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Firstly we show how fundamental masses (Planck mass, string mass)
appear as a feature of quantum gravity as well as in fundamental string
theory. Further we use the classical r-matrix approach for the description
of the lowest order quantum deformations. We provide relevant examples
of D = 4 Poincaré and D = 4 conformal bialgebras which introduce
fundamental masses as deformation parameters.
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1. Introduction

Recently the quantum deformations [1-3] were applied also to the de-
scription of D = 4 space time symmetries. After proposing some particular
deformations (see e.g. [4-14]) the classification schemes of quantum defor-
mations of Poincaré groups [15] as well as Poincaré algebras [16, 17] were
given. These mathematical classification schemes provide the deformation
schemes by using the language of classical r-matrices [16] as well as Hopf
algebras [15, 17]. The physical applications however should select the defor-
mations which are more plausible from the physical point of view. We shall
consider here the deformations of the following space-time Lie algebras:

a) Quantum algebras, obtained by the deformation of D = 4 Poincaré
algebra Pj3;; with generators (P, M,,):
{Mpy, Mp‘r] = np.'rMup - nVTMpp + nppMm‘ - ﬂvap,‘r 3
[(Myuvs Pp) = MppPy — My Py,
(P., P,]=0. (1.1)
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b) Quantum D = 4 conformal algebras, obtained by the deformation of
the 15-generator algebra (P,, M,,, D, K,):

[M#V’D]ZO’ [P,,,,D]:Pp,,

(Myuy, Kp) = gupKyv — 9vpKy,

(Pus Kp| = gupD — Myp,

[KI“ D] = _KF" [‘Kﬂ’ Ku] =0, (1'2)

supplemented by the relations (1.1). We denote the algebra (1.1)—(1.2) by
Cs;1.

The generators of the Poincaré as well as the conformal algebra un-
dergo the following transformations after the change of the length scale by
a numerical factor A

P,=X"'P,, K,=)K,, (1.3)
The remaining generators My, and D are dimensionless (M Ly_ = My,
D' = D). If one introduces the quantum deformations Ug(P3;1), Ug(C3;1)
of the classical enveloping algebras U(Ps;1), U(C3;1) one can distinguish the
following three types of deformations (§ = P3;1 or C3;1):

a) With dimensionless deformation parameter g.
In such a case there exists the isomorphism of quantum algebra

Ug(§) = Ug(3') - (1.4)

b) With dimensionfull deformation parameter which we denote by «, trans-
forming under rescaling (1.4) as some fundamental mass parameter

£ =271k, (1.5)
We obtain the following isomorphism
Un(g) = Ue(§"). (1.6)

¢) Quantum deformations of space-time symmetries with deformation pa-
rameter not having definite scaling properties.

In this paper we would like firstly to present the arguments that at
subatomic distances, comparable to Planck length, there is a place for the
appearance of a new geometry describing fundamental interactions with
a third fundamental constant, describing the fundamental length or mass
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scale (see Sect. 2). It follows therefore that the most plausible from the
physical point of view are the deformations satisfying the condition (1.6).
In Sect. 3 we shall consider the quantum deformations of D = 4 Poincaré
algebras with dimensionfull mass-like deformation parameter using the lan-
guage of classical r-matrices [16]. In particular we will argue that there
are three distinguished quantum deformations of D = 4 Poincaré alge-
bra,which we denote by Ll,(e+)(‘P3;1), U,(;-)('P;;;]), U,(co)('Ps;l), respectively
with three three-dimensional O(3), O(2,1) and e(2) classical subalgebras.
In Sect. 4 we describe quantum deformation of D = 4 conformal algebra,
with deformation parameter introducing fundamental mass (see also [18]).
In Sect. 5 there are presented some conclusions.

2. The existence of fundamental length in quantum theories of

gravity and strings

It is well-known that two fundamental constants — light velocity ¢ and
Planck constant A — are introduced respectively by relativistic kinematics
(Einstein’s special relativity) and quantum mechanics. In quantum mechan-
ics the noncommutativity of the position and momentum observables

[#5, Bj] = ihés; , (2.1)

implies the Heisenberg uncertainty relation

AptiAgp; 8 Az Ap > g (2.2)
where (2:25 = (@|&;]¢) is a mean position)
) ) 1/2
Agzi= ({2 - 29)%18)) " - (2.3)

In standard quantum mechanics the commutativity of the position operators
&; implies the possibility to measure the position of quantum particle with
arbitrary accuracy. Due to this property the Schrédinger wave function
¥(Z,t) is a classical field, with the arguments described by commuting space-
time coordinates.

Recently there has been a considerable progress in the description of
noncommutative or “quantum” geometry, which deals with algebra of func-
tions on a “noncommutative manifold”. The simplest example is provided
by quantum phase space (2.1) and the algebra of functions f(&,p). Here
we shall discuss further introduction of noncommutative structure — the
case when [#;, £;] # 0. Physically, nonvanishing commutation relations of
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space-time coordinates could be the effects caused by quantum gravity (see
e.g. [20-23]) or quantum string theory (see e.g. [24-27]). Below we shall
outline some of the arguments.

2.1. Elementary Planck length and quantum gravity

It is known that quantum mechanics (Heisenberg uncertainty relation
(2.2)) and relativistic kinematics put together allows to consider the concept
of particle only in the space intervals larger that the Compton wave length
(for simplicity we drop the three-space vector indices):

Az > A . (2.4)
mypcC
Indeed, because for relativistic particles energy E = c(p* + mgcz)l/ 2 we
have AE = cApp(p? + mgcz)_l/2 and for p > m2 one can write AzAE ~
cAzAp > he. If AE is larger or equal to the rest energy moc? the concept
of particle with definite mass looses its meaning [19]. We see therefore that
if we put AEpax < moc?, one gets (2.4) from (2.2) which takes the form

he
AEmax '

The uncertainty relation (2.4) would lead effectively to the existence of
fundamental length, where mg is the rest mass of the stable particle, if
the creation and annihilation processes would not take place. Because for
E > mgc? this is not the case, therefore one should look for the universal
limitations on Az from below in another place e.g. in gravity theory, de-
scribing the space-time manifold as a dynamical system. The advantage of
gravity is its universal nature, its coupling to any matter in the universe.

Let us consider the measurement process of the length in general rela-
tivity. Let us observe that the Eistein equations for the metric

1
82 ~ &_‘_Z‘P, (26)

Az > (2.5)

imply the following relation between the fluctuations of the metric Ag and
the fluctuation of the energy density p = AE/(Az)?
Ag 1 AF
(Az)? k2 (Az)d°
Because photon localizing with accuracy Az should have energy larger than
E = hv = h/Az, one gets

(2.7)

(Ag)(Az)? > ,-Z; =AZ. (2.8)



Fundamental Masses from Quantum Symmetries 853
Writing (As)? = g(Az)? > (Ag)(Az)? one can write As > A, where
Ap = 1.6-107%% cm (2.9)

is the Planck length.

The impossibility of localizing in quantized general relativity an event
with the accuracy below the Planck length follows from the creation of grav-
itational field by the energy necessary for the measurement process. It is
known that the energy E = 1/, can create the Schwarzschild solution with
the radius R = A,. Because the signals from the inside of Schwarzschild
sphere can not be observed, effectively space-time as an object of measure-
ment in gravity theory is transformed into a “Schwarzschild lattice”, with
points replaced with impenetrable spheres with Planck length radia. So
operationally the notion of space-time points loses its meaning.

It should be mentioned that a similar conclusion can be reached in
the framework of the lattice quantum gravity and functional integration
approach to quantum gravity [28, 29].

2.2. Elementary length and string theory

The string theories (or rather superstrings theories which do not have
tachyons and have consistent string loop expansions — see e.g. [30]) intro-
duce the fundamental string length [, by the dimensionfull string tension T
as follows

, h K

ls = ﬁ = ‘M‘;z‘, (210)

where M, denotes the fundamental string mass [24]. The Regge slope o' of
the string trajectories is given by the formula

) 1

-, 2.11
¢ T 9T (2:11)

The relation between the string mass and the Planck mass M, is obtained
from the description of the graviton-graviton scattering by the string tree
amplitude, with dimensionless string coupling constant g. One obtains that
the Newton constant G = 112, is given by

G

=" (2.12)

i.e. one obtains M; = gM,. Indeed, the quantum gravity perturbative
series in the coupling constant 1/ Mg correspond to the string perturbative

expansion with the coupling constant g2/M?2.
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It should be added that the quantum mechanical uncertainty relation
is modified for the fundamental strings. The uncertainty in the position Az
is the sum of two terms:

a) standard term is due to Heisenberg uncertainty relation for point-like
canonically quantized objects,

b) new term is related with the size of the string increasing linearly with
the energy.

One obtains (see e.g. [26, 27])
h 2
Az > Ap + kL Ap. (2.13)

The minimal value of Az is obtained for (Ap)® ~ h/kL2 i.e..

Az > 2VERL,. (2.14)

We see therefore that again it follows from the fundamental string the-
ory that the Planck fundamental length I, describes the accuracy of the
measurement of space-time distances.

3. Quantum deformations of D = 4 Poincaré algebra with
fundamental mass scale

Quantum deformations in terms of noncommutative Hopf algebras are
described infinitesimally by bialgebras. We shall consider here only the
deformations described by coboundary bialgebras, ¢.e. with the coproducts
described by the formula (see e.g. [1])

AMG) =70 1+184], (3.1)

where 7 is the classical r-matrix (r € § A §) satisfying in the general case
the modified Yang-Baxter equation (MYBE) [31]:

[r12,713] + [r12,723] + [r13,723] = Q3 (3.2)
and (23 is the §-invariant three-form, :.e..
[:,§®101+10§01+101® 3] =0. (3.3)

If a = 0 the relation (3.1) describes classical Yang-Baxter equation (CYBE).

The partial classification of quantum deformations of D = 4 Poincaré
algebra in the language of classical #-matrices was given in [16]. The #-
matrices for D = 4 Poincaré algebra with homogeneous scaling properties
are of the following three types:
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1) The Lorentz algebra r-matrices depending only on the Lorentz genera-

tors, of the form
1‘1 e Ti‘u;pTM“y /\ Mpr . (3.4)

From the scale invariance of the generators M, follows that the numer-
ical coefficients r{”**" are dimensionless. The deformations described
by 71 will not be considered here.

2) The “mixed” classical r-matrices:

1
r2 = —r§"* My, A Pp. (3.5)

From the scale invariance follows that one can factorize in front of di-
mensionless numerical coefficients r5”*# an inverse of fundamental mass
parameter.

3) The r-matrices, depending only on the Abelian fourmomentum gener-
ators and describing the so-called “soft” deformations [32]:

1 .
r3 = Fr:’;’"Pu AP,. (3.6)
where again the coefficients r4*" are dimensionless

We see that only the classical -matrices 7; and r3 introduce the masslike
deformation parameters and we shall discuss them in more detail.

i) The classical r3-matrices (see (3.6)).
For any choice of the tensor 7§ the CYBE is satisfied i.e. r3 is triangu-
lar. One can write the antisymmetric 4 X 4 matrix r§*” in the following

form:
0 a 0 0
- 0 0 O
To = 0 0 0 ﬁ . (3.7)
0 0 -8 0
i.e. we obtain (see also [16]):
a B
r2=FP0AP3+n—2P1/\P2- (3.8)

In such a case one gets the following deformations of the classical co-
products for classical Poincaré algebra (1.1) (we recall M, = (M;, L;))

A(M1)=M1®1+1®M1—%Po/\Pz%-:%Pl/\Ps,

A(M2)=M2®1+1®M2+%PQI\P1—%P;;/\Pg, (3.9a)
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[s3
A(L1)=L1®1+1Q L1 + =P, /\P2+£Po/\P2,
K2 K2

A(Lz)=Lz®1+1®L2+%P2/\P3~f—2—P0/\P1, (3.9b)

Remaining coproducts for M3, L3 and P, = (Py, P1, P2, P;) stay primitive.

It is easy to check that the coproducts (3.9a)-(3.9b) describe the ho-
momorphism of classical Lie algebra.

The deformation given by the classical r-matrices (3.7) do not affect the
generators g1 for which the lowest order deformation (3.1) of the coproduct
vanishes, z.e.

[#,§a®1+1®§a] = 0. (3.10)

For the choice a8 # 0 one obtains that
ga = (M33L3’Pp,)- (3.11)

We see therefore that for the classical r-matrix (3.7) the classical Lorentz

symmetry O(3,1) is broken to O(2) ® O(2).

ii) The classical r;-matrices (see (3.5)).
There are various choices of the ry-matrices in the still incomplete Za-
krzewski classification [16]. It comprises of 15 separate cases, providing
different choices of §.). It appears that only three choices describe these
quantum deformations which leave the three-dimensional subalgebras of
Lorentz symmetry classical:

1) The deformation with O(3) classical symmetry.
In such a case the classical »-matrix is given by the formula (L; = M)

1
r) = “Li AP, (3.12)

and satisfies MYBE. The symmetry §. as the subalgebra of D = 4
Poincaré symmetry is four-dimensional

i = (M, Py (3.13)

There is known the full quantum deformation corresponding to the clas-
sical r-matrix (3.12) in a form of noncommutative and noncocommu-
tative Hopf algebra [4, 6]. Such a quantum deformation is known as
k-deformation of Poincaré algebra and has been recently formulated in
different bases [9, 33].
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2) The deformation with O(2,1) classical symmetry.
In such a case one chooses

— 1
Tg ) = ;(Ml APy — M APy + L3 A Po) (3.14)

and the classical r-matrix (3.14) satisfies MYBE. The classical symme-
try generators §. satisfying for the choice (3.14) the relation (3.10) are
given by the formula

8§ = (L1, L2, M3, Py) (3.15)

and describes O(2,1) classical subalgebra supplemented by one spatial
momentum. In the theory of representations of classical Poincaré sym-
metry the choice (3.15) of the generators of the stability group describes
the tachyonic particles with imaginary masses. Further we shall call the
deformations generated by (3.14) the tachyonic x-deformations of D = 4
Poincaré algebra. The “full” tachyonic quantum deformation has been
firstly considered in {34] as one of the examples in the discussion of
deformations of D = 4 inhomogeneous rotation algebras with various
signatures.
3) The deformation with E(2) classical symmetry.
There exists only one classical r-matrix for D = 4 Poincaré algebra
which satisfies two conditions

a) It satisfies CYBE.
B) It leaves classical three-dimensional subalgebra of Lorentz algebra O(3,1).

This classical r-matrix takes the form
1 . .
r0 = “(Ls NPy + Es APy + B2 A Py), (3.16)
where Py = Py + P; and

Ey=Li+ M,, Ey=-Ly+ M. (3.17)

The generators satisfying (3.10) for the choice (3.16) of the classical #-matrix
are described by the following four-dimensional algebra [18].

9o = (Ev, Eq, B3, Py), (3.18)

where E3 = M. One obtains the known relation of D = 2 Euclidean algebra
e(2):

[El, EZ] = 0’ [E23E3] = _El ) [E19E3] = E2 . (319)
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The symmetries generated by (3.18) correspond to the stability group for
the massless particle representations of the classical Poincaré algebra. We
shall call it conformal k-deformation of D = 4 Poincaré algebra, because as a
triangular deformation it has the extension to D = 4 conformal algebra (see
Sect. 4). It should be pointed out also that the “full” quantum deformation
corresponding to the classical 7#-matrix (3.16) has been presented firstly in
(35].

In such a way we have obtained three different x-deformations of D = 4
Poincaré algebra which correspond to three classes of the representations of
classical Poincaré algebra. It should be stressed that these choices of the
quantum deformations should be relevant for the discussion of the deforma-
tion of three classes (with positive mass, tachyonic and massless) of induced
representations of D = 4 Poincaré symmetries.

4. Quantum deformations of D = 4 conformal algebra
with fundamental mass

Contrary to the case of D = 4 Poincaré algebra at present it does not
exist in explicite form the classification of infinitesimal deformations (clas-
sical r-matrices) for O(4,2) Lie algebra, or for its complexified version —
sl(4) Lie algebra. It should be stressed however that the general principles
how to construct such a classification can be found in the literature (see e.g.
[36-38]).

The O(4,2) Lie algebra is simple and for any simple Lie algebras the
solutions of MYBE are known [39). We shall use the O(4,2) Cartan—-Weyl
basis (hy, h2, h3, €41, €42, €43, €44, €45, €+¢) satisfying the reality con-
ditions (see [40, 18])

hi =—hs,  hf=-hs,

ei] = €13, 612 = —€42,
614 = —€+45, 816 = —€4¢ . (41)

The physical antihermitean generators of D = 4 conformal algebra are given
by the formulae:

hy = L3 —iMj;, hy = —(D + L3) hs = L3 +iM3,

€1 = %(M,*. + iL+), ez = —-%(M_. - iL_),

ez = 1(Po — P3), e = 3(Po + P3),
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es = i(Py +iPy), es = —i(Py — iPy), (4.2a)
e_1 = 3(M_ +iL_), e_3 = —3(My —ily),

e—2 = 3(Ko + K3), e_6 = 5(Ko — K3),
e = —3(K1 - iK3), e_5=4i(Ki+iKa). (4.2b)

The standard Drinfeld—Belavin classical 7-matrix is given as follows

3 6
DB = Zd,ﬁjhi/\hj—}—ZeA/\e_A, (4.3)
i,7=1 A=1

where d;; is the inverse symmetric Cartan matrix for sl(4):

1(3 21
d,.j:z(z 4 2). (4.4)
1 2 3

It is easy to see from (4.2a)-(4.2b) that the classical r-matrix (4.3) describes
the quantum deformation with dimensionless deformation parameter. It can
be shown that after adding suitably chosen symmetric part it leads to the
well-known Drinfeld-Jimbo deformation of complexified D = 4 conformal
algebra si(4) (see e.g. [1, 3]).

Our aim here is to provide the deformations of D = 4 conformal algebra
with the deformation parameter introducing fundamental masses. We shall
consider here one example of such a deformation — the x-deformation of
D = 4 conformal algebra obtained from conformal «-deformation of D = 4
Poincaré subalgebra (see [18]).

Let us observe that every solution of CYBE spanned by the generators
of a Lie subalgebra §' C § can be treated as the solutions of CYBE for the
full Lie algebra §. In Sect. 3 we found the classical #-matrix (3.16) satisfying
CYBE. Because the Poincaré algebra is a subalgebra of the conformal one
(§' = P3;1, § = C3;1) the classical #-matrix (3.16) is also a classical 7-matrix
for D = 4 conformal algebra and can be written in terms of the Cartan-Weyl
generators for sl(4) (see {7, 40]) as follows

1‘;0) = %(h] +h3)/\€6 +ey1Nes—e3zNeg. (45)
Using the formula (3.1) one obtains that:

A(l)(gcl) =0, gel = E13 E2s Ms, P+ 3
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1
AP, = ~P.APp, r=12,
2 1
AP y=Z"PyAPs = =P_ APy,
K K
~ 1 - -
A(l)(FI) = ;(Fl AP+ EL A P_4+M;AP,,
. 1 - .
AN(Fp) = ~(Fy APy + B AP+ My AP,

AOY(Ly) = %(L3 APy + B, AP (4.6a)

and
1
AM(D) = ~—(Ls APy + My AP, — My A Py). (4.6b)

Remaining coproducts for K, are obtained by the following isometry of the
conformal algebra

My, — My, D — -D, K, — P,. (4.7)

It should be mentioned that the quantum deformation od 1l1-parameter
D = 4 Weyl algebra (Poincaré + dilatations) in the form of Hopf algebra
with lowest order coproducts given by (4.6a)-(4.6b) was given recently in
[41].

The problem of classifying the x-deformations of D = 4 conformal al-
gebra is an open question. In particular it would be interesting to describe
a deformation depending on all 9 generators of the Borel subalgebra of
D = 4 conformal algebra, consisting of the generators (e4 4 (4 =1,...,6),
h; (i = 1,2,3)). Comparing with (4.5) we should find in physical basis a
solution of CYBE depending additionally on k3, e2. Such a solution would
describe a classical #-matrix for 11-parameter D = 4 Weyl algebra. This
problem in now under consideration.

5. Conclusions

The existence of fundamental length or fundamental mass manifests
itself in the modification of the canonical Poisson brackets for the phase
space variables (see e.g. [42, 43]); in particular one obtains the modification
of vanishing Poisson brackets for the space coordinates. After quantization
one gets the noncommutative space coordinates:

[‘iiy é]} # O’ 3)] - 17273' (51)
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If we assume that the introduction of fundamental mass parameter does not
modify the classical nonrelativistic O(3) symmetries, one should keep the
relation [2;, ;] = 0, and from O(3)-covariance follows that

['ﬁi, i]] = —;. (52)

The relations (5.2) describe the translation sector of the x-deformed D = 4
Poincaré group, obtained by the quantization od Drinfeld—Sklyanin Poisson-
Lie bracket with the classical r-matrix (3.12) {11]. It can be added that
respectively for the tachyonic x-deformation, described by the classical r-
matrix (3.14), and conformal k-deformation (see (3.16)) the relation (5.2)
is modified as follows:

[iss ﬂ = %‘is, (53)

where 2, = (21, 22, &), t{ = &3 for the tachyonic x-deformation, and
2y = (81,22,84 = %(:io ~23)),t = %(io+i3) for conformal x-deformation.

The relations (5.2)—(5.3) are of Lie algebra type. More general class of
noncommutative space-time coordinates obtained after their identification
with the translation sector of quantum Poincaré group was considered in
[15]. One gets the following algebraic relations:

A A 1 . 1
(R~ 1),,°P" (2,8, + ;T,,TA:BA + EEC"T) =0, (5.4)

where the matrix R describes the quantum R-matrix for the Lorentz group
satisfying the condition R? = 1, and Ty.?, Cpy are the numerical coefficients
(for details see [15]) which are dimensionless. The condition R?=1 can be
removed if we consider quantum Poincaré groups belonging to larger class
of so called braided Hopf algebras (see e.g. [44]). The relations (5.2)—(5.3)
follow as a special case of the relations (5.4), with R = 7 (classical Lorentz
symmetry), C,, = 0 and a particular choice of T, ? (see also [41]).

The noncommuting space-time coordinates is an old idea (see e.g. [45,
46]) which was also considered as a cure of the divergence problems in quan-
tum field theories (see e.g. [47]). In particular the ultraviolet pathologies of
quantum gravity led to the development of the fundamental string theory
and the replacement of the perturbation theory with gravitons by the per-
turbation theory with virtual string states. In the quantum group approach
the property that the space-time coordinates do not commute and can not
be measured with arbitrary accuracy are introduced in kinematic, purely al-
gebraic way. The algebraic structure of space-time coordinates is described
by the algebraic sector of the quantum Poincaré group; the coalgebra sector
determines the noncommutativity in the fourmomentum sector. The mo-
mentum counterpart of the relations (5.4) written as an algebraic ansatz
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looks as follows:
(R = 1)u® (Ppbr + ’CTMAZBA +x2Cpr) = 0. (5.5)

We see that for k2 — oo finite limit requires 1.’,“," = é’,w = 0. In par-
ticular for classical Lorentz symmetry (R = ) one obtains the commuting
fourmomenta. This result is confirmed by the formulas in the fourmomen-
tum sector for k-deformed Poincaré algebras (4, 6].

Finally, we would like to mention here that the kinematic description of
generalized uncertainty relation which in quantum gravity is of dynamical
origin has been recently also considered outside of the algebraic framework
of quantum groups [48]. In such an approach the space-time coordinates
are not commuting, but the Poincaré symmetry remains classical. Such as
approach limits the noncommutativity (5.4) only to the last term in (5.4)
(R =1, T,,? = 0). It should be stressed however that the approach pre-
sented in [48] breaks necessarily the manifest nonrelativistic O(3) symmetry
— the noncommutativity introduces the distinguished 2-plane in fourdimen-
sional space-time.
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