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Assignments for the configurations underlying the formation of iden-
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discussed in superdeformed nuclei. The method which is based on the
pseudo-SU(3) symmetry is applied to the superdeformed bands in nuclei
from the A ~ 130 region.
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1. Introduction

The occurrence of the identical bands in some rotational bands of atomic
nuclei is an intriguing phenomenon that can shed some light on the unre-
solved problems in nuclear structure. Two rotational bands are defined as
identical if their dynamical moments of inertia J (2) are equal. Following
this definition a rather large class of identical bands has been found [1].

In the present paper we shall be interested in a certain subset of the
above class obeying more stringent relations. We aim at analysing certain
linear relations between the gamma-ray energies E. deexciting the bands.
Three types of these relations have been discovered and widely discussed
in the literature (cf. Refs. [2-4]. First, there exist pairs called twin bands
or zero-point bands where the corresponding gamma-ray energies are equal.
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Second, the bands called mid-point bands where the gamma-ray energies
in one band are arithmetic averages of the gamma rays in the other band.
Finally, the three quarter-point (one quarter-point) band relations are char-
acterized by the weighted average energies with weights 3/4 and 1/4 (1/4
and 3/4). These three types have been analysed [3] (see also [4]) in terms
of the pseudo-spin symmetry that seems to play an essential role in the
classification of identical bands in nuclei. It has been also shown explicitly
(5, 6] that the three types of identity relations correspond to the three pos-
sible orientations of the nucleon pseudo-spin relative to the pseudo-orbital
angular momentum. In this way the pseudo-spin symmetry offers a simple
possible classification scheme for the assignments of the identical bands in
terms of the individual-particle nucleonic orbits in the rotating potential.
However, in most publications so far these rotating orbits are labelled by
the Nilsson asymptotic quantum numbers that do not include rotation [7].
This way of classifying the nucleonic orbits seems inadequate in the presence
of fast nuclear rotation since the Nilsson orbits are strongly mixed due to
fast rotation. Another representation has, therefore been suggested [5] that
is based on the rotating harmonic oscillator (RHO) in the pseudo-orbital
space. This representation gives, therefore, more physical insight into the
structure of the orbits.

In the present paper we intend to employ the new representation and
to draw some physical conclusions about the nature of the orbits. For the
illustration of the procedure we have chosen the A ~ 130 region where sev-
eral superdeformed rotational bands have been found [8-12] and interesting
structure of identical bands has been observed.

2. Rotational motion in a pseudo-spin representation

We shall now describe a simple model that will be employed in the
description of the fast nuclear rotation. It is well known that the pseudo-
spin symmetry (and its more restrictive version of SU(3), i.e. the pseudo-
SU(3) symmetry) [13-16] plays an essential role in description of nucleonic
motion [16] especially with large deformations and fast rotation. Various
physical quantities such as for example the particle angular momentum j,
its orbital part ! and spin part 8 (j = ! + 8) should be then transformed to
the pseudo-SU(3) picture [16]. Although the J operator remains unchanged
in the pseudo-spin picture ( J = J) it is not the case for its orbital and spin
components j =l + 8 =3 =1+ 3 with I # [ and 8 # & In addition the
strength of the new (l.s) becomes so small that it can be neglected. Thus
in the pseudo-spin picture the pseudo-orbital motion is decoupled from its
pseudo-spin part. In this situation the motion can be approximated by
the pure harmonic oscillator. In principle, a term taking into account the
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existence the flat bottom (like for example the familiar /? term in the Nilsson
potential) should be also included. In the first approximation, however, this
term will be neglected. Thus we shall deal with the pure rotating harmonic
oscillator(RHO) only.

Within this approximation a nucleonic orbit can be characterized by
the three quantum numbers , say ny,n; and ng and the eigenvalues of the
Routhian (i.e. the energy in a rotating frame) can be given by the Valatin
formula ([17])

e‘l‘,’:(n1+1/2)w1+(ng+1/2)02+(n3+1/2)ﬂ3. (1)

In the above formula the tildas over all the symbols have been omitted
and it has been assumed that A = 1. Here the motion along the 1-axis
remains unaffected by the rotation (since 1-is the rotation axis) while the
remaining (normal mode) frequencies f2; and {23 are functions of the original
(HO) frequencies wq,w; and w3 as well as of the rotational frequency w.
More explicitly

2 2
233 = \/%-Hﬂi(lﬂ)r, (2)
with
T = /(0] - w3)? + 8w2(w] +w?). (3)

The pseudo-orbital wave functions corresponding to (Eq. (1)) are simply
the harmonic oscillator wave functions

__(rfym (i) o), (a)

|n1,n2,n3): o
ny.ng2.n3.

where 1"1)r ,1"2T and 1"3T denote the creation operators for the (HO) gamma
quanta in the three directions. It is interesting to analyse what is the be-
haviour of the wave function (4) under the rotation of the system through
an angle m about the rotation axis 1. It is easy to see that such a rota-

tion leads to the change of signs in the operators I’J and I’J while the sign

of 1"1)r remains unchanged. Thus acting with the rotation operator in the
pseudo-orbital space on the state (Eq. (4)) we obtain

e | ny, g, ng) = (~1)™F78 | ny,n, ns) . (5)
Here the rotation operator

R=e '™ (6)



1004 7. SZYMANSKI

denotes the pseudo-orbital part of the signature operator. The total signa-
ture operator is
e—’i’n’jl — e—‘i?‘rlle—iwi'l . (7)

Let us now see which configurations (ni,n3,n3) are favorable for the
formation of the identical bands [5]. It follows from the pseudo-SU(3) sym-
metry the pseudo- spin 8 is entirely decoupled from the orbital motion
(due to the absence of the ({.3) term in the nuclear Hamiltonian as already
mentioned above).Thus the pseudo-orbital part plays a decisive role in the
dynamics of the rotational motion. Suppose we add a valence nucleon to the
nuclear even core. Its single-particle Routhian e¥ is given by Eq. (1). The
addition of a single-particle Routhian e to the even core with angular mo-
mentum I results in the formation of identical bands only if the contribution
of the odd particle to the nuclear alignment

w
‘381,

Ow '’

1y =

(8)
and the contribution to the dynamical moment of inertia

01
(2) - v
0T\ = 50 (9)

are both negligibly small. The examination of formula (1) leads to the
conclusion that this may happen if the quantum numbers n, and n3 obey
the relation

T2 = N3 . (10)

This can be seen from Fig. 1 of Ref. [5]. Orbits of this type have been
called (SO) (=special orbits). Orbits lying immediately above (SO) orbits
(for example orbits (1,1,0) in Fig. 1 of Ref. [5]) are probably also good
candidates since the nuclear rotation can cause a slight polarization in the
(HO) potential tending to increase nuclear elongation [18]. Thus orbits of
this type may also become flat. These orbits will be referred to as the (NSO)
i.e. neighboring special orbits. In this way the special orbits (SO) and their
neighbors (NSO) with slightly negative alignment 7, (¢f. Eq. (8)) may both
be good candidates that lead to the formation of identical bands in the pair
of nuclei with mass numbers A and (4 + 1).

Now let us add the pseudo-spin to our consideration. This procedure
has been described in Ref. [5] (see also [3] and [4]). It consist on adding
one valence nucleon to the even system with angular momentum I. One
possible way to describe this procedure would be to apply the concept of a
nuclear mean field rotating with a rotational frequency w. This procedure
is known as the cranking model. One can then calculate angular momenta
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Fig. 1. Identical bands in the Ce-Pr region. Various superdeformed bands in one
nucleus are labelled bl(yrast),b2,b3, etc. The zero-point (twin), mid-point, and
coupled bands (quarter-point and three-quarter-point) are denoted by solid (no
arrow), dashed (no arrow) and solid lines (with an arrow up or down), respectively
(cf. Table I). Lines corresponding to pairs of bands in A, A+1 nuclei are labelled by
the rotating harmonic oscillator quantum numbers for the relevant configurations.
Only the one-particle states (i.e. the A, A+ 1 pairs) are explicitly labelled in the
figure. The bands in 132Ce have been chosen as reference bands. Thus the bands in
133Ce are considered as core plus one-neutron states, those in 133Pr as one-proton
states while states in 3! Ce as one-neutron holes. This figure is related to Fig. 16
in Ref. [17].

I' and I in the two bands as functions of w. Their difference calculated for
the same value of w

i(w) = I'(w) - I(w) (11)

is called relative alignment. This quantity can be understood as the contri-
bution of the pseudo-spin added to the core. Thus we can expect that

i(w)=+2or - 1. (12)
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On the other hand, the simple results of the algebra of angular momenta
tells us that when a 1/2 particle is added to the system with angular mo-
mentum I one obtains a system with angular momentum I' differing by one
half integer unit of angular momentum. It follows from Eq. (5) to (7) that
the difference in angular momenta I' — I equals the sum of two signature
exponents , the orbital one /; and the spin one 3;. Thus

I' - I =1 + 3 (mod 2). (13)

We have assumed here that both [jand3; are good quantum numbers.
In this case it seems consistent to relate §; contribution to the alignment 7

51 =1. (14)

The relation between the difference I' — I and the type of the identity
relation has been discussed in [5] (¢f. also [3] and [4]).

Taking into account all the above considerations we can summarize the
above results in the first four rows of Table I i.e. in case when I; and 3; are
good quantum numbers.

TABLE 1

Quantum numbers of valence orbit underlying the creation of identical bands. First
column specifies the type of identity relation. Second column explains the suggested
graphical notation employed in Fig. 1 (abbreviations: [sl no a.]= solid line with no
arrow, [dl no a.]= dashed line with no arrow, [sl a. up]= solid line with an arrow
pointing up and [sl a. dn]= solid line with an arrow pointing down). Third column
exhibits the energy relations between E’ (= energy of the core plus valence state)
(Ei, E,) denoting the lower and upper energies in the core band (sometimes the
interval (E;, E,) may be shifted by an amount corresponding to the change of two
units of angular momentum ). Forth column gives the corresponding difference
in angular momenta I' and I characterizing the core-plus-particle and the core
system. This relation should be understood as an equation (mod 2). Fifth column
shows two quantum numbers I; and § entering eqs.(6) and (7). Finally, sixth
column gives the value of the alignment {c¢f. Eq. (11)).

Type Notation Energy formula -1 l,s 1
0-point sl no a. E' = E +1/2 0,+1/2 +1/2
0-point sl no a. E' = E, -1/2 0,-1/2 -1/2
mid-point dl no a. E' = (E1+ Eu)/2 -1/2 1,+1/2 +1/2
mid-point dl no a. E' = (E+ Ey)/2 +1/2 1,-1/2 -1/2
1/4-point sla.up E'=(3E + E,)/4 +1/2 0,+1/2 0
1/4-point sl a. up E' = (3E;+ E,)/4 +1/2 1,-1/2 0
3/4-point  sla.dn  E' = (E +3E,)/4 -1/2  1,41/2 0
3/4-point sl a. dn E' = (E,+3E,)/4 -1/2 0,-1/2 0
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Examining the first four rows of Table I one can see that the twin
bands occur for the valence orbits having the structure of special bands
(SO) (n2 = n3) while the mid-point bands must be (NSO), for example
with ny = n3 + 1.

Let us now start the analysis of the coupled bands (i.e. the three
quarter- or one quarter-point bands). As previously we assume that a
single-nucleon orbit is added to the core with angular momentum I forming
a composite system with angular momentum I'. It follows from the algebra
of angular momentum that I' — I must be half integer. Thus

I'-I =3 (mod 2), (15)

or
I' = I = -3 (mod 2). (16)

On the other hand, one has to assume that the relative alignments
between the two bands vanishes. It has been argued in Ref. [5] that in this
case the relation (Eq. (15)) implies the weighted average expression for the
gamma-ray energy E' the relation:

E'=(3/4)E; + (1/4)E,. (17)

Now the difference I' — I is equal to the difference between the signature
exponents (mod 2) i.e. the sum of [; + ;. Finally, the pseudo-orbi- tal part
[; of the signature exponent equals 0 for the (SO) or else 1 for the (NSO).
In this way we obtain the full classification of all the possible states for the
single particle added to the core (¢f. rows 5 to 8 in Table I). The above
explanation for the assignments does not seem to be entirely consistent. All
the sets of quantum numbers given in rows 5 to 8 in Table I correspond to
definite alignments different from zero. This is incompatible with the start-
ing assumption ¢ = 0 introduced above for the coupled case. Perhaps some
mixed states composed out of these listed in Table I should be taken into
account in the coupled case. Nevertheless, we shall apply the assignments
exhibited in Table I as explained above with no further reservations.

3. Assignments for identical bands in the
superdeformed region around A4 ~ 130

We have chosen the A ~ 130 region in order to illustrate the possi-
ble single-particle assignments in terms of the (RHO) quantum numbers
and explain the consequences that follow from this procedure. Several SD
bands have been observed in this region and numerous identical pairs of
these bands have been suggested ([8-12]). The identity relations have been
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discussed for the pairs of bands in (31Ce, *%2Ce) , (*32Ce, '**Ce) and
(132Ce, 133Pr). Nuclear deformations in this region are generally of the or-
der of € = 0.34 which is not far from ¢ = 3/8 corresponding to the 3:2 ratio
of axes This is a region of considerably lower deformations as compared to
the 2:1 ratio observed in the A ~ 150 region. Nevertheless typical SD bands
have been observed . The appearance of the superdeformation in this region
is connected with the existence of some appreciable gaps that occur in the
spectrum of the independent Routhians at the neutron number N = 74 and
proton number Z = 58 (cf. Ref. [19]).

Let us now search for the more detailed analysis of the independent
particle Routhians in connection with the existence of the identical bands.
We shall assume that the pairing correlations are negligible. As follows
from the considerations in Chapter 2 the occurrence of the identical bands
requires the presence of the appropriate orbits for both neutrons and protons
in this region.

The general chart of the existing identical bands in the A ~ 130 region
is given in Fig. 1. Here, lines joining particular bands (solid line with no
arrow, dashed line, solid line with an arrow pointing upward or downward)
denote various types of identity relations which are taken from experiments
with labels established in Table I. The chart has been drawn treating the
133Ce and 133Pr as one-particle states (neutron, or proton) while the 131Ce
— as one-hole states with respect to the 132Ce nucleus treated as a reference.
This statement is important since the whole system of lines and arrows in
Fig. 1 corresponds to the notation treating 32Ce as a reference. In the
A ~ 130 region the relevant (SO) configurations are (2,0,0) and (1,1,0)
(NSO) for protons and the (1,1,1) (SO) together with the (0,2,1) (NSO)
for neutrons. We also assume the bands in 13!Ce as one-hole states with
respect to the 132Ce reference.

Now let us examine more closely some details of Fig. 1 Let us start with
the triangle formed by band b2 in *32Ce, band b3 in 132Ce and band bl
(yrast) in 131Ce. We suggest that 13!Ce (band bl)is a one-neutron hole
with respect to the core 1*2Ce (band b2) of the 3/4-point type. Thus the
single-particle configuration for this hole state can be assigned as (SO) v
(1,1,1) according to consideration in Section 2 (¢f. Table I). The other
possible choice would be an (NSO) » (0,2,1). On the other hand, the single-
hole for the pair 132Ce (b3) and '31Ce (b1) which is of the zero-point type
(cf. Fig. 1 and Table I) can be only an (SO) v (1,1,1). No other assignment
like the (NSO)) is possible for a zero-point type (cf. Table I). The third
link of the triangle corresponds to b2 and b3 in 132Ce. It is the 3/4-type
and must be a one-particle plus one hole configuration (treating the b2 as
a reference) connected with the change of the (SO) v (1,1,1) (3/4-point)
into the (SO) » (1,1,1) (0-point) in 1¥1Ce (b3). The other possible choice
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would be an (NSO) v (0,2,1) into the (SO) v (1,1,1) (zero point for the same
pair of bands. This example hopefully illustrates well the principles for the
assignment procedure. In a similar way one may assign the links between
the (SD) bands in **2Ce and !**Pr nuclei shown in Fig. 1, or the (not so
certain, marked with “?”) links starting from 13! Ce (b2).

Obviously, the absence of some links in Fig. 1 implies that the corre-
sponding bands are not identical so that they are based on configuration
different from those mentioned up to now.

It should be stressed that all the above assignments are rather tentative.
In fact they are not based on the detailed examination of the single-particle
Routhians as functions of the rotational frequency w. We believe, however,
that such a detailed calculation may depend on many model-dependent
parameters and it is rather difficult to confront them with experiment. The
order of the single-particle Routhians has not been yet established by reliable
experiments up to now. On the other hand the appearance of the identical
bands which is rather known experimentally may perhaps help by providing
some data on the location of some Routhian orbits and thus understand
better the structure in a deformed fast rotating nucleus.

The author is grateful to Jean Gizon for communicating his results prior
to publication and to Krzysztof Burzyniski for his continuous patience in
handling the authors innumerable problems with programming and LATEX.
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