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The perturbative QCD predictions for the small  behaviour of the nu-
cleon structure functions F; 1(z, Q?) and g1(z, @?) are summarized. The
importance of the double logarithmic terms for the small z behaviour of
the spin structure function g;(z, @?) is emphasized. These terms corre-
spond to the contributions containing the leading powers of a, In*(1/z)
at each order of the perturbative expansion. In the non-singlet case they
can be approximately accounted for by the ladder diagrams with quark
(antiquark) exchange. We solve the corresponding integral equation with
the running coupling effects taken into account and present estimate of
the effective slope controlling the small 2 behaviour of the non-singlet spin
structure function g;(z, @%) of a nucleon.

PACS numbers: 12.38. Cy, 12.40. Nn, 13.60. Hb, 13.88. +e
1. Introduction
Analysis of the deep inelastic scattering structure functions in the limit

of small values of the Bjorken parameter z allows to test perturbative QCD
in a new and hitherto unexplored regime [1-3]. The advent of the HERA ep
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collider has opened up an experimental possibility to confront the theoretical
QCD expectations with the experimental data on deep inelastic scattering
in the small z region. The relevant theoretical framework is provided in
this case by the Balitzkij, Fadin, Kuraev, Lipatov (BFKL) equation for the
unintegrated gluon distribution f(z,Q?), where @ denotes the transverse
momentum of the gluon and z its longitudinal momentum fraction [4]. This
equation sums the leading powers of In(1/z) at each order of the perturba-
tive expansion i.e. it corresponds to the leading In(1/z) approximation. The
small z behaviour of the structure functions is driven by the gluon through
the g — ¢g transitions [5].

Perturbative QCD predicts a strong increase of structure functions with
the decreasing parameter z and the experimental data from HERA are con-
sistent with this prediction [6, 7). This increase is much stronger than that
which would follow from the expectations based on the “soft” pomeron
exchange mechanism with the soft pomeron intercept a,,5; =~ 1.08 as de-
termined from the phenomenological analysis of total hadronic and real
photoproduction cross-sections [8].

The small z behaviour of structure functions for fixed Q2 reflects the
high energy behaviour of the virtual Compton scattering total cross-section
with increasing total CM energy squared W2 since W? = Q%(1/z — 1).
The Regge pole exchange picture [9] is therefore quite appropriate for the
theoretical description of this behaviour. The high energy behaviour which
follows from perturbative QCD is often referred to as being related to the
“hard” pomeron in contrast to the soft pomeron describing the high energy
behaviour of hadronic and photoproduction cross-sections.

The pomeron does not contribute to the spin dependent structure func-
tion g1 (z, Q%) which is controlled by the exchange of reggeons corresponding
to axial vector mesons [10]. The pomeron also decouples, of course, from the
“non-singlet” part of the unpolarized structure functions i.e. from the com-
bination F — FJ* which at small z is controlled by the A; reggeon exchange.
The small z behaviour of the structure function g;(z,Q?) in perturbative
QCD is sensitive to a new class of double logarithmic In(1/z) contributions
i.e. to the terms which contain powers of a,In?(1/z) in the perturbative
expansion [11-15]. These terms invalidate naive Regge pole model expecta-
tions and generate the singular small z behaviour of the structure function
g1 (2:, Q2)

The purpose of this paper is to briefly summarize some of the QCD
expectations concerning the small z behaviour of the unpolarized and po-
larized structure functions of the nucleon. In the next section we recall the
Regge pole model expectations for the small z behaviour of both the polar-
ized and unpolarized structure functions while Section 3 is devoted to the
discussion of the BFKL equation [4] and its generalization based on angular
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ordering, i.e. the Catani, Ciafaloni, Fiorani and Marchesini (CCFM) equa-
tion [16-18]. In Sec. 4 we discuss the small z behaviour of the polarized
structure function g;(z,Q?) concentrating for simplicity on its non-singlet
part. We recall the (approximate) integral equation which resumes the dou-
ble logarithmic terms and discuss its solution after taking into account the
running coupling effects. We present an estimate of the effective slope A
controlling the small z behaviour of the spin-dependent structure function
gV5(2,Q%) = 93(2,Q%) — g7(=,Q%) ~ 2>, Sec. 5 will contain our main
conclusions.

2. Regge pole model expectations for the
small & behaviour of structure functions

The Regge pole model describes the high energy behaviour of scattering
amplitudes in terms of the exchange of reggeons which correspond to poles
in the complex angular momentum plane in the crossed channel [9]. The
total cross-sections are related through the optical theorem to the imaginary
part of the scattering amplitudes in forward direction (¢.e. for t = 0 where
t denotes the momentum transfer squared). The Regge pole model descrip-
tion of the scattering amplitudes when combined with the optical theorem
gives therefore automatically predictions for the high energy behaviour of
the total cross-sections:

S

1 «;(0)—1
U;%t(s) ~ ;IrnAab;ab(sat = 0) = Zﬂz (—) . (l)

S¢

The quantities a;(0) are the intercepts of the Regge trajectories and f3;
denote the couplings.

The Regge pole exchange is to a large extent a generalization of the sin-
gle particle exchange and so the reggeons carry the same quantum numbers
as hadrons which particular Regge pole trajectories correspond to. There is
an obvious hierarchy of Regge pole contributions depending upon the magni-
tude of their intercept. The contribution with highest intercept corresponds
to pomeron which carries vacuum quantum numbers.

The high energy behaviour of the total hadronic and (real) photopro-
duction cross-sections can be economically described by two contributions:
an (effective) pomeron with its intercept slightly above unity (~ 1.08) and
the leading meson Regge trajectories with intercept ag(0) ~ 0.5 [8]. The
reggeons can be identified as corresponding to p,w, f or Az exchange(s)
depending upon the quantum numbers involved. All these reggeons have
approximately the same intercept. One refers to the pomeron obtained from
the phenomenological analysis of hadronic total cross sections as the “soft”
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pomeron since the bulk of the processes building-up the cross sections are
low p; (soft) processes.

The Regge pole model gives the following parametrization of the deep
inelastic scattering structure function Fy(z,@?%) at small z

Fy(2,Q%) = Zﬁi(czz)zl—“i“’). (2)

The relevant reggeons are those which can couple to two (virtual) photons.

The (singlet) part of the structure function F is controlled at small z by

pomeron exchange, while the non-singlet part FN 5 = — F' by A;

reggeon. Neither pomeron nor A; reggeons couple to the spin structure

function g1 (2, Q%) which is described at small by the exchange of reggeons

corresponding to axial vector mesons [10] i.e. to A; exchange for the non-
n

singlet part gi¥° = gP — g7 etc.
No(e,Q%) = 1(@%)z 4, (3)

The reggeons which correspond to axial vector mesons are expected to have
very low intercept (i.e. ay, < 0 etc.)

Several of the Regge pole model expectations for structure functions
are modified by perturbative QCD effects as will be briefly described in the
forthcoming Sections.

3. BFKL pomeron and QCD predictions for the small
behaviour of the unpolarized structure function

At small values of the parameter z the dominant role is played by the
gluons. The basic quantity is an unintegrated gluon distribution f(z, Q)
where 2 denotes the momentum fraction of a parent hadron carried by
a gluon and Q; its transverse momentum. The unintegrated distribution
f(z,Q?) is related in the following way to the more familiar scale dependent
gluon distribution g(z, Q%):

/ 99 bz, q2). (4)

In the leading logarithmic apprommatlon the unintegrated distribution
f(z, Q%) satisfies the BFKL equation [4] which has the following form:

£(2,Q2) =£"(2, Q%) + / /

X [( fé )2f("" g+ Q)% - f(=',Q3H0(Q — ¢)|, (5)
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where
Ja

Gy = . (6)
The first and the second terms in the right hand side of Eq. (5) correspond
to the real gluon emission with ¢ being the transverse momentum of the
emitted gluon, and to the virtual corrections, respectively. f%z,Q%) is a
suitably defined inhomogeneous term.

After resuming the virtual corrections and “unresolvable” gluon emis-
sions (¢? < u?) where p is the resolution defining the “resolvable” radiation,
equation (5) can be rearranged into the following “folded” form:

F(2,@2) = (2, Q2) + / / 46052 2)

an,eh o Z s et @ vo(), @

(g+@Q,)? Q%
where
1 t
5 _ dz' [ d¢®
Ap(2,Q%) = 25 @/ —exp | —a, [ 2 [ 2|, (8)
j4J:
and
-0 d:c g N\ df'z', Q%))
2=, Q%) = - R<:—C7,Qt)jm(1—/;f-)—- (9)

z

Equation (7) sums the ladder diagrams with reggeized gluon exchange along
the chain with the gluon trajectory ag(Q?) = 1 — % In(Q?/n?).

For the fixed coupling case Eq. (5) can be solved analytically and the
leading behaviour of its solution at small z is given by the following expres-

sion:
—ABFKL 2112 /52
f(:c Qt) ~ (Qt)2 \/h_l(T) exp (~W> (10)
with
ABrkL = 4In(2)as,, (11)
A= &3284(3) ’ (12)

where the Riemann zeta function ((3) =~ 1.202. The parameter Q is of
nonperturbative origin.
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The quantity 1 + AgpkL is equal to the intercept of the so called BFKL
pomeron. Its potentially large magnitude (~ 1.5) should be contrasted with
the intercept asog &~ 1.08 of the (effective) “soft” pomeron which has been
determined from the phenomenological analysis of the high energy behaviour
of hadronic and photoproduction total cross-sections {8].

In practice one introduces the running coupling &,(Q?) in the BFKL
equation (5). This requires introduction of the infrared cut-off that would
prevent entering the infrared region where the coupling becomes large. The
effective intercept Agri found by numerically solving the equation de-
pends on the magnitude of this cut-off [19].

The structure functions Fy r(z,Q?) are described at small z by the
diagram of Fig. 1 which gives the following relation between the structure
functions and the unintegrated distribution f:

FzL(zQ)—/ [ ERreeiei e, )

The functions Fb *(2',Q2, Q%) may be regarded as the structure functions

of the off-shell gluons with virtuality Q2. They are described by the quark
box (and crossed box) diagram contributions to the photon-gluon interac-
tion in the upper part of the diagram of Fig. 1. The small z behaviour
of the structure functions reflects the small z (z = z/z') behaviour of the
gluon distribution f(z, Q?).

QZ
F™
X L=, 4
27 Q8 3
. f

Fig. 1. Diagrammatic representation of the k, factorization formula (13).
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The equation (13) is an example of the “k; factorization theorem” which
relates measurable quantities (like DIS structure functions) to the convolu-
tion in both longitudinal as well as in transverse momenta of the universal
gluon distribution f(z,Q?) with the cross-section (or structure function)
describing the interaction of the “off-shell” gluon with the hard probe [20].
The k4 factorization theorem is a basic tool for calculating observable quan-
tities in the small  region in terms of the (unintegrated) gluon distribution
f which is the solution of the BFKL equation.

A more general treatment of the gluon ladder is provided by the CCFM
equation based on angular ordering along the gluon chain [17, 18]. This
equation embodies both the BFKL equation at small z and the conventional
Altarelli-Parisi evolution at large . The unintegrated gluon distribution
f now acquires dependence upon an additional scale @ which specifies the
maximal angle of gluon emission. The CCFM equation has a form analogous
to that of the “folded” BFKL equation (7):

1(2:Q2,Q?) =f'(2, @2, Q? / / ~ ge/2')

Qi
(@+Qy)?
where the theta function @(Q — gz/z') reflects the angular ordering con-

straint on the emitted gluon. The “non-Sudakov” form-factor A r(z, Qf, q2)
is now given by the following formula:

XAR( ,,Qt, ) f(z,’(q‘*‘Qt)z’qz))’ (14)

2
Lo - (a2))0(Q} - ¢?)

(15)
Eq. (14) still contains only the singular term of the g — gg splitting function

at small z yet its generalization which would include the remaining parts of
this vertex (as well as quarks) is possible.

1
dz'
AR(Z’Q%aqz):exp _53/7/
z

In Fig. 2 we show the results for the structure function F; calculated
from the k; factorization theorem with the function f obtained from the
CCFM equation [21]. We confront these predictions with the most recent
data from the H1 and ZEUS collaborations at HERA [6, 7] as well as with
the results of the analysis which was based on the Altarelli~Parisi equation
alone without the small z resummation effects being included in the formal-
ism [22, 23]. In the latter case the singular small z behaviour of the gluon
and sea quark distributions has to be introduced in a parametrization of
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Fig. 2. A comparison of the HERA measurements of F [6, 7] with the predictions
based on the k; factorization formula (13) using for the unintegrated gluon distri-
butions f the solutions of the CCFM equation (14) (continuous curve) and of the
approximate form of this equation corresponding to setting @(Q — ¢) in place of
©(Q —gz/z') and Ag = 1 (dotted curve). We also show the values of F; obtained
from collinear factorization using the MRS(A') [22] and GRV [23] partons (the
figure is taken from Ref. [21]).

the starting distributions at the moderately large reference scale Q? = @
(i.e. Q2 ~ 4 GeV? or so) [22]. One can also generate the singular behaviour
dynamically starting from the non-singular “valence-like” parton distribu-
tions at some very low scale 2 = 0.35 GeV? [23]. In the latter case the
gluon and sea quark distributions exhibit the following “double logarithmic

behaviour”
29(2,Q?) ~ exp (2\/5@2)1:1 (%)) : (16)

where the evolution length £(Q?) is defined as below:

Q? 2
d¢®> _ , , 109(%)

Q% = | Sas(g*) ~log | —55— (17)
@) / ¢ log(£3)

H#o
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For very small values of the scale y2 the evolution length £(Q?) can become
large for moderate and large values of Q2 and the “double logarithmic” be-
haviour (16) is within the limited region of z, similar to that corresponding
to the power like increase of the type z~*, A & 0.3. This explains similarity
between the theoretical curves presented in Fig. 2.

4. Small z behaviour of the nonsinglet unpolarized
and polarized structure functions

The discussion presented in the previous Section concerned the small z
behaviour of the singlet structure function which was driven by the gluon
through the g — ¢g transition. The increase of the gluon distribution in the
small z limit implies similar increase of the structure function Fp(z,Q?). It
turns out to be stronger than the increase that would follow from the “soft”
pomeron exchange with its relatively low intercept agon ~ 1.08.

The gluons of course decouple from the non-singlet channel and the
mechanism of generating the small z behaviour in this case is different.

The simple Regge pole exchange model predicts in this case that

FP5(2,Q%) = FP(2,Q%) — FP(2,Q?) ~ 2 7242 (18)

where a 4,(0) is the intercept of the A; Regge trajectory. For a4,(0) ~ 1/2
this behaviour is stable against the leading order QCD evolution. This
follows from the fact that the leading singularity of the moment y4q(w) of
the splitting function Pyq(2):

1
1) = [ Lo (19)

is located at w = 0 and so the (nonperturbative) A; Regge pole at w =
a4,(0) ~ 1/2 remains the leading singularity controlling the small z be-
haviour of the non-singlet structure function.

The novel feature of the non-singlet channel is the appearance of the
double logarithmic terms i.e. powers of a,In?(1/z) at each order of the
perturbative expansion. These double logarithmic terms are generated by
the ladder diagrams with quark (antiquark) exchange along the chain. The
ladder diagrams can acquire corrections from the “bremsstrahlung” contri-
butions [13, 15] which do not vanish for the polarized structure function
g1 % (2, Q%) [15].

In the approximation when the leading double logarithmic terms are
generated by ladder diagrams illustrated in Fig. 3 the unintegrated non-
singlet quark distribution f;v S(z, k2) (qN S = u+ @ — d — d) satisfies the
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xp, Q,

Nix
z
=]
~

p p

Fig. 3. The ladder diagram with quark (antiquark) exchange along the chain.

following integral equation:

Q2
dz [ d ,
1N (2, Q9) = S5, Qt>+a,/ / deme(ter), @
where 0
&3:3—7ra.,, (21)

and Q3 is the infrared cut-off parameter. The unintegrated distribution
f;v s (2, Q%) is, as usual, related in the following way to the scale dependent

(nonsinglet) quark distribution ¢V °(z, Q?):

2¥5(2,0%) = / A, (22

The upper limit Q2 /z in the integral equation (20) follows from the require-
ment that the virtuality of the quark at the end of the chain is dominated
by Q2. A possible non-perturbative A2 reggeon contribution has to be in-
troduced in the driving them z.e.

fN5(z, Q%) ~ 242" (23)

at small z.



Perturbative QCD Predictions for the Small ¢ Behaviour... 903

Equation (20) implies the following equation for the moment function

f3'%(w,Q7)

Q} 2
Y3(08) = S0+ 22| [ PR S(w.02)
o
R A2 2\ W
v [ (Q—) f;”(w,czﬁ}. (24)
t 1

°H

Equation (24) follows from (20) after taking into account the following re-
lation:

[z o (2 - )=},[@(Q%— )+(Q§2) @(Q?—Qf)}-
0

(25)
For fixed coupling &, equation (24) can be solved analytically. Assuming

for 51mphc1ty that the inhomogeneous term is independent of Q? (i.e. that
f 5(w, Q%) = C(w) ) we get the following solution of Eq. (24):

2\ ¥ (&s,w)
FVS(0,Q2) = C(w)R(6s,w) (gg) , (26)
0
where
_ 2 _AA
1 (G = SV TR (27)
and o
R(ds,w) = X (80r) (28)

Qas

Equation (27) defines the anomalous dimension of the moment of the non-
singlet quark distribution in which the double logarithmic In(1/z) terms z.e.
the powers of %% have been resumed to all orders. It can be seen from (27)
that this anomalous dimension has a (square root) branch point singularity

atw=w
W =2ya,. (29)

This smgulanty will of course be also present in the moment function
fN S(w, Q%) itself. It should be noted that in contrast to the BFKL singu-
lanty whose position above unity was proportional to a,, @ is proportional
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to /as — this being the straightforward consequence of the fact that equa-
tion (24) sums double logarithmic terms (2%)". This singularity gives the

following contribution to the non-singlet quark distribution f;v S (z,Q%) at
small z:

x—w

In®/?(1/z)
For small values of the QCD coupling this contribution remains non-leading
in comparison to the contribution of the A; Regge pole.

As has been mentioned above the corresponding integral equation which
resumes the double logarithmic terms in the spin dependent quark distri-
butions is more complicated than the simple ladder equation (20) due to
non-vanishing contributions coming from bremsstrahlung diagrams. It may
however be shown that, at least as far as the non-singlet structure function
is concerned, these contributions give only relatively small correction to w.
In what follows we shall therefore limit ourselves to the simple ladder equa-
tion (20) assuming that it will describe the spin dependent parton densities
as well. The inhomogeneous term will now however be different and will
contain the Aj reggeon contribution. We will limit ourselves to the non-
singlet structure function g 5(z,Q?) = ¢F(z, Q%) — ¢}z, Q?) = A¢N5/3,
where

AqN3(2,Q?) = Au(z, Q%) + Au(z, Q?) — Ad(z, Q?) - Ad(z,Q%), (31)

FNS(2,Q%) ~ (30)

where Au, Ad and Au, Ad denote the corresponding spin dependent quark
(antiquark) distributions. We will present an estimate of the effective slope
of the non-singlet distributions after numerically solving equation (20) tak-
ing into account the asymptotic freedom corrections ¢.e. allowing the cou-
pling constant a, to run.

The main interest in applying the QCD evolution equations to study
the spin structure function is that the naive Regge pole expectations based
on the exchange of low-lying Regge trajectories become unstable against the
QCD perturbative “corrections”. The relevant reggeon which contributes
to giV5(z,Q?) is the A; exchange which is expected to have a very low
intercept a 4,(0) < 0. The perturbative singularity generated by the double
logarithmic In(1/2) resurnmation can therefore become much more impor-
tant than in the case of the unpolarized case when it is hidden behind leading
Ay exchange contribution. Even if we restrict ourselves to the leading or-

der QCD evolution {24, 25] then the non-singular z ™~ %41 (©) behaviour (with
a4,(0) < 0 ) becomes unstable as well and the polarized quark densities
acquire singular behaviour:

20V5(2,Q%) ~ exp 2V 5@ 1/2) ) (32)
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where
2

eNS(Q?) = / 9 5 ). (33)

This follows from the fact that APgq(z) = Pyq(z) where Pgq(z) and APyq(2)
are the splitting functions describing the evolution of spin independent
and spin dependent quark distributions respectively and from the fact that
Pgq(z) — const as z — 0.

The introduction of the running coupling effects in equation (24) turns
the branch point singularity into the series of poles which accumulate at
w = 0. If one makes the substitution G, — & ,(Q%) then the corresponding
equation for the moment can still be solved analytically by reducing it to
Kummer’s differential equation with the boundary conditions fixed by the
requirement that the solution should match the perturbative expansion of
the original integral equation [12]. It has however been argued that the the-
oretically more justified introduction of the running coupling is through the
substitution &s; — &,(Q?%/z) under the integrand on the rhs. of Eq. (20)
[14]. We perform a numerical analysis with both prescriptions and esti-
mate the effective slope controlling the small  behaviour of the solution.
The two prescriptions of introducing the running coupling effects into the
double In( 1/ z) resummation lead to the following integral equation(s) for

AfNS(2,Q3F)

Q2
1
dz [ d
AR (e, @) = 18w @ +a@d) [ £ [ DA ),
z Q(z) t
(34
, o
z d
AR, Q) = A @l + [ Lasaiso) [ LA C.en).
(35)

We solve these equations numerically, suitably adapting the method de-
veloped in [30]. We assume for simplicity that the inhomogeneous term

fNS(2,Q?) is independent of both z and of Q2. The flat z dependence
of the inhomogeneous term corresponds to the assumption that a4, (0) =
0. We assume the LO parametrization of the running coupling with four
flavours and set A = 0.2 GeV. The cut-off parameter Q% was set equal to
Q% =1 GeVZ
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03 T

Fig. 4. The effective slope A(z, Q?) defined by the formula (36) of the solutions of
the equations (34) (dashed curve) and (35) (solid curve). The dashed-dotted curve
corresponds to the approximation of Eq. (34) in which only the first integral on
right hand side is retained. The dotted curve represents the slope of the solution
of Eq. (35) in which the inhomogeneous term is set proportional to z~1/2, The
slopes are plotted as functions of « for fixed Q? =10 GeV2.

In Fig. 4 we show the effective slope A(z, Q?) for Q2 = 10 GeV?,

din AfN3(z,Q3)
dIn(1/z)

X=,Q7) = (36)
for the solutions of equation (34) and of equation (35). We also show the
effective slope corresponding to the approximation of retaining only the first
integral on the right hand side of Eq. (34). In this approximation one sums
the single logarithmic In(1/2) terms accompanied by the leading powers of
£NVS(Q?). The small z behaviour is then asymptotically given by Eq. (33).
We have also solved Eq. (35) assuming that the driving term is given by
the A, reggeon contribution (see Eq. (23)). The resulting slope of the so-
lution is also shown in Fig. 4. It can be seen that the second prescription
(i.e a, — a4(Q?/z)) for introducing the running coupling effects makes the
effective slope smaller than in the case when one makes the substitution
as — as(Q?). The perturbative Regge singularities are not very important
for the unpolarized structure functions and the (input) 2~ 1/2 behaviour is
not altered substantially by the perturbative Regge singularity. The double
logarithmic resummation is however very important for generating the sin-
gular small z behaviour of the polarized structure functions. The results of
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our estimate suggest that a reasonable extrapolation of the (non-singlet) po-
larized quark densities would be to assume an z~* behaviour with A ~ 0.21.
Similar {or more singular) extrapolations of the spin-dependent quark dis-
tributions towards the small = region have been assumed in several recent
parametrizations of parton densities [26-29].

5. Summary and conclusions

In this paper we have briefly summarized the theoretical QCD expec-
tations concerning the small #z behaviour of the deep inelastic scattering
structure functions in both unpolarized and polarized deep inelastic scat-
tering. In the latter case we have for simplicity focussed on the non-singlet
structure functions which, at small z , can be (approximately) described by
the ladder diagrams with the quark (antiquark) exchange. We have solved
the corresponding integral equation taking into account asymptotic freedom
effects and estimated the effective slope controlling the small z behaviour
of the non-singlet structure function. The perturbative QCD effects be-
come significantly amplified for the singlet spin structure function due to
the mixing with the gluons. The simple ladder equation may not however
be applicable for an accurate description of the double logarithmic terms in
the polarized gluon distribution AG.
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