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It is shown that quantum fluctuations due to a nontrivial gravita-
tional background in the flat radiation dominated universe can play an
important cosmological role generating nonvanishing cosmological global
charge, e.g. baryon number, asymmetry. The explicit form of the fluc-
tuations at vacuum and at finite temperature is given. Implications for
particle physics are discussed.

PACS numbers: 98.80.Cq

1. Introduction

Since the early eighties it has been widely recognized that quantum
fluctuations of scalar matter fields may play an important role in cosmology,
especially in the context of the inflationary de Sitter epoch [1]. The reason is
that in the de Sitter space fluctuations of the light fields (m?/H? < 1, where
Hy is the de Sitter Hubble parameter) grow linearly with time assuming
finally a significantly large value of the order of Hj / m2. Tt is believed that
fluctuations produced at the time of inflation are seen during subsequent
stages of the evolution of the universe as energy density inhomogeneities
responsible for the formation of the large scale structure. It is also argued
that those fluctuations set initial conditions for the classical evolution of
fields in subsequent epochs.
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In contrast to the above, it is usually assumed that gravitationally in-
duced fluctuations in spatially flat radiation dominated (RD) and matter
dominated (MD) epochs are irrelevant for particle physics. We would like
to point out that this assumption is not properly discussed in the literature.
On one hand, one observes that in the RD universe the fluctuations (as
explained in this letter) decrease in time. On the other hand, they may in
principle be large enough to control violation of some symmetries or to alter
the evolution of some fields. This problem becomes particularly important
in view of the ongoing search for a reliable mechanism for production of the
baryon asymmetry in the Universe, the need of better understanding of the
scenarios for late phase transitions and discussions of the possible lepton
number nonconservation.

In this letter we address the problem of quantum fluctuations of a mas-
sive scalar field during the RD epoch. This epoch covers most of the history
of the Universe, and the temperature range from, say, 1014 GeV down to
10 eV. On that energy scale one can find a lot of interesting phenomena
in popular extensions of the standard model such as its supersymmetric
version or string inspired models.

The paper is organized as follows. In Section 2 we set our notation and
subsequently evaluate fluctuations of a massive scalar field in the RD flat
Robertson—Walker space at vacuum and at finite temperature. In Section 3
we apply our formulae to a generic field theoretical model with particular
attention paid to two specific examples resembling the Affleck-Dine model
[2] and the so-called spontaneous baryogenesis scenario [3].

2. Scalar field fluctuations in the RD universe

The RD Universe is the solution to the Einstein’s equations with the
energy-momentum tensor in the form T} = diag(p, —p, —p, —p). Traceless-
ness of the T}’ implies equation of state for the content of the RD Universe:
p = 3p. In this letter we assume a flat RD space endowed with the met-
ric g, = diag(l, —a?(t), —a%(t), —a%(t)) where a(t) is the RW scale factor
given by a(t) = (t/to)!/?, to being the beginning of the RD epoch.

The results presented in this paper can be easily generalized to the
matter dominated era.

We couple a massive scalar field to gravity in the minimal way (note
that in the RD epoch the curvature scalar R vanishes identically)

S(é] = / dar/=5 (99,80, — m*8?) . (1)

As usual in this type of analysis we assume that there is no “back-
reaction” of the scalar field on the metric, ¢f. [4]. The equation resulting
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from Eq. (1) is (k = |k|)

2 ad Kk 2
(F+3ga+a—2+m)¢k(t)—0’ (2)

where ¢ (t) is the spatial Fourier transform of the field #(%,1),

&(Z,t) = / Z—;_% ((i)k(t)e“—éia}; + h.c.) (3)

with at and its Hermitian conjugate denoting standard creation and anni-
hilation operators respectively.

A general solution of the equation (2) for a(t) = (t/ to)1/? is given by
confluent hypergeometric functions

; k%ty 3
or(t) = Al(k,m)2iktoe_zmt1F1 (§ + Z_Q, =, 2imt)

4 2m 2
VI _imt 1 k%t 1 _,
As(k Y e YR+ ——, =, 2tmt ). 4
+ A( ’m)\/ie 1y | g+ 5 g 2im (4)

The two undetermined coefficients 4; and Az , which may in principle
depend on both m and k, are not independent if one takes into account
quantization condition imposed on a field ¢

(8(2, ), 0:(51)] = 7%6“’(5 ) (5)
[ak, a;,] = (27)32k6C3)(k — k') (6)

From these equations and the decomposition (3) we get a normalization
condition .
Im(¢(t)0:0r(t)) = — 7
(6r(2)0:9k(t)) Ner (7)
which translates into the constraint on A; and Az (we confine them to be
real)
A](k,m)Az(k, m) =1. (8)

In most general case there are several ways of fixing both coefficients. One
possibility is to use initial conditions set at the timelike surface ¢t = o for ¢
and d;¢. This is the proper procedure if one knows for example the explicit
solution for ¢ in the epoch preceding the RD one. We do not assume such
a detailed knowledge, hence we use an alternative approach instead. We
demand that the “correct” mode functions we choose, which will define
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our Fock space, should approach at short distances (kK — oco) the massless
positive frequency solution,

bult) - l/—}fe“’““% - (9)

In this way we obtain the asymptotic behaviour of both coefficients
Alyz(k, m) — 1. (10)

Here we assume that 47 = A = 1, what completes the definition of our
Fock space.

We set out to calculate the fluctuations of the field ¢ i.e. (0]¢?|0). This
quantity is divergent and needs renormalization. We calculate the Green’s
function (§(Z,t)¢(a",t)), separate out the piece divergent when |Z — &'| —
0 and define the renormalized fluctuations as the remaining piece when
|Z &' =0.

3
(8(3, /(2d fzk !¢ t)lz ik(Z— :c))
/dk k Sm(k}f_ :D (. (11)

|
Introducing the physical distance o = |& — #'|a(t) we may write (y =

ky/Ho/(mt))

sm(mya)

m2 i
($(E, (&, 1) = T / dy y £y, mt)?
0

B _nﬁ/d sin(myo) y

B 47r"’0 VY myo V2 1

+ m? 701 sin(myo) | f(y, mt)|? — —Y .2
=y VY v, =)

1 wyimt 1 ) 3 iy’mt 3 .
fly,mt) = 1F (Z + %— 2 2zmt> + 2iymt 1 Fy (Z + y—2m’§’22mt) .
(13)
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The first term in (12) contains all the short distance divergencies of the
Green function:

m? Kq(mo) m? 1 1
T A (m + Eln(mO') + const + 0(0’))
(14)

The second factor in (12) is finite when ¢ — 0 and defines (¢?)g (up
to a constant which can always be added)

2 _ﬁz_m mi)l? — y
(¢' )R_ 472 / dy y (lf(y’ t)l m) . (15)

Unfortunately, (¢? )R cannot be explicitly evaluated in its most general
form. However, it is possible to write down the systematic expansion of the
mode functions (4) and the integral (15) in terms of mt. Using such an
expansion we will be able to discuss reliably fluctuations in the regime of
small mass and to control the passage to the massless limit. For the region
mt > 1 we apply the WKB method.

In the case mt < 1, the relevant expansion of modes is given by (cf. [5])

Gaiv =

472 mo a—oo 472

f(ya mt) =

3 [P @mt)jna(2ym) + ipl D(2mt) jn(2ymt)]

n==0

1

(2ymt)n—1
(16)

(#)

The j, is the n-th spherical Bessel function and coefficient p;; ’ can be read

from
bt -en(; - 1)) (55) " o

One easily finds that

sin?(2ym
| #(y, mt)[? = [1+(mt)2( 8(;%4” - 2(y;t)2) +] . (8)

On the basis of the expansion we see that indeed (¢%)g is the ultraviolet-
finite quantity. It is also infrared finite, since the modes are perfectly regular
functions for k¥ — 0 (i.e. y — 0).

In the region mt < 1, with the help of the expansion (18), we get the
following formula for the leading behaviour:

2

(MR 8’”—( ~In(mt) + const + O((mt)?)) . (19)
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One should note that the fluctuations vanish as m approaches zero and
grow with m if we keep mt constant. This agrees with the earlier result
for an exactly massless field reported in Ref. [6]. The interesting feature
of the formula (19) is its non-analyticity in mt and the appearance of the
logarithmic singularity at ¢ = 0 which is related to the singularity of the
RD Universe at ¢t = 0.

In the regime mt > 1 we use the WKB expansion to get the amplitude
of fluctuations ([4]). When we change time ¢ to the conformal time 7 defined
as

in= 15 (20)
and introduce
uk(n) = a(n)gx(n) (21)
then the equation (2) is transformed to
2
&G + W mun() = 0 (22)
with e = 1 and
w?(n) = k% + m2a®. (23)

Now we substitute WKB expression

ug(n) = —\]{—i—jexp( /\/vdn) (23)

and expand

s = 2Dy eqim)+ Efam)+ e (29)
The solution to (22) is given by
3(w')? - 2w
filn) = —(“)—Sw—f—‘ (26)
fa(n) = —297(w")* + 396w(w')2w" — 52w?(w")? — 80ww'w'" + Bwiw""
3(m) = 128w7 ‘
(27)

The amplitude of fluctuations is given by

(#")m = Er%jdk ¢ (f(ln) w(Gn)) (28)

. 7dkk2 (_esfl_ /s 58’;)2+o(e"))- (29)

472q2 w? w?

0
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The procedure outlined above remains valid in any era — we now re-
strict ourselves to the radiation epoch. In this era

m2n2
a(n) = n/(2t),  wlm) = 4/ + T3 (30)
0
and the result of integration is
16t 1 H(t)*
(¢")r = = S HOT ey

2407:27712178 16 x 24072m?2¢*  2407w2m?

Up to now we have been calculating curved space vacuum expectation
value of ¢%. However, if we were to take into account that the Universe is
“hot”, i.e. it is in fact in a mixed state to which many-particle states may
contribute significantly, we should better calculate a thermal average of ¢,
with finite temperature effects included. Assuming thermal equilibrium of
the content of the Universe we have

(#rse = [ (ﬁﬁwu +omy), (32)

where ¢; are modes given by (4), (10), and nj, is the occupation number
for the particles with the comoving momentum k. As nj we take

ng = - (33)

exp (\/k"’/Ti2 + mz/Tz) -

which is correct for sufficiently large k in view of the choice (9) (T is the
temperature at the onset of the radiation era, close to the reheating temper-
ature). The (32) is again divergent. However, as usual in finite-temperature
calculations, it may be divided into T = 0 part and the temperature cor-
rection, among which only the former is UV divergent. Hence, we can use
the renormalization procedure (11) to get meaningful results even at T > 0

<¢2)|renormalized,T20 - <¢2>R + <¢2>£’ (34)

where

A 1
3 k :
(2m)"2k exp (\/kz/Tiz—{-mz/Tz) -1
This expression may be approximated analytically in two limiting cases: a)

m/T > 1, and b) m/T < 1. In the case b) one easily gets

T2
12°

(#")k = (35)

(0= (36)
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exactly as in the flat Minkowski case. In the case a) one can see that in the
region which dominates the integral, k < mT;/T, the second term in (4) is
unimportant. Hence we obtain

() F ~e ™/ T (37)

which is exponentially suppressed.

3. Implications for particle physics in the expanding Universe

Let us consider a global U(1) symmetry realized in a single complex
scalar field model. If Q is the charge of the field x, the Noether current
associated with that symmetry is

i* = 1Q{x0"x — x8*x}, (38)

(we put Q=1 in what follows) and the conservation law for j# in the ex-
panding Universe reads

ov BV} (39)

u(a(1)i*) = —ia*(t) {55 ~ x5

One can see that a symmetry is broken once the rhs of (39) is nonvanish-
ing. One can see also that when a symmetry is broken explicitly, the net
cosmological charge density gets generated according to the formula

d ov ov
-3 .0 3 L)
— )~ — — X . 40
a0~ i {35 x5 (40)
Let us assume that the term violating the symmetry is

§V = *", (41)

2nA2"

where ¢ = Re(x) (in this section we assume the absence of derivative cou-
plings, they will be discussed later). Suppose that the initial conditions and
the shape of the potential are such that the Im(x) and its fluctuations are
negligible when compared with Re(x) at any time ¢ (this situation may be
easily realized in the Affleck-Dine model, cf. [8]). Hence

a—3

a3(t)) ~ i g™ (42)

We can see that the magnitude of the symmetry violation is proportional to
a coupling ), inverse powers of some scale 4 if n > 2, and to some power of
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the scalar field ¢. One can say that, A and A being fixed in a given theory, the
expectation value of ¢ determines the amount of symmetry breaking. Here
the quantum fluctuations of the field ¢ come into play. In the quasiclassical
picture one can describe the evolution of the quantum field, lets call it &,
writing it down as the superposition of the quasiclassical field ¢ which obeys
essentially classical (perhaps perturbatively corrected) equation of motion
and quantum fluctuations §¢, the dispersion squared of which we identify
as (¢?)p. If the potential drives the quasiclassical field to zero, then the
magnitude of the symmetry breaking term is determined by the dispersion
of 6¢. Using (¢)*™ = ((¢?))" one gets an estimate

4 n
a2 (00 (0) = Ain( 2:;7(2712) . (43)

In general the field ¢ has some additional couplings to light particles,
which facilitate its decay with the decay width I'y. This changes the be-
haviour of the classical field ¢, namely ¢* — exp(—I't) ¢2. Actually, as
pointed out by several authors in the context of the Affleck—Dine mecha-
nism (which corresponds to our toy model when n = 2) the I'y should be
reasonably large in order to avoid an unobservable excess of the net charge
produced during symmetry violation [8]. We want to stress that in such
a case, the (¢?), decaying accordingly to the power law, dominates the
divergence of the Nother current and the net cosmological charge density
even at the late times.

As next example let us consider models where a massive scalar ¢ is
derivatively coupled to other particle species. This situation corresponds
for instance to models possessing pseudogoldstone bosons with nonvanish-
ing masses. The relevant scenario is similar to that of the “spontaneous
baryogenesis” described in Ref. [5]. If a Lagrangian has a coupling of the
form Ly = —%qﬁap 7* (f being some, presumably large, mass scale) where
Juj* is a divergence of a current corresponding to some explicitly broken
symmetry, the baryon number symmetry for instance. Then, as we have
shown, there are fluctuations in the field ¢ with dispersion /(¢%)g. We
may represent them as the effective term in the Lagrangian

Lsy = —%\/ ($*)pOpi* - (44)

Up to the total divergence (44) is equivalent to

Loy = 200\/(#)mi". (45)
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This produces an effective chemical potential g = —(1/f)8+/(¢?)g for
the charge density j% which means a nonzero cosmological charge density
generated in thermal equilibrium. Explicitly, ¢f. [9],

0~ —}at (6% nT?, (46)

or charge to entropy ratio

i* 1
—a - fg*Tat (6% R » (47)

where g, is the number of relativistic degrees of freedom at temperature 7.
The above estimate gives in the case of our toy model

5° m 1
Tx , (48)
s 49.fT t,/In(1/mt)
when mt < 1, i.e. at very high temperatures T, and
j° 00?1 (49)

s g fT mt3’

for mt > 1, hence at late times — low temperatures. One can see that both
expressions fall off as time elapses, as ~ T at late times and as ~ T at
the beginning of the RD epoch. If there is no phase transition in the model
before the end of RD epoch, then the final charge to entropy ratio produced
will be equal to (48) or (49) taken at the “decoupling” temperature Tp.
This is the temperature at which symmetry violating interactions fall off
from equilibrium or the one which corresponds to the end of RD stage,
when the shape of the fluctuations changes qualitatively i.e. at Tp ~ Ty
close to 10 eV. As previously, the numerical values predicted depend on
various details of a model under investigation. For example, let us take
Tp = 10 eV and g. = 100. Then if we require the charge-to-entropy ratio
to be equal to 10719, as it should be for the baryonic charge, then we
get the condition m = f* x 10~7"GeV, which gives m = 10717GeV for
f =10"%GeV and m = 1GeV for f = 101%GeV.

4. Conclusions

In this letter we have given explicit expressions for a massive scalar field
fluctuations in the flat radiation dominated universe. It turns out that in
the region of small mt, i.e. shortly after the beginning of the RD epoch or for
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very light fields, the fluctuations decrease with time only logarithmically and
are proportional to the square of the mass of the field in question. For large
mt, i.e. very late or for a heavy field, the time dependence is stronger, 1/t%.
As far as finite temperatures are concerned, we have concluded that the
“radiation-dominated” background modifies Minkowski space results very
weakly. In general, fluctuations vanish when one takes the limit m — 0.

Given all that, the postinflationary fluctuations can still play a signifi-
cant role in particle physics models, which has been illustrated in the sec-
ond part of this note. The case when our parameter n equals 2 corresponds
precisely to the Affleck-Dine model, and the higher n terms are often en-
countered in the important class of string inspired supergravities. The late
fluctuations constitute the phenomenon which is relevant when some cosmo-
logical charge density, first of all the baryonic charge density, is supposed to
be generated during the radiation dominated epoch. The results presented
in this paper can be easily generalized to the matter dominated era.
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