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1. Introduction

Interest in kinetics and spatio-temporal behavior of microstructure for-
mation of a cooperative and possibly multicomponent system like metallic
films, nonmetallic (ceramics or polymers) membranes or even organic ultra-
-thin films (biomembranes) is of permanent interest to material scientists,
physicists, and chemists but recently also attracts interest of technologists
or processing engineers [1]. Among many types of growth and structure
formation processes (see, e.g. [2] for going into details) the normal grain
growth, first related to metallic and ceramic of two- and three-dimensional
materials [3—6], may serve as a properly chosen setting for the microdomain
formation in which both a quite large complexity of the cluster population
in systems as well as a certain competition within it are constantly present
[7]. Up to now, this phenomenon has mostly been modeled using the Monte
Carlo technique (cf. [4, 6]) and by exploring a statistical description based
on diffusion-type equations for evolution of the grain population when fluc-
tuations of the grain boundary are imposed on the system. It has been
possible to find some other descriptions of this process, e.g. the mechanism
of reduction of the grain boundary energy or a very recent geometric ap-
proach based on the Voronoi mosaic concept [5, 6, 8]. Because the systems
studied are generically interaction systems in which grains (microdomains)
constantly change surface atoms or molecules, it seems to be quite reason-
able to assume that such a type of theoretical description could also be
offered for explaining some more complicated physical situations. F.g., we
think of the processes that quite naturally may occur in two-dimensional
materials (films, membranes, coatings, layers) understood here as physical
assemblies made of smaller subunits.

In this work, we wish to consider the structure formation or phase trans-
formation processes accompanied by increase of domain of a new structure
or phase [9]. This increase means that, contrary to the normal grain growth
[3, 10, 11] of materials, the first moment representing the whole area of a
new phase is an increasing function of time. The zero-moment, equivalent
to a number of domains comprising the assembly, is calculated and exhibits
similar asymptotics as that known from the normal grain growth process in
two dimensions [5, 6]. Our treatment can also be understood as a kind of
multi-compartment analysis [12] applied quite often for the description of
some physical situations in which there exists a system composed of com-
partments (here grains or microdomains) separated by interfaces and among
which permanent exchange of matter takes place.

In Section 2, a presentation of the model is given. The process is de-
scribed by a diffusion-type equation with imposed boundary and initial con-
ditions. The solution of the equation is given in the Section 2. In Section 3,
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analysis of first three moments is carried out. The Section 4 serves for final
conclusions.

2. Presentation of the model and its solution

Let us begin our considerations by stating that there are a few basic
theories of the normal grain growth with different kind of mechanisms driv-
ing the growth, i.e. caused by the surface tension of the curved boundaries
or caused by random fluctuations of the grain boundaries. The last is called
the random walk model [4-6]. In this case, the mechanism for the growth
of a new phase is the migration of particles across the boundaries. Individ-
ual particles or clusters of atoms move from one grains to their neighbours
or particles of an old phase (surroundings) attach to grains changing their
area. In consequence, grains grow by gaining or losing atoms and if any
grain shrinks to zero size then it cannot re-nucleate and is lost for ever. The
second mechanism is properly constructed when the grain boundary energy
is negligible in comparison to the thermal energy of the boundary atoms and
this is the case when the thermal fluctuations are important for the growth
kinetics. In this case, the driving force for growth is the decrease of the
total grain boundary energy only [13]. In the theory proposed we look for
the more physical modification of the normal grain growth which includes
some effects of increase of total area of all grains and also reproduces fairly
well some known physical characteristics of the process. Here we have in
mind e.g. some metallurgical systems in which during the anealing or re-
crystallization process some possible enlargement of material area (volume,
for three-dimensional system) can take place (¢f. (3, 11] and references
therein). In our modeling we assume that the spatio-temporal evolution of
the system to a new phase is represented by the continuity equation

0 I3}
é.if(s’t) = —-8—SJ(s,t), s € [0, 00}, (1)

where f(s,t) is the distribution function of microdomains of a new phase
of area (volume) s at time ¢, i.e., f(s,t)ds is a number of domains (islands,
clusters) of area (volume) s. The particle flux J(s,t) is of the Fick form

T(s,8) = ~D(s)5-1(s,1). (2)

A form of the function D(s) depends on dimension of the system and is
given by
D(s) ~ s%. (3)
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It should be related to the net flux of the migrating particles through the
domain boundaries which for two-dimensional systems is proportional to
the length of the boundary (circumference) of domains [6], that is,

D(s)~ s'/? and a=1. (4)

This relation represents the scaling law of the number of available surface
sites (particles) with grain area [14]. For Eq. (1), two boundary conditions
have to be prescribed at the endpoints of the interval [0, co]. These are the
Dirichlet boundary conditions [6],

f(O,t)Zf(Oo,t):O. (5)

They mean that the number of domains of zero and of infinite area at any
instant ¢ is zero. Eq. (1)—(3) resembles an equation for diffusion processes.
However, in the case considered it is not a diffusion process. In particular,
normalization of f(s,t) does not hold. To solve the parabolic partial differ-
ential equations (1)—(2) with the “diffusion function” (3), let us introduce
the function F(s) of two variables A and s by the relation

fls,t) = [N (s)ar. (6)

Then from (1)-(3) it follows that F,(s) obeys an ordinary differential equa-
tion of the second order of the form

s"f&'(s) + asa"lff\(s) + AFA\(s) =10, (7

where the prime denotes a derivative with respect to s. For a two dimen-
sional systems, when a = 1/2 and Eq. (4) holds, then Eq. (7) reduces to
the form

2sFY(8) + Fo(s) + 2M/sFx(s) = 0. (8)

Introducing the new variable
y=+s (9)
and defining the function F(y) by the relation
Fx(y) = Fa(s) (10)

convert (8) into the equation

Fl!(y) + 4\yFa(y) = 0. (11)
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A general solution of this equation reads (take into account the equalities
(9) and (10)) [15]

Fx(y) = Fals)
4 4
_ s1/4 [CI(A)JI/:,, <§¢X33/4> +Ca(NI_1/3 (g\/xsii/‘l)} (12)
with two “constants” C;(\) and Cy(A) and J,(z) being a Bessel function

(16]. The function J_; /3 (4\/Xs3/4/3) diverges as s~1/4 for s — 0. There-

fore in order to fulfil the boundary conditions (5) for (12), one should put
C2(X\) = 0. Hence, from (6) and (12) one gets

f(s,t) = 251/4/dzze'“tzzB(z)Jl/3 (§233/4) ) (13)

where the new integration variable z = v/X has been introduced and B(z) =
C1(2?) is a function determined by an initial distribution f(s,0). When
t — 0 then (13) becomes

f(s,0) = 231/4/dzzB(z).}’1/3 (%zs?’/‘i) . (14)
0

Applying the theory of Bessel transforms [17], one can solve this integral
equation with respect to unknown function B(z) and then B(z) is expressed
as an integral functional of f(s,0). E.g., let us assume that initially at ¢ = 0
there are Ny microdomains of area sg. It corresponds to the initial condition

f(5,0) = Noé(s — s0), (15)

where §(z) is a Dirac delta distribution. In this case

4
B(Z) = AJ1/3 (5253/4) 3 (16)
where 0
A = 55(1)/4]\70 . (17)

Substituting (16) into (13) and integrating over z [18], one finally gets the
solution of the problem (1)-(2) and (4) in the following explicit form

_4 82\ 1/4 4 ( 3/ 2) (2b 3/4)
f(s,t) = 7 exp (—-Zt-) s /% exp (—g (s ) I T ,  (18)
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Fig. 1. Dependence of the distribution function f(s,t) on area s of the mi-
crodomains for three instants (values of parameters A = 1 and b = 1).

where I, (z) is a modified Bessel function [16] and

4 3/4
b= gso/ . (19)

The function (18) is visualized in Fig. 1 for three different time instants.
Starting from the initial Dirac delta distribution (15), concentrated about
the initial area s = sy of microdomains, maximum of f(s,t) is smaller and
smaller, and is shifted from smaller to greater values of area when time
increases. It means that microdomains grow in time. Other characteristics
of the process are analyzed in the next section.

3. Time-characteristics of the process
The distribution f(s,t) allows to evaluate the basic characteristics of
the process like moments

[ o]

(s™(t)) = /s"f(s,t)ds, n=0,1,2,... (20)

0

of the process. The zero-moment, (s°(t)), is equal to the number of mi-
crodomains in the system and is expressed as [18]

2/3 b2
(s°(t)) = A2—17§f(—1/—3)b*1/37 (—;- Zi) ; (21)
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Fig. 2. The number of microdomains (the zero-moment of the process) is shown

versus time (4 =1 and b=1).

where y(a, z) stands for a reduced gamma function and I'(z) is an Euler
gamma function [16]. Since 7(a, z) is an increasing function of z, it means
that the number of microdomains in the system decreases with increasing
time (cf. Fig. 2).

For long times, it decays powerly in time as

(S0t ~ 713, > 1. (22)

The first moment, (s(t)), is a total area S of all microdomains and is given
by the relation [18]

§ = (s'(1))

_ 4.9 I(2/3),1/3,1/3 (_ﬁ) (_51. é.ﬁ)
=AanTanp)’ b P\ k) P\ e (23)

where 1 Fi(a; 8; z) is a Kummer (confluent hypergeometric) function [16].
On the contrary, the total area of all domains grows in time (see Fig. 3).
Its long-time asymptotics displays the power-law time dependence,

S~/ t>1. (24)

In turn, the second moment, (s%(t)), increases linearly with increasing
time [18],
(s*(t)) = at + k, (25)

where a and k are constants,

37 1/3 310 1/3
a:A(z—s) »'/3  and k:A(Eﬁ) b1/3, (26)
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Fig. 3. The total area S of all microdomains (the first-moment of the process) is
presented as a function of time (for A =1 and b = 1).
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Fig. 4. Time-evolution of fluctuations o(t) = /(s2(t)) — (s1(¢))? of the process
{(A=1and b=1).

From Egs (23) and (25) it follows that fluctuations o(t),
a¥(t) = (s*(1)) = (s'(1))?, (27)
of area of microdomains grows in time (it is presented in Fig. 4). The

contribution to the long-time asymptotics of fluctuations comes dominantly
from the first term in (25) and behaves as

o(t) ~ 2, t>1. (28)

One may also conclude on long-time asymptotics of the average radius ray(t)
of the microdomains which is determined from the relation

8 o (s°(t))r3, (1) - (29)



Kinetics of Microdomain Formation in Two Dimensional Assembles 791

Taking into account (22) and (24), one can infer that r,y(¢) has the Lifshitz—
-Slyozov asymptotics [10, 11]

Pav(t) ~ t1/3. (30)

Note that the case stated above differs distinctly from the “conventional”
case rav(t) o t1/2 and which is also valid for one-dimensional systems be-
cause then the normal grain growth process as well as our model are repre-
sented by the standard diffusion equation with a constant diffusion function
(cf. 5 [3, 19] for details).

4. Summary

In Section 2 we have presented the description of the growth kinetics
of microdomains (grains) in two-dimensional assemblies. It is based on the
diffusion-type parabolic equation of the Fickian form with the diffusion co-
efficient D(s) being a power function of the state s. It is related to the
assumption that grains of a new phase grow by attaching new particles,
clusters and other grains to the boundary of grains. As a result, a number
of grains decreases in time and total area of all grains grows with increasing
time. The basic extension of our model relies on the modification of the ki-
netic equation given by Eqgs (1)—(3) and it “impinges” some physical scenario
different when comparing with the classical grain growth concept [3, 4, 13].
It has some interesting consequences (c¢f. Section 3), which lead to broader
as well as more accurate description of many types of phase transformation
and structure formation phenomena not necessary being limited to ceramics
or metallic materials. Experimental examples concerning the growth and
pattern formation processes are reported elsewhere (cf. [1] and references
therein). Looking at the results revealed in Section 3, it is clear that the
formalism proposed can be applied for the description of the materials which
undergo the grain growth conditions but with an increase of area effect that
appears during the whole process (the first moment is time-dependent). It is
also hopeful that the formalism proposed can serve to elucidate a temporal
behavior of biomaterials [20] and biosystems [21]. E.g., in self-aggregation
in an insect population, the aggregation process appears to result from the
competition between two factors: the random moves of the larvae, and their
reaction to a chemical product, a “pheromon” they synthetize from terpenes
contained in the tree on which they feed and that each of them emits at a
rate depending on its nutrition state. The pheromon diffuses in space, and
the larvae move in the direction of its concentration gradient. Such a reac-
tion provides an autocatalytic mechanism since, as they gather in a cluster,
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the larvae contribute to enhance the attractiveness of the corresponding re-
gion. The higher the local density of larvae in this region, the stronger the
gradient and the more intense the tendency to move toward the crowded
point. One can observe an analogy with our model.

The authors would like to thank the Organizers of the VIII Symposium
on Statistical Physics, 25-30 September, Zakopane, Poland, for financial
support.
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