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We show that there is a choice of the gauge condition such that
the mixed problem for the Hamiltonian form of the evolution equations
for Yang-Mills fields in spatially bounded domains (with inhomogeneous
boundary conditions) admits the finite time existence and uniqueness of
solutions.

PACS numbers: 11.15 Tk

1. Introduction

In classical dynamics and field theory the Hamiltonian nature of the
evolution equations is a consequence of the underlying variational principle.
It plays an important role in the construction of the corresponding quantum
theory. In particular, it ensures the unitarity of the quantum evolution.

For field theories with constraints the splitting of the field equations into
the evolution equations and the constraint equations is somewhat arbitrary
off the constraint set. One can always modify the evolution equations by
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terms which vanish on the constraint set. In the case of Yang-Mills fields
such a decomposition of the field equations is usually obtained in terms of
the chosen 3 + 1 splitting of the space-time into the product of the space
and the time axis. It leads to the evolution equations

0;A=FE + grad® — (&, 4], (1.1)

OtE = —curl B - [Ax, B] - [#, E], (1.2)

and the constraint equation
divE+[4;E]=0. (1.3)

Here, A is the vector potential of the Yang-Mills field and & is the scalar
potential, (both potentials have values in the Lie algebra g of the structure
group G of the theory), [-,:] denotes the bracket in g, while X and - denote
the cross product and the dot product in IR 3, respectively.

The time evolution of the scalar potential ¢ is not determined by the
field equations. In order to make the evolution equations deterministic one
prescribes & in terms of a gauge condition. If the scalar potential is chosen as
a given function of the space-time variables, # = &(z,t), then the evolution
equations are Hamiltonian with the Hamiltonian

Hs(A,E) = %/(EZ + B%)d3z + /E(gradqs - [A,#])d3z . (1.4)
M M

and the symplectic form
w=4df, (1.5)

where 0 is given by

(8(A, B)|(64,8E)) = / E-§A dyz, (1.6)
M

and M is the domain in JR® accessible to the fields. In particular, for the
temporal gauge condition
=0, (1.7)

one gets the usual Hamiltonian

Hy(A,E,¥) = -;-/(E'*’ + B*)ds3z. (1.8)
M
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In order to make the above heuristic arguments more precise we have to
specify the space of functions in which the evolution is taking place and to
show that the evolution equations have solutions in this space. The existence
and uniqueness of solutions of the Yang—Mills evolution equations has been
studied in several papers, [1] through [8]. However, all of them prove the ex-
istence of solutions for non-Hamiltonian evolution equations. The methods
of proof are based on the theory of perturbations of linear semigroups, [9].
In particular, it requires the elimination of the longitudinal component of F
from the linearized equations; for a comprehensive discussion of this prob-
lem see [4] where this problem is solved by a non-Hamiltonian modification
of the original evolution equations off the constraint. In [8] we showed that
by an appropriate gauge transformation one can get ¢ to be the solution of
the Neumann problem in M

A$=-divE and n(grad®)= -nE with fsﬁ dsz =0, (1.9)
M

where n(grad #) denotes the normal component of grad ¢ on the boundary
OM of M. With this choice of # we proved the existence and uniqueness
of solutions of the mixed problem for the evolution equations of minimally
interacting Yang-Mills and Dirac fields in bounded domains with inhomo-
geneous boundary conditions, [8].

For the gauge condition (1.9) the scalar potential # depends on the
dynamical variable E. Hence, the evolution equations (1.1) and (1.2) are
not Hamiltonian. However, the Hamiltonian Hg, given by (1.4), generates
the evolution equations in which (1.1) is replaced by

8 A(z) =E(z) + grad #(z) — [#(z), A(2)]

¥ / B (grad o) — [4("), FpcADbse’ s (110)

the gradient under the integral sign is taken with respect to the variable z'.

On the constraint set, given by Eq. (1.3), all the evolution equations are
equivalent and are Hamiltonian. Hence, one could argue that the form of
the evolution equations off the constraint set is not important. However, the
Hamiltonian nature of the evolution equations (also off the constraint set)
is essential if one wants to compare the classical and the quantum reduction
procedures, [10, 11].

In this paper we discuss the existence and the uniqueness of solutions
of the Hamiltonian evolution equations (1.10) and (1.2), in the space

P(M) = {(A,E) € H*(M,g) x H'(M, g)}, (1.11)
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where M is a bounded contractible domain in IR®, and H* denotes the
Sobolev space of fields which are square integrable over M together with
their partial derivatives up to the order k, see [12], and & is the solution of
the following Neumann problem:

A¢=-1divE and n(grad®)= ~1nE with /Q dsz =0. (1.12)
M

The main result is given in the next section. Section 3 contains an outline
of the proof.

2. Statement of results

We consider a bounded contractible domain M in IR 3 with smooth
boundary M. For the Yang—Mills vector potential A, the boundary con-

dition is given by specifying the tangential to 0M component of the curl of
A, denoted by t(curl 4). For A € H2(M, g), t(curl A) € H/?(dM, g).

Theorem

Let A(t) be a differentiable curve of the boundary data in H'/2(9M, g).
For every to € IR and the initial data (Ao, E¢) € H%(M, g) x H'(M, g)
such that

t(curl 49) = A(to), (2.1)

there exists a maximal T > 0 and a unique curve
[to, t0 + T) — H*(M,g) x H'(M,g): t — (A(t), E()) (22)

satisfying the evolution equations

0tA=F +grad® — [$,A] + /E(grad'% - (A4, g%])d?,:c' . (2.3)
M
OtE = —curl B — [Ax, B] — [$, E], (2.4)
the initial conditions
A(to) = Ao , E(to) = Eo, (2.5)
and the boundary conditions
teurl (A(2)) = A(t), (2.6)
where & is the solution of the Neumann problem
A®=-1divE , n(grad®) = -1 nE ,/45 dsz =0. (2.7)

M
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3. Outline of proof

Let A(t) be a differentiable curve of the boundary data in H!/2(0M, g).
We choose a differentiable curve A%(t) of vector potentials in HZ(M,g)
satisfying the boundary condition

t(curl 4%(2)) = A(t). (3.1)

Such a choice of a background field is always possible, in particular one can
take 4%(¢) to be the solution of A A®(t) = 0 which satisfies (3.1), [13]. Then,
the difference

a(t) = A(t) — A%(t) (3.2)

satisfies the homogeneous boundary condition
t(curla(t)) =0 (3.3)
if and only if A(t) satisfies (2.6). Moreover,
B =curl A + [A,xA] = curla + curl A° + [A4® + a, x4 +4].  (3.4)

If we rewrite the evolution equations (2.3) and (2.4) in terms of the
variables (a(t), E(t)), and consider first the linear approximation in which
the terms depending on the background field are omitted, we obtain

Oia=F +grad® + /E(grad'%)ds:c' ) (3.5)
M

0+E = —curl(curl(a)). (3.6)

Here & is given by (2.7). Our aim is to prove that Egs. (3.5) and (3.6)
determine a continuous one parameter semigroup of bounded linear trans-
formations in an appropriate function space. To this end we start with the
Hodge decomposition of the Lie algebra valued vector fields F,

E=El 4+ ET, (3.7)
where the longitudinal part is a gradient
E! = gradyg, (3.8)

and the transverse part is divergence free and has vanishing normal compo-
nent on the boundary

divET =0, nET =0. (3.9)
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Since M is simply connected, the potential ¥ g is uniquely determined by
(3.8) and the condition

/¢E dzz = 0. (3.10)
M

Moreover, if E € H*(M, g) then ¢g € H**1(M, g), [13). Taking the diver-
gence of (3.7) and taking into account (3.8) through (3.10), we see that ¥
is the solution of the following Neumann problem:

A ¢yg =divE, n(gradyg) = nkE, /¢Ed3z =0. (3.11)
M

Comparing this with (2.7) we see that
& =—Llyg (3.12)

so that the scalar potential satisfies

gradé = —1 EL. (3.13)
Therefore,
§ 5
— = —— .14
6Egrad¢ 6ELgrad45, (3.14)

and the non-local term in (3.5) is

/E(grad'g)dgx' :A[EL(m'){FE-—gmgrad’é(z')}dg,z'

M
= ——;—/EL(z'){ﬁ(z —z')}dzz' = -1 Ef(z).
M
(3.15)
Substituting (3.7), (3.13) and (3.15) into (3.5) we get
da=ET. (3.16)

Hence, the linearized equations (3.5) and (3.6) decomposed into the trans-
verse and the longitudinal components are

8:aT = ET , 8,ET = —curl (curl (aT)), (3.17)

dat =0, EL=0. (3.18)
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Let

BT = {(a",ET) € H'(M,9) x L*(M, g)} , (3.19)
HY = {(o",EY) € H*(M,g) x H'(M,9)} . (3.20)
Eq. (3.17) defines a continuous one parameter semigroup exp(¢7 ) of bounded

linear transformations in H” with the generator
T(aT,ET) = (ET, —curl (curl (aT)) (3.21)

defined on the domain

D = {(aT,ET) € HY(M,g) x H' (M, g) | t(curl(aT)) = 0},  (3.22)

for dgtails see [6]. Similarly, Eq. (3.18) defines the identity transformation
in H*.

The full evolution equations (2.3) and (2.4) can be split into the trans-
verse and the longitudinal components, and rewritten in the form

d:(aT,ET) = T(aT,ET) + FT(aL, EL,aT,ET), (3.23)
d(al, EX) = FL(al, EL,dT,ET), (3.24)
where FT and FL denote the nonlinear and the background dependent
parts of the right hand sides of (2.3) and (2.4). In order to complete the

proof of the theorem it suffices to show that the following properties of the
nonlinear terms F7 and L, [14].

(a) FL treated as a map from HL x D to H” is a continuous and locally
Lipschitz map with respect to the following norm in HX x D :

IVE VT o= WV E gz + IV g + 17V Nz, (3.25)

where we have used the notation VI = ggL ,EL) and VT = (a7, ET).
(b) FT treated as a map from HL x D to HT is a continuous differentiable
map with respect to the norm (3.25).
(c) Themap K : HL x D x HT — H7T, given by

KL VT Ty = Ky(VE, VT) + Ko(VE, VT, 0T), (3.26)
where

Ki(vE, vy = DFT(VE VTYFE(VE, VT),0), (3.27)
K2 (VE, VT, vT)y = DFT(VL,vTY(0,47), (3.28)
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is locally Lipschitz with respect to the following norm in H LypDxHT
IVE VT o) = VP gz + VT g + 11TV gz + IIlel}%T o
3.

Most of the estimates involved in verifying these properties are given in
[8]. The only new term appearing here is

[ B S N dea! = - [15), AN g e (@330)
M M

where A = a + A®. The variational derivative of & in the direction e,

§9(z')
[ L
= d 3.31
x(e) = [ Fpemy @, (3:31)
M

satisfies the equation

2grady = —er . (3.32)
By construction,

/ x(@)dsz' = 0, (3.33)

M
and x € H* (M, g) if e € H*(M, g).
The Hodge decomposition of the 0-form (scalar function) [E, A] yields
[E,Al=divZ+C, (3.34)
where
nZ =0, C = const. (3.35)

Since M is bounded and simply connected Z is unique and is in H**+1(M, g)
if [E, Al € H*(M,g). Hence,

/{/E( N, A= )1645((’:3 & (2)dsa’ d3z_/{d1v’Z(:c )+ Chx(z")ds!

- / o')grad 'x(2') + Ox(2')}dae' + / n2(e'Jx(=')ds"
M M

:% /Z(z Yl (2')dsz' ;
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in the last equality we have used (3.32) through (3.35). Therefore,
§d(z")

/ [E(z"), A(z"))] 5 (z)dg:c' =12z8(z). (3.36)
M

For k = 1,2, Eq. (3.34) implies that

IE, Ay = |ldiv Z]2pe s + 2 / CadvZ dsz +||C|2..  (3.37)
M

Since, div Z is L2-orthogonal to the constants and ||C H"I’l2 > 0, it follows

that ||div ZHZ;I,:_1 < H[E,A]“?Hk_l . Hence,

1251 e < 1div Z)| s < B, Alllggrr < NAllg2ll Blign - (3:38)
This estimate and the estimates given in [8] suffice to verify the conditions

(a) through (c¢), which completes the proof.

4. Concluding remarks

Consider the evolution space
£ =H*M,g)x H'(M,g)x R , (4.1)

and the 2-form
Q=w+dtNdHg, (4.2)

where Hg is given by (1.4) and & is given by (1.12). The boundary condi-
tions A(t) determine a submanifold

Ex={(A,E,t) € H*(M,g) x H'(M,g) x R |tcurl A = A(t)}. (4.3)

By construction, our solution curve (A(t), E(t)) gives a curve c(t) = (A(t),
E(t),t) in £,. Let Q) denote the pull back of 2 to §). The tangent vector
of the evolution curve, denoted by é(t), satisfies the Hamiltonian evolution
equations

&(t) 105 = 0. (4.4)

A choice of a background field A® satisfying the boundary condition,
cf. Eq. (8.1), leads to a reparametrization of S in terms of the variables
(a, E,t), where a satisfies the boundary condition

t(curla) = 0. (4.5)
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These variables define in £, a product structure:
Ex~ P(M)x R, (4.6)
where
Py(M) = {(a,E) € H}(M,g) x H'(M, g) | t(curla) = 0}. (4.7)

Since the background field is A® is fixed, the variation §A4 in Eq. (1.6) can
be replaced by §a. Hence, the restriction to Po(M) of the 1-form # can be
written as

00 = /E . 5ad3:c . (48)
M

Its exterior differential
wo = dby (4.9)

is a weakly symplectic form in Py(M). The evolution equations (4.4) lead to
the usual time dependent Hamiltonian equations in Py(M) with the time-
dependent Hamiltonian

Ho(a, E,t) =Hg(a + A%(¢), E)
=% / (E2 + (curl a + curl 4%(¢) + [a + A°%(t), xa + A%(¢)])?}dsz
M

+ / E(grad @ — [a + A*(t), #])dsz . (4.10)
M

For time independent boundary data ), we can choose independent of time
a background field Ab. In this case the above Hamiltonian is constant in
time, and we have a usual time independent Hamiltonian formulation of the
theory.

Using the results of [8] we could generalize our Theorem to the case of
minimally interacting Yang—Mills and Dirac fields, with the Dirac field ¥
satisfying the boundary conditions

(iv*ng, — D@ (1)|OM = p(t) and  (iy"n, — I)DE(t)|OM = v(t).
(4.11)
Here Iis the identity matrix in Vg @ €%, |0 M denotes the restriction to the
boundary, '
D = —°%(778; + im) (4.12)

is the free Dirac operator in RR3, and u(t) € H3/?(OM,Vg ® €*) and
v(t) € HY/2(0M, Vg ® €*) are the boundary data satisfying the conditions

(i7*np + Du(t) =0 and  (iy*n; + Ip(t) = 0. (4.13)
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In a similar way we could extend the validity of our Theorem to the
minimally interacting Yang-Mills and Dirac fields in the Minkowski space-
time. In this case there are no boundary conditions and Eq. (2.7) should
be replaced by

AS=_lavE, / &(2)(1 + 22)2dgz = 0, (4.15)
B3

for details see [15].

There are two important questions which have to be answered. The
first is whether our Hamiltonian system is complete, that is if the solutions
exist for all time t. Even if the system is incomplete, and solutions develop
singularities in finite time, the set of Cauchy data in Py(M) for which the
solutions exist up to time T is open in Py(M), [16]. Hence, they can be
studied in terms of the same Hamiltonian structure. The second problem
is the development of a corresponding quantum theory. This involves the
physical interpretation of the boundary data.
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