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The velocity distribution function of a homogeneous foreign gas react-
ing with a carrier gas is studied by means of the Monte Carlo simulation
and it is calculated using an approximate phenomenological approach
assuming the Maxwellian form of the distribution with nonequilibrium
temperature. The transition of the system to the hydrodynamic regime
is demonstrated. The effect of the chemical reaction on the distribution
function is presented in terms of decrease in the second and fourth mo-
ments of the velocity distribution for a wide range of activation energies
and ratios of molecular masses. Good agreement between the results of
Monte Carlo simulations and the approximate calculations is observed.

PACS numbers: 82.20. Db, 82.20. Mj

1. Introduction

Deformation of equilibrium velocity distribution due to a chemical re-
action is a recognized problem of the kinetic theory [1] which has regained
considerable interest in the last years [2]. The perturbation of the equilib-
rium Maxwellian is caused by a selective depletion of more energetic reactant
molecules by the chemical process. Both kinetic theory [3-6] and numerical
simulations [7-9] were applied to describe these nonequilibrium effects for
a variety of reactive systems. In this work we study a homogeneous system
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consisting of a foreign (trace) gas A diluted in a carrier gas C, which are
involved in an irreversible reaction

A+ C — products (neglected)

Under the condition n 4 /nc < 1 for number concentrations of the species, it
can be assumed that the perturbation of the equilibrium state of the carrier
gas by the chemical process is negligible. The distribution function f(v,t)
of velocity v of the spatially uniform foreign gas is governed by the linear
Boltzmann-Lorentz equation

9 '
f / (7875 = 191) o - vcldodve - /f(c.)f]v—vclda dvg, (1)

where f(co) denotes the equilibrium velocity distribution of the carrier gas.
The first term of the right hand side of Eq. (1) accounts for elastic A —
C collisions with the cross section do , and the second one for reactive
collisions with the cross section do*, respectively. The foreign gas systemisa
widely studied model in the kinetic theory [10], and contains two important
special cases obtained as the ratio of molecular masses m 4/m¢ tends to

1/2

extremes: in the limit (my/meg) < 1 one recovers the Lorentz gas,

while the opposite Brownian regime, (m 4/ mc)l/ 2> 1, leads to the model
of Rayleigh gas.

As Eq. (1) admits the separation of variables, the time dependence of a
solution of kinetic equation (1) is determined by the set of (negative) eigen-
values of the self-adjoint collision operator. For nonreactive system, it is
well known that the maximum eigenvalue is separated from the rest of the
spectrum, which consists of a few discrete eigenvalues over the threshold of
continuum covering the remainder of the negative serni-axis [10, 11]. If the
rate of reaction is not excessively high, these basic features of the spectrum
should extend to the reactive system. In the long time limit the prevailing
contribution to f(v,t) is provided by the single eigenfunction ¢(v) corre-
sponding to the maximum eigenvalue a. The system described by Eq. (1)
attains then the hydrodynamic regime, in which the concentration of species
A diminishes at a constant rate, but the shape of velocity distribution tends
to a definite stationary form

fo) = Nemp(aos) (MO

regime

Outside the hydrodynamic regime the form of the velocity distribution is not
universal and depends also on initial conditions, as several modes contribute

to f.
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Eq. (1) has been solved numerically by calculating approximately the
eigenfunctions expanded in the first six Sonine polynomials {12]. However,
this relatively limited representation for f can hardly be expected to repro-
duce the complex structure of the spectrum containing the infinite contin-
uum part. Moreover, it was found that expansion in Sonine polynomials is
inadequate and slowly convergent [11, 13] especially in the Lorentz range,
which will turn out to constitute the important case of the system studied.
In spite of the limited accuracy of the higher eigenvalues obtained by the
applied numerical solution, it was rather the non-hydrodynamic regime that
attracted primary interest in Ref. [12]. On the contrary, in the present work
we confine our attention to the hydrodynamic stage of evolution.

For relatively slow chemical processes Eq. (1) has been solved [14] by
the perturbative method. On the other hand, a simple phenomenological
approach proposed lately [6, 15, 16] has been found to agree well with
molecular dynamics and Monte Carlo (MC) simulations of reactive system
A+ A — B + B, even for fast reactions with low activation energies. It
assumes the Maxwellian form of distribution functions of the reactants, but

because of the chemical reaction the temperatures of various species are
different.

The case of reactive Lorentz gas has been studied in some detail [17] by
means of the differential equation derived from the Boltzmann equation (1)
in the limit m 4 /m¢g < 1. The accurate numerical solution of the differen-
tial form of Eq. (1) has been carried out and used to determine conditions in
which the perturbative result for the chemical Boltzmann equation applies.
However, for the Lorentz gas a process of relaxation of velocity distribution
by elastic collisions is inefficient [12, 14], and the range of validity of the
perturbation solution of Eq. (1) is relatively more restricted.

In this paper we present results of Monte Carlo simulations for the
nonequilibrium effects in the system defined above. In Section 2 the specific
numerical method is developed to study the foreign gas in the thermal bath.
The standard molecular dynamics method is not effective for this ensemble,
because much of computational effort is wasted to simulate the large ther-
mal reservoir. The presented approach treats the collision stochastics more
rigorously than the Bird method, usually applied in gas dynamics simula-
tions. In Section 3 we present the approximate phenomenological approach,
assuming the Maxwellian form of the distribution function. The results ob-
tained by the simulations and the approximate calculations are presented
and discussed in Section 4. The results of this paper are also compared with
the perturbative solution of Eq. (1).
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2. Method of Monte Carlo simulations

As the A molecules do not interact with each other, it is sufficient
to consider only one-particle dynamics. A motion of a single A molecule
consists of a sequence of free flights, interrupted by collisions with molecules
of the carrier C. The collisions may be either elastic or reactive, in the latter
case terminating the motion since products are neglected. The collision is
assumed reactive with the probability s (steric factor) if it satisfies the
following condition for velocities

e-(v-vg)>yg. (3)

Here e denotes the unit vector along the line connecting the centers of
molecules A and C at the instant of impact, and g is the threshold relative
velocity, which determines the energy barrier of reaction

E = jug®, (4)

where p denotes the reduced mass, p = mamg/(ma + mc) . Otherwise
the collision is elastic, and it follows the hard spheres dynamics.

The motion of an A molecule can be generated, if (i) the statistics of
the free flights is determined, and (7i) the rule for a stochastic change in
velocity in a collision is established. Let us consider a molecule moving
with velocity v through the carrier C'. For the assumed equilibrium velocity
distribution of C' at temperature T,

(0)(vc) = ng (mc/27rlcT)3’/2 exp (mgvd /2kT) , (5)

the collision rate for the 4 molecule can be calculated as

v(v) = md% /f (vo)lv — veldve

= ncrdzAc\/?mTc (exp(—uz) + (2u + %) erf(u)) , (6)

where dg4c = 1(da+dc) is the collisional diameter, and u = v(me/2ET) /2.
The unnormalized error function in (6) is defined by

z

rl(e) = [ep(-sP)y. (7)

0

The distribution of collision waiting times 7 for the A molecule is exponential

0,(T) = v(v) exp(-v(v)7), (8)



Nonequilibrium Velocity Distribution of Reactive... 799

which also provides the distribution of times of free flight for a given velocity
v. The free motion is terminated by a collision with a molecule C, and
according to Eq. (1) the normalized distribution of velocity vc of random
collision partner is given by

Wo(vo) = 42 1D(uc)lo ~ vcl. ©)

A geometry of collision is determined by e, which is specified by a point
of uniform distribution on the circular target of total (elastic and reactive)
cross section ’}Tdic .

Using the above results we are in a position to provide the algorithm for
simulation. At the beginning a molecule of A is generated with a velocity v
chosen from the Maxwellian distribution at the temperature T of the carrier
gas. The next steps are as follows:

1. calculating the collision rate v(v) and choosing a time of free flight 7
from distribution (8)

2. choosing a velocity vc of collision partner from distribution (9), and a
point of impact from the uniform distribution on the area of the total
cross section

3. checking condition (3) for reactive collision, if satisfied the motion of
the molecule is terminated

4. in case of elastic collision, the postcollisional velocity v' of the molecule
A is calculated

5. return to step 1.

Motion of the molecule is followed until either it undergoes a reactive col-
lision or the pre-defined time limit is reached, which is discussed in more
detail below. Then a next molecule is generated and so on, until a desired
accuracy of statistics is obtained.

It is readily checked that for the equilibrium nonreactive ensemble the
transition rates in this Monte Carlo method satisfy the detailed balance con-
dition. Let the molecule A changes its velocity from v to v' in the collision
which transforms {v,v¢} into {v',v;} under the appropriate geometry e.
The rate of transition along this path can be composed as

(v — v';v0,€) = v(v)Wy(ve) (vd C) (0) (ve)lv—vel.  (10)

The inverse elastic collision yields {v,vc} from {v', v}, in the geometry
given by —e.
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Combining Eq. (10) with the equilibrium Maxwellian distribution of
A, F© given by Eq. (5) with the obvious replacements, one finds the relation

f(o)(v)ﬂ(v —v'jvo,e) = f(o)(v)fg))(vcﬂ'v - v¢]
= fOW) S (wp)lo' - vl
= f(o)(v')ﬂ(v' — v} v, —€) (11)

In Eq. (11) it was used that the total kinetic energy and the absolute value
of relative velocity are conserved in elastic collisions. Summing up relation
(11) over paths with all possible v and e, one recovers the detailed balance
principle for the total transition rate

FO@I(v — v') = FOR I (v - v). (12)

Eq. (12) is not satisfied for a system with irreversible reaction, because there
are no reverse transitions which could balance reactive collisions leading to
products. For this system the actual equilibrium state does not exist.
Since early Monte Carlo attempts in gas dynamics [18] it has been re-
alized that the stochastics of collisions is generated by the kernel of the
collision integral of kinetic equation. It is the advantage of linear Eq. (1)
that it yields the distribution Wy(ve) given by Eq. (9), which is deter-

mined by the given equilibrium distribution fg)) of the carrier gas. The
MC simulation of the foreign gas is driven by the quasi external factor,
that is the interaction with the gas C treated as a random medium. For
this reason, the presented method resembles the simulation of the chemical
master equation [19], which is also linear with respect to the distribution
function. In reference to simulation methods developed in the context of the
kinetic theory, the approach of this paper is related to the method of Koura
[20] elaborated for the regular nonlinear Boltzmann equation. However, for
mixtures with more balanced component concentrations the collision fre-
quency v involves the unknown distribution function f itself. Due to this
coupling, in the exact implementation of this method recalculation of »
after each single collision ( numerically, as f is tabulated ) creates an enor-
mous computational overload. To make the method practically applicable,
the approximation was proposed to calculate » in finite time intervals [20].
As another Monte Carlo approach, the method developed by Bird [21] has
been proved to be more efficient in treatment of complex flows, although it
handles the collision statistics in a more approximate way.

The simulated ensemble contains initially of the order of 10° molecules
A generated with the Maxwellian velocity distribution at temperature T'.
After a finite lapse of time, the transient term of the distribution function
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decays and the system reaches the hydrodynamic regime, in which the ve-
locity distribution acquires the stationary form given by Eq. (2). Thus, the
time range of the simulation should exceed the initial transient period and
cover the stationary regime. The time of decay of the transient term cor-
responding to the higher eigenfunctions can be evaluated by means of the
second largest eigenvalue of the collision operator. We approximated this
decay rate using the numerical results for the eigenvalues of the operator
of Eq. (1) for the nonreactive system [11]. After the hydrodynamic regime
is reached, the simulation is continued for the period of time necessary to
obtain a few independent samples of the system taken at equidistant time
instants. The results obtained at the consecutive instants are considered in-
dependent, if they are separated by the time interval related to the velocity
decorrelation time, evaluated on the basis of the diffusion coefficient.

3. Phenomenological approximation

Recent molecular dynamics simulations of model thermally activated
reactions in an adiabatic system of hard spheres suggest that the velocity
distribution functions of reagents may be approximated by the Maxwellian
distributions with temperatures which are specific for each of the species [9,
15]. This assumption means that

f(v,it)=mny (mA/27rl¢:TA)3'/2 exp (—mAv2/2kTA) , (13)

where n4 and T4 are the time dependent concentration and temperature
of A, respectively. Inserting ansatz (13) into the Boltzmann equation (1),
after integration over v one obtains the macroscopic kinetic equation for the
concentration n 4
dng
dt

where the rate constant «a is a function of the temperature Ty

= a(Ta)na, (14)

_ 2 (8k(Tamo+Tma)\'/* E(mat+mg) )
a(Ty)= —sgnewdye ( e ) exp ( HTamo +Tma))
Equation (14) for the chemical kinetics is consistent with form (2) of the
distribution function in the hydrodynamic regime. A closed set of equa-
tions for the parameters of distribution (13) is obtained by complementing
Eq. (14) by the equation for T4. The kinetic equation for this temperature
is easily derived with the use of the density of kinetic energy, which for
distribution function (13) is equal to %n kT 4. Multiplying the Boltzmann



802 B. NowaKowskl, J. GORECKI

equation by %m av? and integrating over v one gets

3d
§a’nAkTA
8k(Tameo + Tmy) V2 4mym
2 At A ATRC
4m ameo ( E(mA -+ mc) )
T 1 kK(T-T
+el A)(mA +mg)? MTame + Tma)) 4 ( 4)

Tameo E(mA + mc)TAmc
Tameo + Tmc) k(TAmc + TmA)2

) nakZa.
(16)

Macroscopic kinetic equations (14) and (16) can also be founded on a simple
phenomenology, without resort to the Boltzmann equation [9, 16]. Eq. (16)
is readily transformed into the equation for the temperature T4 . Using
Eq. (14) one obtains after some simple algebra

dTy 2 2 8k(Tagmc + Tmy) 1/2 4mamce
—— = —ngrd
dt 3 TMAMC (ma + mc)
E(ma + mg) E(m4 + mp) )
* [1 °f (1 T W(Tamo +Tmg)) "\ k{Tame + Tmy)
2 Tameo E(m¢ + mA)TAmC)
ZalT .
+ 30( 4)Ta (Z(TAmC + Tmy) k(Tamc + Tm4)?
Egs. (14) and (17) can be simplified by introducing the dimensionless
time, t' = |a(T)|t/ss, the scaled concentration

+ a(T4) (g T

2(T~ TA)

(17)

p=rna/nalt=0), (18)
and the relative change in the temperature of A
9= (Ty-T)/T. (19)
For the variables p and 9 the set of kinetic equations reads
dp 1/2 Mc )
—_ = = 1 ——p, 20
g = ~Sf(IMc + 1) Fexp {egar T | p (20)
%g = — g(’ﬂMC + I)I/ZMAMC exp(s)'ﬂ

£ £
X [1—3,« (1+ 191\’10+1)exP <_19Mo+1>]

_ = V0 Va1+9
3sf(t9Mc + 1)/ “exp (6’(9Mc 1 1+9)

MC EMC
x (2(19Mc 1)t omc+ 1)2) ’ (21)
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where
e=E/kT (22)

is the dimensionless activation energy, and

my mg

MA_mA+mc’ MC—mAerC' (23)
The set of equations (20, 21) can be solved numerically for any values of
the parameters of the system and provides n4 and T4 as functions of time.
Equation (21) is independent from Eq. (20) and thus the dynamics of tem-
perature does not depend on the concentration of the reagent A. There
is always a stable stationary state of ¥ in the interval (—1,0), because the
right hand side of Eq. (21) is positive for 9 = —1 and it is negative for
¥ = 0. Therefore, if in the initial state the temperatures of both species are
equal, then 74 will always decrease and in the steady state it will be lower
than T.

4. Results and discussion

Figures 1A,B present two examples of J(t) plotted vs. p(t) calculated
from phenomenological equations (20), (21) and obtained from the average
kinetic energy of particles in the MC simulations. The initial decrease of
both ¥ and p in the transient regime is followed by the transition to the
hydrodynamic regime, in which ¥ reaches the asymptotic stationary value.
The simple phenomenology gives a correct quantitative description of the
time evolution of 4. Let us notice that the difference between the stationary
¥ observed in the simulations and the steady state solution of Eq. (21) may
be positive or negative, depending on parameters of reaction.

The normalized distribution of speed v = |v| obtained in the steady
state by the MC simulations is compared in Fig. 2 with the Maxwellian form
of 4mv? f(v), using f given by Eq. (13). For the reagents of equal masses,
M, = 0.5, the agreement between the MC results and phenomenology is
very good , and can be related to the coincidence of the respective tempera-
tures 9 for this system presented in Fig. 1A. In the case of disparate masses,
M 4 = 0.01, the curves are shifted apart, but it seems that Maxwellian with
the temperature slightly higher than T4 obtained from the phenomenology
provides a good approximation for the shape of the distribution resulted
from the simulation ( c¢f. the difference of ¥ for this system in Fig. 1B ).
Let us notice ( Figs. 1) that in the latter case the decrease in 9 is by an
order of magnitude larger than for M4 = 0.5 .

Figure 3 presents the stationary ¥ obtained by the simulations and
phenomenology as a function of the ratio of molecular masses m4/m¢, for
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Fig. 1. ¥ as a function of p for the system in which the initial temperatures
of components A and C are equal. The solid line corresponds to the numerical
solution of Eqs.(20) and (21) , stars show results of the Monte Carlo simulations.
(A) — M4 =05, sy =025ande=1. (B) — M4 =0.01, sy =0.25and e = 1.

€ = 1 and the steric factors equal to 0.04 , 0.1 , and 0.25. Figure 4 shows
the relative change in the fourth moment of the velocity distribution

(v*) = (v*)o

(vh)o

Q= (24)

where (v4)g = 15(kT)?/ mzA is the mean v* in the equilibrium ensemble, i.e.
for Maxwellian with the unperturbed temperature T'. The phenomenological
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approximation using velocity distribution (13) yields

TR T

Qph - T2

(25)

Good agreement between the MC simulations and phenomenology can be
noticed in Figs. 3, 4. The results obtained in this paper are compared with
the formulae derived by the perturbation method [14]

9= 4M g [G(3+e) + 3ME (§ +2e— )] spexp(~¢),  (26)
Q= _W [G (3 +¢) — 3MaMc (3 +2¢ — €2)] spexp(—e), (27)

— EQ.(13)
0.6 1 el MC M,=0.5
PN - = = MC M,=0.01
- S N
=4 s 4
— s 5y .
504 \
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Fig. 2. The normalized distribution of speed v = |v|. The solid line presents
Maxwellian, Eq. (13); short dashed line — Monte Carlo simulations for M4 = 0.5,
sy = 0.25 and ¢ = 1; long dashed line — simulations for M4 = 0.01, s; = 0.25
and ¢ = 1.

where G = 5 — 6M¢ + TM5. 2 The effects of the chemical reaction on both
¥ and @ exhibit a similar dependence on the ratio of masses my4/me. It
is most significant in the Lorentz limit, m4/m¢ — 0 , then diminishes as
m 4 /m¢ increases. Such a dependence results from the competition between
the relaxation process and the chemical reaction. The transfer of energy in
elastic A—C collisions is not effective if the masses of molecules A and C are
significantly different. In terms of dynamics of velocity distribution, a time
of elastic relaxation of nonequilibrium modes becomes longer ( compared to
a mean time of free flight) if the molecular masses of the reagents are dis-
parate [11]. The mechanism of elastic scattering is then not enough efficient
to restore the equilibrium velocity distribution perturbed by the chemical
reaction. On the other hand however, the perturbation itself diminishes in
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Fig. 3. ¥ as a function of m4 /m¢ for € = 1. Circles, squares and triangles indicate
results of the MC simulations performed for s; = 0.04, 0.1 and 0.25, respectively.
The stationary values of 9 calculated from phenomenological equation (21) for
these successive steric factors are plotted using the solid, very long dashed and the
long dashed lines. The medium dashed, short dashed and the dotted line present
the perturbation result for ¥, Eq. (26).

the Rayleigh limit, m 4 /m¢c — oo . In this range the condition for a reactive
collision, Eq. (3), effectively does not involve the velocity v of the heavier
molecule A. The reaction cross section becomes a constant, independent of
a velocity of molecule A. Depletion of A by the reaction is uniform in the
whole range of velocities, and the shape of the velocity distribution remains
only slightly perturbed. Consequently, the corrections remain small even in
the Rayleigh limit, m 4 > mc, although the relaxation process weakens. In
conclusion, the dependence in Figs. 3, 4 follows from the fact that pertur-
bation of the distribution function is the strongest in the Lorentz limit, and
decreases if the system approaches the Rayleigh limit.

The results of Egs. (26), (27) are confirmed by the MC data provided
that reaction can be treated as a perturbation, that means effectively for
not too small values of m4/m¢. As the mass ratio approaches the Lorentz
range the chemical reaction becomes stronger relative to the collisional re-
laxation and the perturbative solution is no longer valid. Accordingly, for
sf = 0.04 the perturbation curve diverges from the simulation results for
my/mg < 0.05, and for s = 0.1 and 0.25 this tendency begins already for
higher m 4/m¢ and is more pronounced. In the context of the numerical
results [12], it was concluded that the perturbation method applies if the
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Fig. 4. Q as a function of my/m¢ for ¢ = 1. Circles, squares and triangles
indicate results of the MC simulations performed for s; = 0.04, 0.1 and 0.25,
respectively. Qpn calculated from equation (25) using the stationary solution of
phenomenological equation (21) for these successive steric factors are plotted using
the solid, very long dashed and the long dashed lines. The medium dashed, short
dashed and the dotted line present the perturbation result for @ , Eq. (27).

reaction rate constant is three orders of magnitude smaller than the rate
of elastic collisions. However, this condition does not include a dependence
on the mass ratio of reagents. On the contrary, our results prove that the
range of validity of Egs. (26), (27) is a very sensitive function of m4/mc,
and this factor becomes even critical in the Lorentz range. While the MC
data in Figs. 3, 4 indicate that the effects of the chemical reaction increase
nonlinearly with s; , perturbation equations (26), (27) predict respectively
a simple linear dependence, which can be correct only for small probabilities
s7 of reactive collision. Consequently, Figs. 3, 4 demonstrate that the range
of validity of the perturbation result becomes more limited with increasing
sf.

Figure 5 presents the steady state of ¥ obtained by the MC simulations,
phenomenology and the perturbation method as a function of the activation
energy ¢ for M4 = 0.05 ( close to the Lorentz limit) and the steric factors
equal to 0.04, 0.1, and 0.25. Figure 6 shows the relative effect for @ , respec-
tively. For both moments of the velocity distribution, the nonequilibrium
effects of the chemical reaction exhibit a distinct extremum as a function of
€. The maximum effect can be observed at the activation energy ¢ < 0.5,
and it tends towards smaller £ as s; increases. For higher activation ener-
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Fig. 5. ¥ as a function of £ for M4 = 0.05 . Notation as in Figure 3.
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Fig. 6. Q as a function of £ for M4 = 0.05. Notation as in Figure 4.

gies the nonequilibrium effects decrease because reactive collisions become
less frequent. On the other hand, for smaller ¢ molecules of A are depleted
more uniformly from the whole range of velocities, so the perturbation of
their distribution is weaker. The phenomenology gives accurate description
of the effects on ¥ and Q except for the fastest reactions, for which ¢ < 1.
Despite this discrepancy it correctly predicts the positions of the extrema.
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In Figs. 5, 6 the agreement between the simulation data and the per-
turbation results is fairly good for the slowest reactions studied, sy = 0.04.
However, for the reactions with the steric factor sy = 0.1 the difference
between both results becomes significant, indicating that already in this
case the reaction can hardly be treated as a perturbation. In the case of the
highest steric factor studied, s = 0.25, the range of validity of perturbation
result is even more limited, and therefore Egs. (26), (27) for this value of
ss have not been plotted in Figs. 5, 6.

In the limit sy — 0 one obtains from Eq. (21) the following expression
for the derivative of the stationary temperature

dd 1 1
= (3+¢) emi-o), (28)
which can be used to calculate ¥ for small s . This expression reproduces
the perturbative result obtained with the use of only the first Sonine poly-
nomial ( expansion in two Sonine polynomials is used in Egs. (26), (27)).

We are not comparing our results with those of Ref. [12] because values
of the moments of the velocity distribution are not given explicitly in that
paper. Moreover, the numerical solution [12] was primarily oriented to study
the transient regime. However, transient phenomena are beyond the scope
of the present work.

In the paper we made no assumption concerned with a heat effect as-
sociated with the chemical reaction. The obtained results remain valid for
moderately exothermic and endothermic processes, provided that n4 < n¢.

5. Conclusions

The method of Monte Carlo simulations of the system composed of the
foreign trace gas reacting with the carrier gas has been proposed and applied
to study the nonequilibrium effects. It provides the accurate results for the
velocity distribution for a wide range of reaction parameters.

The simulations have confirmed that the concept of nonequilibrium tem-
perature [9, 15, 16] may be useful to describe a distribution of energetic
states of reagents. The phenomenological equations predict correctly the
magnitude of the nonequilibrium effects. The Maxwellian distribution at
the stationary temperature T4 calculated from the phenomenology is much
closer to the real stationary velocity distribution than the Maxwellian with
the temperature T of the carrier. Therefore, the use of the former distribu-
tion as the initial state of the foreign gas in the simulations can significantly
shorten a time to reach the hydrodynamic regime of the nonequilibrium
system, and consequently increase efficiency of the MC method. An addi-
tional advantage of the Maxwellian form of f is that it is more convenient
for sample generation than other applicable distributions.
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