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We begin with the presentation of the well known method used in clas-
sical mechanics for purpose of extending the Galilei group centrally. We
show then that it is not possible to carry over this method mutatis mu-
tandis to the case of classical scalar fields and relativistic transformations
like Poincaré, Lorentz and translational groups.

PACS numbers: 03.65. Fd

1. Introduction

It is known from mathematical studies that some Lie groups admit an
extension of the set of generators by elements which commute with them-
selves and all the rest. These generators are called central and the extension
itself — a central extension. A criterion for a non trivial inequivalent central
extension of a Lie algebra is that the elements of the second scalar coho-
mology group are not trivial. Moreover, for a semisimple Lie algebra the
second cohomology group is trivial (theorems of Whitehead, see e.g. [1]).
For example the cohomology, considered above, for the Galilei group is not
trivial and therefore the algebra of the latter can be centrally extended by
a scalar generator. The same applies to the algebra of the translational
group. On the other hand the Lorentz group has a trivial cohomology and
does not allow any central extension. It is possible to incorporate also some
super-algebras in the scheme mentioned above. In this case, for N > 2, the
supersymmetric Poincaré transformation admits a nontrivial central exten-
sion [2].

This all does not mean that the algebra of the Lorentz group does not
admit any extension. It can be extended not only to the Poincaré group
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algebra, ¢.e. to a group comprising the Lorentz as well as the 4-dimensional
translation group, but even to the 4-dimensional conformal group algebra,
consisting of the special conformal, dilatational and Poincaré groups.

In case of the Galilei group the central extension of its algebra can
be most easily obtained and physically interpreted by modifying the La-
grangian usually used to describe a classical free nonrelativistic massive
particle. It is well known that this Lagrangian is weakly invariant under
the Galilei transformations of the three position and one time coordinates.
We may, however, enlarge the original representations space by one addi-
tional degree of freedom in such a way that a properly modified Lagrangian,
depending now on all five variables, stays invariant under the Galilei trans-
formation. The presence of the additional coordinate causes that the num-
ber of generators of the group becomes larger too, namely it grows by one.
This new generator commutes with all the others. This is just the central
extension of the original Galilei group, playing an important role in quantum
mechanics.

It seems natural to apply a similar method in case of Lorentz or Poincaré
transformation. In classical relativistic case, however, the Lagrangian for
one free particle is invariant under this transformation and therefore there
is no point to apply this method in this particular case. But the situation
is different in case of a model of a classical relativistic field. Here the La-
grangian is weakly invariant under the Lorentz or Poincaré transformations,
it means that the transformed Lagrangian differs from the original one by
a 4-dimensional divergence of a vector. Thus one may try to apply the
method outlined above to this case mutatis mutandis. To test the possibil-
ity of carrying over the method used in classical mechanics to the case of
classical fields we concentrate upon the case of scalar fields. As the diver-
gence concerns a 4-dimensional vector we do not expect that the extension
of the groups under consideration will be central.

Unfortunately, it turns out that it is not possible to use this method
successfully in this case. The reason is the incompatibility of the standard
transformation properties of the 4-vector appearing in the divergence under
the relativistic groups with the transformation properties, resulting from the
requirement to keep the modified Lagrangian invariant under these group
transformations. Thus in case of translations, Lorentz as well as Poincaré
transformations our construction explained in detail below leads inevitably
to a statement of a type of a “no go” theorem.
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2. Nonrelativistic free massive classical particle
and the central extension of the Galilei group

Let us start by recapitulating some well known facts about the Galilei
transformation of a system consisting of a scalar massive particle moving
freely in a 3-dimensional Euclidean space [3].

The Galilean transformation reads

z—z =g(tz)=Re —vt+a, (2.1)
t—t =h(t)=t+b, (2.2)
where z = (21, 22,23), v = (v1,v2,v3), @ = (a1,a2,a3) etc. All quantities

appearing in (2.1) and (2.2) are real. The 3-dimensional matrix R = (R~*)T
as well as v, a and b are constants. Since

R —v
Det(0 1 )#0,

2 >z=RT2'+ RTvt' - RTa - RTwb s
t' >t=1t'-b,

we have

We assume not that z is a function of some continuous parameter 7
which we identify with ¢. Thus

z=f(r=1),
and
e’ = g(t,2(t) = £'(t) = RF(t) - v(t) + a.

The Lagrangian density of a nonrelativistic free particle of mass m # 0

m df(t)

£="(jw)’ fiy= 42

Il

is not invariant under the Galilei transformation, namely we have

L'=L+W (2.3a)

b
W =m %/(f(t+u))2du—va(t+b)+-;—t+c . (2.3b)
0

t.e. the Lagrangian is weakly invariant.
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Although we are dealing here exclusively with a classical theory our
final goal is quantum mechanics. It is well known that the Schrédinger
wavefunctions are given in the latter case not as vector but as ray repre-
sentations of the Galilei group. The quantum mechanical group is a central
extensions of the classical group [4]. We may also perform this extension in
the classical case by introducing an additional variable, say, s in addition
to ¢ and t. This variable will be defined in such a way that the modified
Lagrangian should stay invariant under the Galilei transformation.

The new Lagrangian reads

L=L=ms.
This Lagrangian is singular as $ enters here linearly. We require that
L'=C
under the Galilei transformation. Therefore,
' 1
s—os =5+ —W.
m

Notice, that the transform of s depends on the prescription how « changes
with 7 = t due to the term

t+b

/ (Fw) du.

i

in (2.3).
For infinitesimal transformations we have

R=1+X+0()), AT =,

We may also write

Aij = Efijklk ) ,7=1,2,3.
k

In case of pure rotations we have up to terms of higher order of smallness.
2] = 2 = 21 + Aim@m = (L + Ajm2m8;) 21 = (1 + leLi) 2,

with
Lk = —ekmja:maj s
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as well as
s =s+cM=s+4 l,-cgl) = (1 + liLga)) s,

with p
_ (1
Wi

In case of boosting we obtain
gy oz =21 -ty = (1 - v;Gi)zy,
G; = —~t8;

s—s8 =s—vizg; + vgcﬁz) = (1 + v,‘GE’)) s,

GE") = (:c,- - 652)) dis .

In case of spatial translation
H
oz, =2ita; = (1+aij)zi,
P; = 05,
s—s =s+4+c03) = (14 a;P#) 3,

O]

T dg”

Finally for time translations

t—ot'=t+b=(1+bP)t,

Py= —
0 dt’

s—s=s+ %b (f(t))2 + be(®) = (1 + bPé”) s,
P = B (f(t))2 + c(“)] dils :

We have
c = licgl) + vicgz) + a,-cga) + b .
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We may introduce modified generators of the Galilei group, corresponding
to the central extension, viz.

L;= L; + cgl)P(’) ,
éi = G; ~ (21‘ — cgz)) P ,
P,= P;+cMP0),
Py= P+ [% (f(t))2 c(4)J P,
where p
P = e

Some of the standard commutation relations of the Lie algebra of the Galilei
group undergo now some changes, viz.

[Ei,ij: = €45k (Zk - CSCI)P(S)) ,
[Zi,éj; = Eijk (ék - Cgcz)P(s)) ,
[Zi, ~j: = €5k (ﬁk - c§c3)P(s)) ,

{éi, I‘Bj‘ = 6ijkP(s)

other commutators stay unchanged.
This abstract relations of the Lie algebra of the Galilei group, extended
centrally by the operator P(5), have to be supplemented by a constraint [5]
oL
P === _ . 2.4
a5 " (2:4)
This constraint is physically closely linked to quantal effects namely to the
super selection rule, preserving the validity of the superposition principle [4].
The eigenstate of P(*) corresponding to the eigenvalue y is proportional to
exp{ius}. Under the Galilei transformation this state goes over into

e exp {—iﬁW} .
m

For py # p2 we are not able to observe the validity of the superposition
principle as
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. . . 1 . 1 . . .
etk s 1 ethas _, piH1S | oiHas # et (ezuls +ezy.gs) ,

unless p3 = g2 = m. The latter is insured by the constraint (2.4).

3. Testing the extension of relativistic groups on the model
of a relativistic classical scalar field

Our goal is to transfer the method presented in Section 2 to systems
consisting of classical relativistic fields and investigate the corresponding
symmetries, namely Lorentz, translation or Poincaré transformations. This
method cannot be transferred automatically and has to be adjusted to new
circumstances. The Lagrangian density of the fields is, as we know, weakly
invariant under these transformations. We are going hereafter to restrict
ourselves to the case of scalar fields putting off the investigations of fields
of different tensor character to a later stage.

Unfortunately, the results obtained by us in case of scalar fields have
partly the nature of a “no go” theorem.

In case of classical relativistic scalar fields no a prior: restriction upon
the shape of the Lagrangian density with respect to the relativistic symme-
tries will be imposed except that it should be a scalar density.

Our metric will be 7, = diag(1,-1,-1,-1).

Let us consider a scalar field ¢(z) obeying the following transformation
prescription with respect to the Poincaré group [6],

'(z) = ¢(z') , z' = Az + a,

z = (2o, 21,22,23) , a = (ag,a1,az,a3) , A€ LL ete. .

For the Lagrangian
L(z) = L(¢(z),9¢(2)) ,
a¢(2) = (80¢(1:)a 61¢($), 32(}5(2), 33(‘3)) ’
and a = 0 (proper Lorentz transformation) we have

1

1 -~
£(Az)—£(:c):/%£(5)du /‘%(‘”) (A7) " L Ajondu, (3)
0

Oz, p du
0

where N

z = A(u)z
A(u) € LL_, 0 < u < 1, and A(u) describe a path for which A(0) = 1 and
A1) = 4.
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From (3.1) we obtain

z du)

/ £(3)Tx (A-l ‘;A) du (3.2)

The last term vanishes. To see that notice that

L(Az) - L(z) =£—; ( / LE) A l)u

du A =-4 du’
and N N
nATy=A"1.

The left hand side of (3.2) is a divergence, which, in general, does not vanish
and therefore £(z) is weakly invariant under Lorentz transformations.

In a similar way we may handle the case a # 0 (proper Poincaré trans-
formation). We get

L(z') - L(z) = %Gu (z,4,a), (3.3a)

where
G, (2, 4,0) = / Ew) (4 ) (d;‘un 2 + ‘%) du, (3.3b)
Lu)=L (Z(u)z + a(u)) : (3.3¢)
#0)=0 d1l)=a 0<u<l. (3.3d)

Let us introduce four new fields, §,, v = 1,2, 3, and require that they
transforms under Poincaré transformations as follows

S, (2, 4,a) = 5,(z) + %G,,(:c,A, a)+ %Tz,(z,A, a),  (3.4a)

where R
8#¥h, =0. (3.4b)
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We may define now a new Lagrangian, using the fields §,, viz.

L(z) = L(z) - g8”S,(z).
We require, as in case of a nonrelativistic particle, that [6]
E(:c') = L(z), z' = Az +a.
By virtue of (3.3), (3.4) and (3.5) we conclude from (3.6) that

-1 A@S,\(z') 3Sy(z, 4, a)
(477), oo

or
(A—l)yA S)\(Az + a) = §,(z, 4, a) + ézu(z, 4, a) ’

with _
8h, =0.

If we insert (3.7) in (3.4) we get

(471) >} 8x(Az + a) — 8, (=) = iay(z, A,0)+ gl,' ho(z, A, a),

with
8%h, =

823

(3.5)

(3.6)

(3.7a)

(3.7b)

(3.8a)

(3.8b)

4. The case of translational and Poincaré transformations

Let us first concentrate upon the case of translations, i.e. when in (3.8)
A = 1. If functions §, would exist in this case relations (3.5) and (3.6)

imply 5
L(z+a)-g5—5Su(z+a)=L(z)—g5— #(3)
Oz,
for each real a. We conclude immediately that in this case

L(z) = —‘?—— (0u54)

up to a constant. This renders the theory trivial.

It follows from the latter statement that also in case of Poincaré trans-
formations (A # 1, a # 0 ) we are not able to introduce the variable S,

unless the theory becomes trivial.
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5. The case of Lorentz transformations

It seems to be clear, looking at (3.5), that in case of Lorentz trans-

formations £ should be a function of z2 only. This follows also from the
equations obtained in case of infinitesimal Lorentz transformations, vz.,

’I)/“’SA _ T]AVS# _ z)\ausu + zp.aASu

= —lﬁ (7)’“’:cA - n’\”z“) + t RVEA | (5.1)
g 9
where h¥#* = —h¥** and §,h*#* = 0. By taking the divergence with
respect to J,, on both sides of (5.1) we get
2 ML = 2HOML. (5.2)
From (5.2) follows then
L = F(z?), (5.3)

or constant.

Since L depends on ¢(z), 0,¢(z) as well as on §,5#(z), where these
fields are not yet specified, (5.3) implies that all of them have to be functions
of 22 only or constants. However, this solution of the problem is of no
interest in a standard classical field theory.

This renders the theory trivial again.

6. Final remark

What is the reason that the procedure applied successfully in case of a
nonrelativistic freely moving scalar massive particle fails when simulated in
case of relativistic scalar field theory?

In our opinion, both cases differ essentially from each other. Notice,
that the counterpart of the 3-vector (21,22, z3) in the classical one-particle
model is now the scalar field ¢ and the counterpart of 7 = ¢ is the 4-vector
(zo,z1,22,23). In case of the Galilei group t as well as z transform under
a common transformation. In case of relativistic groups the only changes
arise from the transformation of 2, while ¢ does not undergo any variation.
Even if we take into consideration a tensor field, which transforms under
the Lorentz transformation according to its rank, this field and z transform
separately under two different representations of the group.

The author is grateful to Dr Zbigniew Hasiewicz, Dr Jerzy Lukierski
and Dr Dieter Maison for helpful discussions.
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