4+ w = 0, and
i .
a; = , {3,k1}=1{1,2,3}. Ab
R erErn e R A A
When two of solutions z; are complex conjugate, i.e., when
- 2 3
D:%—ﬁ>0, (A.ﬁ)

J can be written as:

_ 2
J(es iy w) = (2 - y1) [(2-+ b1)*+w?] * exp{-Bawy arctan(“STE) |,
AT)
with

2p
=K — A+ B, w=(A-B)\/3/4
a 4w2+9y%’ )l + w ( ) / )

A= (-—%—w—{— \/5)1/3, B = <—%w - \/5)1/3. (A.8)

For symmetric M-DN (A; = A;) the formula (A3) can be written in a
simpler, explicitly symmetric in  form.
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