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Some properties of pionium are studied. The decay width in the 1s
state is related to the scattering lengths. Chances to produce pionium
in hadron-hadron collisions are calculated. Special attention is paid to
the effects of an external Coulomb field on the atomic formation process.
Corrections to the coalescence model are found and the rate of 2p state
production due to the external field is calculated.
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1. Introduction

The n7 pair is the simplest two-hadron system. It is expected to be
understood in terms of quarks as (¢g)(gg), so the degree of complication is
the next after that of a single meson (¢g) or a baryon (gqq). At low energies
w7 exhibits also a special approximate symmetry — the chiral symmetry
— related to small masses of the quarks. Thus, the n7 system presents
considerable theoretical interest. On the other hand, experimental studies
of the 77 interaction are difficult. There are no pionic targets and one has
to resolve final state interactions in w7 formation processes:

N - 7N, or K — wrrwer,

which give the 7= phase shifts only indirectly. We refer the reader to re-
views, recent measurements and a compilation [1-3].
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A more direct way to learn about the low energy interactions is, in prin-
ciple, a study of atomic states of the 777~ pair, called the pionium. The
energy levels and, in particular, the lifetimes could give valuable informa-
tion about the »x scattering lengths. So far, the two-meson atomic states
have not been experimentally discovered, although, there is some evidence
that they are formed in high-energy proton-nucleus collisions [4]. Recently
proposals have been made [5, 7] to produce pionium in the reaction

P+ d -3 He + (7"+W—)Atom ’ (1)

and the experiment has been initiated at the Indiana UCL storage ring. It
is mainly this experiment that is discussed here, but the results are easy
to extend to the reaction pp — pprtn~ proposed at the COSY-Julich [6],
and similar reactions with nuclear targets.

This article presents some known facts: basic features of pionium in
Section 2 and the coalescence model used to calculate the rates of atomic
formation in some hadron-hadron collisions in Section 3. The new results are
given in Section 4 where corrections to the coalescence model are discussed.
The latter are due to Coulomb fields of the colliding hadrons. These fields
may become a dominant factor in the formation of pionium in the 2p states.
Chances for such events are calculated .

2. Basic features of pionium

The basic properties of 717~ atoms are summarized in Table I below.

TABLE I
Bohr radius{fm) 387.46 Width,,(ev) 0.24(?)
Ey;(keV) —1.86 Lifetime;, (10™!%s) 2.77)
E32p(keV) —0.46 Lifetimez, (107 '1s)  0.86
Basic Decay from 1s state xOx0 Decay from 2p state  X-ray

The Bohr radius B = 2/(amy) is very large on the scale of strong
interactions. Thus the pionium is difficult to produce and easy to destroy .
The quantity of special interest is the lifetime linked to the 77~ scattering
length A.., as discussed in the Appendix A and given by Eq. (A.8) there.
The 1s level width is given by

I' = —4p%a®ImA,. (2)

and ImA.. is generated by the isospin symmetry breaking through the me-
son mass difference m(rt) — m(x?). The number given in Table I is uncer-
tain by some 40%. For more details we refer to Appendix A where Eq. (2)
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is derived and Im A, is expressed by a combination of the isospin scattering
lengths. The lifetime of the atomic 1s-states is too short to be measured
directly by electronic methods. The proposed way of measurement (5, 7|
is to observe two decay modes: 7°7° and yv. The former one is by far
dominant and determines the decay rate, the latter one is exactly calculable
and serves as a reference. One difficulty in using this method is that the
coupling to the 4y channel is weak, another one is a large background due
to the direct production of 7%7% pairs [12]. One may try to avoid those dif-
ficulties by prolongation of the pionium lifetime. This happens when atoms
are very fast [4], and/or excited to the 2p-states. The second possibility is
discussed in the following Sections.

3. The coalescence model

Consider the 717~ pair produced in a collision of hadrons. Let the
transition amplitude be F(ﬁ,@'), where P and { are the total momentum
and the relative momentum of the pair. Other quantum numbers needed to
specify the collision have been suppressed.

Very little is known on the 777~ production cross sections in the reac-
tions of interest, and even less is known on the amplitude F. Nevertheless,
the chances to form an atomic state in the final states of the collision may
be calculated. It is usually done in a coalescence model. One assumes the
formation amplitude Fp¢om to be given by the momentum space atomic
wave function ¢

Fatom(P) = / F(B, d(9)d7. (3)

Due to the large size of pionium, the momenta involved in () are very
small on the short range scale of the hadronic interactions. Hence, for the
atomic s-states

Fatom = F(F,7=0) [ $(@dg = F(B,0)20) (7= 0). ()

Now, this amplitude is given by the atomic wave function at zero range, that
is by the normalization factor. This factor is weighted by n=3/2, where n
is the principal quantum number, and favours the production of 1s state.

One can calculate, quite reliably, the ratio of the atom production to
the total pair production Waom/Wrotal Tates. It is given essentially by the
phase space integrals

WAtom _ 1 lzj |F(ﬁ, iz O)Izde+l

= = s 5
Wrotal  2pnr [4(0) f |F(P,§)|2dL*+2 (5)
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where L*+1 denotes the phase space for the atom and other k final state
particles. The reduced mass factor pr» comes from the phase space element,
which for a single particle is dp/[2E(27)%]. A summation over discrete
quantum numbers of the other particles is understood. The ratio expected
for the reaction (1) close to the threshold is : 2 X 1073 at E. = E —
Eihreshold = 1MeV, it decreases to 8 x 10™° at 10MeV and stabilizes at
the level of 1 x 107° till 100 MeV, [12]. If the two pion production cross
section turns out significant the atomic formation close to or below the
77~ threshold may be a promising method, [5].

For the pp — ppn T 7 reaction the relative rates are similar. Now, the
pair production cross section is known. It reaches 100 ub at 100 MeV, and
provides at this energy the optimal conditions for the atomic production.
At the luminosities of 103% cm~2/s one expects one atom per 100 s. The
production rates of this order are large enough for the pionium detection.
But, the lifetime in the 1s state is short and difficult to measure. On the
other hand, pionium may live longer by orders of magnitude if it is formed in
the 2p states. Such a formation would open new experimental possibilities
and provide a time scale of 0.86 x 107! s given by the 2p state lifetime.
The latter one is due to the X-ray transitions [8], while other decay modes
197 and ete™ contribute very little.

In the next Section the chances to form the 2p state atoms are calcu-
lated.

3.1. The production of atoms in 2p-states

The direct production rate of the 2p states is expected to be slow. As
compared to the 1s production rate it involves an additional a® factor. The
argument is as follows: assume that the 717 ~ pair originates from a virtual
vector meson (e.g., p) produced by a reaction such as pd — p SHe. Let the
meson production amplitude be €- ¢F, where € is a unit vector related to
the vector meson. Calculations analogous to those of the previous section
yield the branching ratio for the p-wave atom formation

om 3 Lk+1
Warom _ _3 1y L. (6)
Wrotal 8T prn (q L )

Here, 7' is the derivative of the p-wave radial atomic function at zero range
(v/(pa)5/24 for 2p-state) and (.) is an average of ¢? over the final phase

space. Close to the 777~ production threshold this ratio follows E. 5/2
and, in principle, may be quite large. In practice the a® factor (and the
presumably small at these energies vector meson production) make the for-
mation unlikely. Estimates indicate the ratio given by Eq. (6) to be as small
as 1079, [12].
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In the next Section another mechanism for the p-wave atom production
is introduced. We assume the pair to be produced at short ranges in an
s-wave. Subsequent formation of the p-state atoms is achieved by a Stark
mixing in the external electric field of the colliding particles .

4. The formation of pionium in external electric fields

In this Section the problem of atomic formation is extended to include
the propagation of the 777~ pairs in an external Coulomb field. The field
in question is generated by the colliding hadrons. This is a formidable
problem of three-body Coulomb interactions in the continuum. Our special
boundary conditions reduce the difficulty but some approximations are still
necessary. In particular, we discuss atoms of high velocities ¢.e. close to the
coalescent model regime.

The two questions of practical interest are: (1) how does the external
field reduce the rate of the dominant 1s-state formation, and (2) what is
the fraction of the 2p and higher states generated in this way. A system
of successive approximations is developed to answer these questions. Also,
a lower limit is obtained for the 1s state formation rate. This calculation
shows that the formation of higher atomic states may depend strongly on
the total momentum of the pair.

4.1. The formalism

This Section presents our basic assumptions and equations which de-
scribe the atom formation. The coalescence model is followed with the
assumption that the atom formation amplitude Fa¢om is proportional to
the w7 pair wave function ¢ at zero range

FAtom(P):F¢(5207F:O’P)’ (7)

where F' is an amplitude of the short range production process. This formula
follows Eq. (4) but now % is the pair wave function that contains the atomic
state in the asymptotic form and incorporates also the external Coulomb
interactions. It depends on the “external” pair centre of mass coordinate
0, and the “internal” relative coordinate 7. The assumption (7) in 7 comes
from the size of pionium which is much larger than the size of the pair
creation region. The condition in g is a dynamic assumption that the =7
pair at low relative momenta is not likely to come from an intermediate
vector meson and is more likely to be produced in an s wave.

The asymptotic form of 1 consists of an incident wave ), and scattered
waves ;.. The former is a product of an atomic function ¢,;(r), for the
state of interest, and a regular wave in the external coordinate p. While
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the iy corresponds to the conventional coalescence model the ¥,. is an
effect of the external Coulomb field. As usual, in the description of final
state interactions it involves the ingoing partial waves. To calculate this
wave an adiabatic situation (4.e. slow final state hadrons and fast mesons)
is assumed. Such conditions may be fulfilled in the hadronic C.M. system.
The external potential V that generates v, is

1 1
V:2MZa( — ), (8)
le—-%1 |é+73]

where Z is the total charge of the hadrons and M = 2m,.
The dynamical formation of atomic states of the 777~ pair is described
by the Lippman-Schwinger equation

[ M

b= o + / Bod*rGVY. (9)

In this equation the problem of the “internal” interactions within the pair
have been solved and described by the Green function G. In principle all
the partial waves contribute, but the condition at the origin, Eq. (7), selects
only the S waves. Thus, all the internal and external angular momenta are
allowed, provided the total angular momentum is zero.

The Green function of the pair G' may be split into a part which contains
the internal atomic states G and the rest G¢. In detail

G(F’ 5a ﬁa 9_7) - Z ‘Pnlm(ﬂ‘P;lm(ﬁ)G(é’, 5’7E - En) + Gc b) (10)

nilm

where E is the total energy of the pair. We are interested in the kinetic
energies of the atoms in the 100 keV range (or higher) and neglect the
atomic binding energies E,, (keV range). At first, only the discrete part of
the propagator is considered. This allows to expand the wave function in
terms of the known internal functions ¢,,;,,, and unknown external functions
"pnl(g)

Y= Z },lm(ﬁ)yvl:n(é)wnl(r)’ﬁbnl(g) . (11)

nlm

Now, the internal degrees of freedom are eliminated by integrating Eq. (9)
with ¢,,;(r) to obtain an infinite set of coupled equations for 1,,;(0). These
equations involve polarization potentials in the external variable p

ann’l’(g) = E (‘Pnl | Va ! ‘Pn'l’)A(l’ l” A) ’ (12)
A=1,3...
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where

. 2

A(LT,A) = (21 +1)(20' + 1)(2A+ 1) (é ' 3) (13)

which arise from the external potential V' of Eq. (8) in the A-multipole
expansion

V("—", 5) = Z VAY)Tm(If')Y)\m(é) ’ (14)

Am

where the dominant role is played by the dipole terms. The latter ones are
long-ranged with the o~2 asymptotics and they fall to zero at the origin.
Some maxima (or minima) occur at distances comparable to the pionium
Bohr radius. There are two main consequences of the long range: one is a
Stark-type mixing of the atomic orbits of the propagating pionium, another
is a simplicity of the solutions in the high energy region. The latter is
discussed in Appendix B, the former is shown in a a simple model below.

4.2. An ezample — two discrete states

An intuitive picture of the formation mechanism is now illustrated with
a restricted atomic system which consists of two degenerate states 2s and
2p. These are the states which are coupled most strongly by the polarizing
field of Eq. (12). The dipole part of this potential is

14 pw)e %2 -1
V2p23(9) = Vo( 2 ;2 s (15)

where V, = 12aZm, is the strength, g is given in the atomic units and
w =2+ 20+ 4/30% + 2/30> describes the short range cut-off. At distances
exceeding the Bohr radius this potential resembles the centrifugal potential
of I? = 6Za that for large Z may be quite strong. At shorter distances it
forms a barrier and vanishes at the zero range. In fact, the barrier effect is
absent since this is a mixing potential. The solution for % is easy to find
numerically and the corresponding atom formation probability is given in
Fig. 1 below.

The oscillations of the atomic production probabilities reflect quan-
tum beating in this system. In a strong external electric field there are
two orthogonal Stark-states s(z)s(e) + p(z)p(e) and s(i)s(e) — p(i)p(e) (here
s(2),p(e) denote the internal and external angular momenta). These two
components beat in time and in space when the atom propagates through
the polarizing electric field. Condition (7) at the origin selects the s-waves
and creates a kind of quantization with respect to P. An analogy to this
effect may be found in the well known oscillations of the Ko(Kjo) mesons.
Since the long range part of the polarizing potential has no inherent range
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Fig. 1. The probabilities to form pionium in the 2s and 2p states Wy, (continuous
line) and Wy,(diamonds). These are calculated in a simple two level model and
plotted against the external Coulomb parameter n = ZMa/P. The W, is nor-
malized to unity at n = 0.

parameter, the scale in Fig. 1 is given by the dimensionless Coulomb param-
eter n = ZMa/P. This simple case may be solved exactly. For large total
momenta P, an approximate analytic solution is also possible, it is given in
the next Section.

4.8. Solution at high energies

In a more general situation the pair wave functions may be presented
in the form

Yni(e) = 71i(Po)ani(0) + hy (Po)bni(e), (16)

where j; (h;) are the spherical Bessel (Hankel) functions while a,;(¢) and
b.i(0) are to be found. The form of these functions although general has
been chosen for the high-energy region which allows approximate solutions.
As shown in Appendix B Eqgs (B.9)—(B.11)the high energy solutions can be
obtained with functions a changing slowly in space and with b =~ 0,. This
property is due to the long range of the polarization potentials. It allows to
transform the integral equation (9) to a set of differential equations of the
first order

Vit ) T
oy = =32 5 ausin (1= 1)3) ()

'l

where the lengths are expressed in the Bohr radius units.
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The equations for a,;(g) can be written in the following matrix form
a'=Ua (18)

or ia' = iUa, where U is an antisymmetric matrix and respectively iU is
hermitian. The boundary conditions can be formulated via the integral
equation

o0
a:ao-i—/Uadg (19)
e

which is equivalent to the integral equations derived in Appendix B . For
example for the incident wave corresponding with the state 1s one has ay =
(1,0,0,...).

The solutions of Eq. (18) are particularly simple if the matrices U(p)
taken at different values of p are commuting. This happens at large dis-
tances, and there an essential role in the pair propagation is played by
eigenvalues of U which represent some kind of stable Stark-type mixtures of
the atomic states. At shorter atomic distances, this simplicity is destroyed
by a strong dependence of U on the atomic quantum numbers.

Now, Eqs (17) are applied to the two-state model of the last Section.
To calculate the formation probability of pionium in the 2s state one sets
the incident wave ¢ = @2,(r)jo(pe). In terms of a, one has ay = (1,0) and
a simple solution

oo
1
GZs(Q) = Cos ﬁ/v232pd9 (20)
e

while ay;, is given by the corresponding sine. The atomic formation proba-
bility Wy,(P) follows the square of this wave at the origin

oo
1
W23(P) = Wzs(oo)cosz ﬁ/VZ.sZde ’ (21)
0

where W,(00) is a constant given by the coalescence model. It is a general
feature of this calculation that the coalescence model is obtained in the high
P limit.

In order to find the formation probability of pionium in the 2p state
one looks for the same function ass(¢) but with an incident wave %o =

p2p(r)i1(pe) or ag = (0,1). Now

oo

. 1

azs(@) = sin ﬁ/VszsdQ ) (22)
0
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and the probability of the 2P atomic state formation Wap(P) is
1 oo
W2p(P) = Was(00) sin® z—ﬁ/%,zpdg . (23)
0

The total probability W3,(P) + W2,(P) is energy independent, and is equal
to Wa,(o0) as a consequence of the flux conservation.

By comparing the analytic results with the numerical solutions one
finds the approximation (17) to work well for kinetic energies higher than
the barrier in the polarizing potential. In practice it covers the region of
the three last peaks in the formation probability. Now the question is, to
what extent do the oscillations of the Stark mixed atomic states exist in the
complete calculation. The answer is obtained by extension of the basis of the
discrete levels allowed in Eq. (11). One result, for the dominant 1s state, is
given in Fig. 2. The calculation of W;,(P) is done with an increasing number
of atomic states up to the region when a stable and reasonably precise result
is obtained. The beating effect has been lost almost completely although
some effect of the 1s — 2p mixing is still visible.

14

0.9
0.8
0.7
0.6
0.5
0.4 [
03 -
0.2
0.1 |-

0

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2. The probabilities to form 1s atomic state (normalized to the coalescence
model value) Wy,(n)/W1,(n = 0) plotted as functions of . Consecutive curves are
calculated with an increasing number of atomic states N, allowed into the basis of
expansion.
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The formation probabilities lost in the 1s channel are recovered in the
other atomic state channels. The states of prime interest are the 2p states,
and the corresponding formation rate is shown in Fig. 3. For some momenta,
this rate becomes a sizable fraction of the 1s level formation rate. The rate
is high in 7 = 2 region and this corresponds to a maximal mixing effect
of the (1s,2p) states. The beating effect of the (2s,2p) components is not
noticeable.

0.1
0.09 N

0.08 |—— /L
0.07 / \\
0.06 /

005 / \

0.04 \

0.03 \
0.02 / \ BN
oot / NEVZERN
o LI : \/ )
0 0.5 1 1.5 127 25 3 3.5 4

Fig. 3. The probability to form 2p atomic states, Wy, (n)/Wi,(n = 0) plotted as a
function of . N=28 states have been used as the basis of expansion.

Within the expansion of Eq. (11), the results given in Fig. 2 and Fig. 3
are fairly reliable. The high energy approximation may be checked against
an exact, but limited to several states, calculation. It works for kinetic
energies higher than the maxima of the polarization potentials. On the
other hand, for higher atomic states the stability and precision of these
calculations is less certain. The basis of discrete states must be enlarged
and continuum states have to be appended. The solution, even within our
approximations, is difficult to obtain.

The role of the internal continuum states is to understand, yet. One
effect of these states is an additional destruction of the atomic states. In
Appendix C, an upper limit for this destruction is obtained in the case of
1s state formation rate. The high energy approximation and the complete-
ness of internal states make the 1s formation to be unlikely for n > 1.5.
Calculations outlined below show that this limit is not reached, however.
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The easiest way to find effects of the continuum is to use an optical
model type of description. The wave function v is divided into two orthog-
onal components ¥ = % + 9°, where the first one contains discrete internal
states while the other one is composed of the continuum. The same oper-
ation is performed with the Coulomb Green function G = G¢ + G°. Now
the Lippman—Schwinger equation is equivalent to a pair of equations for the
two parts of ¢

P =Yg + GV + GV y©, (24)
¥° = GVyY? + GVy©. (25)

The interaction within the continuum is not essential, and GV ¢ is ne-
glected. Next, ©° may be eliminated with the help of Eq. (25) and the
equation for ¢ follows

P = i + GVY? + GV GEVYL. (26)

This equation contains an optical potential VGV which involves real and
virtual transitions from the atomic to the continuum states f;(kr) numbered
by momenta k. The corresponding matrix elements (fu(kr) | V | ¢nim(7))
fall down as k3 for k larger than the atomic momenta and cut the high ex-
citations off. This suggests an expansion scheme: one replaces the Coulomb
functions fj(kr) by any discrete system of ortogonal functions that supple-
ments the atomic wave functions and form a complete basis. The next step
is the expansion of ¢ in terms of these supplementary functions. Detailed
results will be published elsewhere, now we indicate some approximate re-
sults. The 1s state formation rate given in Fig. 2 is reduced by about 30 %
in the n > 1.5 region. The 2p state formation rate given in Fig. 3 remains
similar. The maximum of the peak is shifted to 5 ~ 1.5, however.

This work has a natural extension that may be of interest. In the high
Z situations met in heavy ion collisions the peak in the 2p state formation
rate (and similar peaks for higher atomics levels) fall into very high energy
region. In particular similar effects are noted for the ete™ pair and the
related positonium. The peaks occur in the region of 1.5 MeV of the total
energy which is the region of the elusive peaks observed in the ete™ system
for Z =~ 170, [9]. This phenomenon is now being studied with the help of
the Krolikowski equation for two fermions in an external field, [10].

5. Conclusions

The measurement of pionium lifetime may be a source of information
on the pion-pion scattering lengths. The rates of pionium production in
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hadronic collisions are high enough to observe this system, but experiments
that could measure the lifetime in the 1s state are difficult.

In this paper the rates of pionium production in the 1s and 2p states
have been calculated. An improvement over the coalescence model is achieved
with the inclusion of final state Coulomb interactions. It turns out that the
p-wave states may be formed by the Coulomb field at a rate which is rea-
sonably high for some energies. These states live long and may offer new
possibilities for the experimental studies.

Appendix A
Scattering parameters

This Appendix provides basic formulas and the parametrization of the
low energy scattering in the presence of Coulomb interactions .

Consider s-wave scattering in a system consisting of two channels ¢ and
o. The case of special interest is the energy region in-between the thresholds
that is a situation when one of the channels ¢ is closed and the other one
o is open. For phenomenological applications, it is convenient to present
the scattering matrix 7' in terms of a real and symmetric reaction matrix
K . These two matrices are related by the Heitler equation T =K —iK§T
where § is a diagonal matrix of the centre of mass momenta . In a single
channel case this equation leads to a natural low energy parametrization
1/T = 1/a + iq, where a = K is a scattering length related to the phase
shift by a = —tanéd/q. A generalization of the scattering length to the

many channel situation is provided by the K-matrix. Now, the relation of
T and K matrices which follows from the Heitler equation is more involved

- Koo K,
K= (K K) (A-1)
and 4 4
7 (B Tco)_(1+iqzmw 1+i;:Acc) (A.2)
- T T - Aoe Ace ? )
oc ce TFigcAce 1+iqcAce

where ¢, . are the momenta in the two channels o, c and the channel scat-
tering lengths A;; are expressed in terms of the K-matrix elements by [11]

iK2,90
A..—- K. — —-€£27
e e 14 iquOO
K
A — co
co '1“+ ’iqu ’
K2,qc
Aoo = Koo - : _co____q . (A3)

1+ ig. K
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Notice the unitarity condition, which follows from these equations in the
form,

ImAce = —|Acol?go - (A.4)

These equations form a basis for the description of two channel scattering
in terms of the three parameters of the K-matrix. However, the 77 systems
of interest is believed to display a higher degree of isospin symmetry in
their interactions. The K-matrix may be expressed by two real scattering
lengths a¢ and a; referring to isospin 0 and 2. The isospin and channel
structure K-matrix is given by : channel cis #Tx~ , channel o is 7%#° and
Kcc = (a2 +2a0)/3 , Keo = V2(az — ag)/3 , Koo = (2a2 + a0)/3.

The isospin symmetry is broken by Coulomb interactions and meson
mass differences. The first allow for atomic binding in the channel ¢ while
the second induce decays of these atomic systems. In this situation the
channels are, accordingly, closed (c) and open (o). To describe the atomic
systems in collisions, these effects have to be built into Eqs (A.2), (A.3).
The standard way is to put the long range effects into Coulomb propagators
G° and include the short range effects into “Coulomb corrected” scattering
lengths. This separation follows in a natural way the form of the propagator
that describes both the Coulomb and the short ranged interactions G°¢ +
G°TG*®. As a consequence, the scattering is described by amplitudes of the
form

(3

fij = fo6i5 + 92T %™, (A.5)
where f¢, o and ¢? are the Coulomb scattering amplitudes, phases and
penetration factors. All these arise as effects of long range Coulomb force.
The Coulomb corrections to T'¢ arise in terms of short range behaviour of

the Coulomb waves. These may be expressed by some functions that should
replace iq in Eqs (A.2), (A.3). Thus, in channel ¢:

ig — f = 2vh + iqc?, (A.6)

2
where ¢? = il

= apay 1 @4 b= zlYn)+ Y(in)] - gl

Also ¥ = ZZ'ap and 7 = 7/q . In the neutral channel o one has f =
ig. Now, the atomic states created in the intermediate states of nuclear
reactions are generated by poles in f of Eq. (A.6). The singularity of f has
the form

R

f’:Ec—Go

2
, where R= ———;—r|1/)(0)|2 = —2u%a?, (A.7)

where ¢y is the pure Coulomb energy of an s-level and E. is the energy
relative to the 7t 7~ threshold.
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From Eqs (A.6) and (A.7) one easily finds the position of the atomic pole
in T.c of Eq. (A.2). The atomic level energy is a complex number composed
of the Coulomb energy, a level shift due to the strong interactions and an
imaginary correction that describes the decay width :

i 2
L ot T A =0 U e, (A8)

which is a well known result relating level shifts and widths to the complex
scattering length. The width related to Im A.. may be expressed by the
K-matrix elements as

r 2 3 KgcQo
—=2u‘a” . A9
2 = 2T 2K, (4-9)

The lifetime given in Table I is calculated using ap = —0.26/m, a; =
0.02/m, taken from Ref. [3] (note an opposite sign convention). The lengths
from Ref. [2] would yield the lifetime longer by 50%.

Appendix B
High energy approzimation
At high kinetic energies of the pair, the atomic binding energies F,, may
be neglected and the discrete propagator G¢ reduces to the form :

G476, 0) = 3 erim(Mehm(G@E ). (B)

nlm

The partial wave expansion

G(&, 0, E) = ile: )Y (8)Yim(e") (B-2)
im
with
gi(e, 0") = —iPji(Po<)hy(Po>) (B.3)

allows us to write the Lippman—Schwinger integral equation (9) as a system
of integral equations for the waves ¥,,;(¢) of Eq. (11)

1/)71,1(9) = jlo(PQ)annoﬁllo + /gl(g’ Q') Zann’l’¢nl(Q') . (B'4)

n'l’
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Iterations of these equations involve integrals of smooth, long ranged poten-
tials with the Hankel and Bessel functions. For high momenta P the latter
oscillate rapidly and approximate relations hold :

(Gie)iv(a)) = 5 cos (1-1)T) (B.5)
(m(2)np(2)) ~ %fcos (a-n3), (B.6)
(ieImn(@)) ~ g sin (1= 1)) (B.7)

where ¢ = Pp and symbols (...) denote mean values of the oscillating
functions. When the partial waves v,,; are written in the form

Ynt = Ji(Po)ani(e) + hi(Po)bri(e) (B.8)

and expressions (B.5)-(B.7) are applied, the partial wave equations reduce
to

oo

ani(@) = 6nno‘sllo + / 2P sin ((l - l, ) Z ann’l'anl(g )dQ , (B.9)

"
2 l

4
buife) = [ 55n (1= 1)F) S Vaswrbuale) (B.10)
0

Ill

The equations for b,; are homogeneous and have trivial solutions b,; = 0.
The equations for a,; are the gateway for the high energy approximation
and can be easily written as a system of first order differential equations:

1% by K
" nin'l ' si I A .
a,; = —op Gnsin ((l 1)2) . (B.11)

n/l!

These equations may be also obtained in an alternative way as a WKB
approximation.

Appendix C
Closure approzrimation

In this Section we go one step beyond the high energy approximation
of the last Section. Again, the internal energies are neglected in comparison
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to the kinetic energy of the atom E. Now the full internal spectrum is used
and that leads to the approximate formula for the propagator

G(7, 8,7, ¢, E) ~ G(§, ¢, E)§(F— 7). (C.1)

In this equation G(g, é" , E) is the one body free Green function of Eq. (B.2)
which can be written in terms of partial wave radial propagators (B.3). For
high energies and large Pp we have the following properties of g;(p, 0'):

gr =~ go forleven,
g1~ gy forl odd, (C.2)

that reduce the propagator to

G(8,0,E) = go(e, @) Y. Yim(8)¥iim(e")

l—even,m

+g1(e0") Y. Yim(8)Yi(e) (C.3)
l—odd,m

The total angular momentum of the created pairs is zero and the corre-
sponding piece of the total propagator (C.1) is needed. It means that the
sum over angular momenta is limited to I = lj;erna and

G(Fa":;a —” 5’) = (90(9’ Ql) Z nm(é)n:n(é')Ylm'(ﬁ)Y};’(;')

l—even,m,m’

+91(0,0) Y Yim (@)Y (@) Yim (F)Y s (r)6(r — 7). (C.4)

l—odd,m,m/

It follows from this approximate form of the propagator that the variable
r is frozen and plays no dynamic role. The polarization potential given by
Eq. (8) may be written in terms of r as well as p and z = cos 8(g, 7)

1 1
VP —erz vt R terzt 7‘2/4)'

The Lippman-Shwinger equation (9) may be formally solved by iterations.
Using the approximate propagator from Eq. (C.4) one obtains the solution

Y=+ GV + goVagiVio+---. (C.5)

In this solution boths r and z appear as parameters in the polarization
potential V' and the wave function 1. The iterations are now calculated

V =2nP(
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for the atomic formation of the 1s state and the incident wave is ¢y =
Jo(Po)p1s(r). The approximate high energy averages (B.5)-(B.7) of the
Bessel functions reduce the series for ¥(p, 7, z) to the form

o0 o0
¢——30(P9)gols(r 2P)2 /dg'V/d "oy
e I
o0 o0 o0
—JI(PQ)GQIs("' 2P/d!?V— 3 /dQIV/d "V/dng+ )
e o rd

(C.6)

In that approximation the solution becomes real and it is easy to find a
close expression for the multiple integrals

oo O [eo]

/dg'V/dg"V - %(/ dgV)z, (C.7)

e o' e

[o ] o0 oo o0 3

1
/dg'V/dg"V/dg'"V = 5(/ dQV) (C.8)
o el 9“ fe]

etc, so now we are able to add all terms occurring in equation (C.5)

P(o,7,2) = jo(Po)pis(r) cos(2—1]3 / doV(p,r, z))
e

o0
, (1
- r(Po)prs(r)sin(35 [deVier,2). (C9)
e
It is easy to integrate the polarization potential over o

o0
/dgV(g,r z)=2MZa ln
e

rz+\/_4g + p2 —4prz)
2g+rz+\/—4g + 72 4+ 4prz)’

(C.10)

/dgV(g,r,z) - 2MZa]n(1 - z) (C.11)
0
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Fig. 4. Probability W3, to form pionium in the 1s state calculated in completeness
approximation.

and this allows to present the [ = 0 component of the the wave function at
the zero range

1
1-=2
- 1
$(0,0) = 29013(0)/cos(n1n(1+z))dz (C.12)
-1
which may be explicitly calculated and reduced to I'(1+in)I'(1—11)¢1s(0) -
Finally, the closure approximation formula for the 1s atomic state formation

rate becomes
2,2

| (0,0) 2= @—n’;—(:’rwmsw)z. (C.13)

The energy dependence given by Eq. (C.13) is ruled by the dimensionless
Coulomb parameter 5 . The interpretation is fairly simple: the result is
a product of the coalescence formation factor ¢;,(0)? and two penetration
factors for the positively and negatively charged particles 7272 /(sinh(77))?.
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