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The theory of the inclusive (K ~, n1) reaction, in which only the pion
spectrum is measured, is presented. The hyperon in the final state —
either £~ or A (produced via YA conversion) — is described in the ef-
fective two-channel approach, and the cross section is calculated in the
coupled-channels impulse approximation. The theory is applied to the
(K~,n*) reaction on the 80O target and compared with existing data.

PACS numbers: 21.80. +a

1. Introduction

In describing the X hypernuclear states produced in the strangeness
exchange reactions (K, ), one has to take into account the strong X¥'A
conversion in nuclear matter YA — AN’. Usually, the cross section for
the (K ~,n) reaction is calculated in the impulse approximation with the
Y wave function determined by a Schrodinger equation with a complex
potential whose imaginary part represents the YA conversion treated as an
absorption. However, as pointed out in [1], this procedure is not correct
for the inclusive (K ~,7) experiments in which only the pion spectrum is
measured. Here the pions may be accompanied not only by X hyperons but
also by A hyperons produced in the ¥ A conversion. Thus the conversion
must not be treated as absorption, because those X’s which convert into
A’s also contribute to the pion spectrum.

In the present paper, we present a method of calculating the cross sec-
tion for the inclusive (K ~,7") reactions. We introduce the A channel

* This research was partly supported by Komitet Badait Naukowych.
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explicitly into our procedure. We do it in the simplest way by applying
the effective two-channel approach [2] used in the case of the strangeness
exchange reactions by Kohno et al. [3]. Furthermore, we apply a coupled-
channels impulse approximation which corresponds to the coupled-channels
Born approximation proposed by Penny and Satchler [4].

We consider the case of the (K ~,n™) reaction because here only one
direct elementary strangeness exchange process occurs, namely K~ + P —
7T + ¥~, and A’s appear only due to the ¥~ P — AN conversion. (We
neglect the final state pion interaction. Otherwise, A’s could appear also as
a result of a direct A production, K ~P — 7%A, with the subsequent charge
exchange, 7P — 7T N.)

The paper is organized as follows. In Section 2, we present the coupled-
channels impulse approximation for the inclusive (K —, 7 %) reaction, and
the effective two-channel approach to the final state of the hyperon in this
reaction. In Section 3, we apply our theory of the (K, 7 1) reaction to
the case of the 180 target, discuss our results, and compare them with the
existing data. Our final expressions for the cross sections are presented
in Appendix A. The method of finding analytical solutions of the coupled
Schrédinger equations for the ¥ and A component of the hyperon wave
function is outlined in Appendix B.

2. Cross section for the inclusive (K, ") reaction
in the coupled-channels impulse approximation

Let us consider the (K ~,71) reaction in which the projectile kaon, in
the elementary process K~ P — =« X, transfers its strangeness to the
target proton P in the state ¢ and emerges in the final state as pion in the
direction k, with the energy E. R

First let us consider the case when ¥~ is detected in the direction ky
(its energy is fixed by energy conservation). In the impulse approximation
(with K~ and m+ plane waves)?!, the cross section for this reaction is:

d®o5/dksdk dE, =

ExE Mxc?kiks . —)x 2

G theh ! / dr exp(—iqr)y(Z, kg;r) T e(x)?, (1)
where q = k,—kj and 7 is the X scattering wave function. Moments of the
respective particles (in units of &) are denoted by k, and their energies (in-
cluding their rest masses) by E. We assume a zero-range spin-independent

! If we used a pion wave function distorted by the pion optical potential, we
would face the problem (raised by Oset) that part of the absorption is due to
the inelastic pion scattering which contributes to the observed pion spectrum.
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interaction for the elementary process K~ P — n+ X~ with a constant tran-
sition matrix ¢. Spins are suppressed in the notation.

If only the energy spectrum of pions at fixed k. is measured, then this
spectrum, d*cyx/ dkrdE,, is obtained by integrating cross section (2) over

kg:
d?c5/dk dE, = / dks[d3o s /dkgdk dE,]. (2)

In the ¥ single particle (s.p.) model the function % satisfies a s.p.
Schrodinger equation with a s.p. potential V(7). This approach was fol-
lowed in [5], where an imaginary potential {Wx(r) was added to Vy(r) to
take into account the YA conversion. In the present paper, we introduce
explicitly the A channel which is coupled to the ¥ channel due to the ¥4
conversion. We do it in the effective two-channel approximation, similarly
as in [3] (see also [1]), in which the hyperon s.p. wave function has two
components: the ¥ component ¢ and the A component y. They satisfy the
system of two coupled Schrodinger equations:

2

{ [A + k3 w1+ Ve(r )}¢(r) = Vo(r)x(r), (3)
2

{ - oM, [A + k ] + VA(T)}X(I‘) Vz(r)zp(r), (4)

where Vy;, V4 are the ¥, A s.p. (real) potentials and V,, is the s.p. coupling
potential which represents the result of folding the two-body interaction
responsible for the ¥~ P — AN conversion into the nucleon density of the
nuclear core. The momenta k4 and ky are connected by:

Ep=Fg+ A~ ’ (5)
where Fx = hzkf\:./2Mg, Eyp= hzkfl/2MA, and
= (Mg + Mp — My — My)c* = 80.4 MeV . (6)

(By My we denote the mass of X' ~.)

In this two-channel model, we imagine that the hyperon (in a ¥~ or
A state) moves around a rigid nuclear core. However, the nuclear core in
the A state differs from the nuclear core in the ¥~ state because it has a
different_charge, and is most likely in an excited state. Thus only a part
A' = z A of the energy A released in the YA conversion is available to A.
This is simulated in the effective two-channel approximation by replacing
A by a smaller quantity A’ = zA, or equivalently by replacing M, by a
larger mass M)y = M4 + (1 - :c)A/c
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The use of coupled ¥ and A channels in place of a single ¥' channel mod-
ifies the calculation of the cross section for the (K —,71) reaction. Here, we
follow the procedure of the coupled-channels Born approximation proposed
by Penny and Satchler [4] and described in detail in the textbook of Satchler
(6].

To calculate d302/dfcgd2:,,dE,r, we define (X, ky; r)(') and
x(Z,kg; 7)) as the solutions of Eqgs. (3)—(4) which are regular at the
origin, and satisfy the asymptotic conditions:

{¢(E,k2; r)(_) — eikz"'} ~ e—ikzr/r, (7)

=00

{X(E,kg;r)(“)}r_»oo ~ e kAT [y, (8)
With the help of these final state hyperon wave function (4, x), we obtain
expression (1) for the cross section do5/ dks:dk-dE,. Notice that in the
(K~—,nt) reaction considered here, the only direct strangeness-exchange
process, K~ P — 77X, produces ¥, i.e., the ¢ component of the hy-
peron wave function.

Now, let us consider the case when the (K ~, 7 ™) reaction leads to the
production of A in the direction k4 (the A energy is fixed by energy conser-
vation). We denote the cross section for this reaction by dc 4/ dk Adic,rdE,,.
To calculate it, we now define ¥(4, kA;r)(_) and x(4, kA;r)(_) as the
solutions of Eqs. (3)—(4) which are regular at the origin, and satisfy the
asymptotic conditions:

{(Akeg;r) DY | ~eTHET (9)

{x(A, k4 r)(_) — eikﬁ"} ~ e_ikﬁ"/r ] (10)

With the help of these final state hyperon wave function (%, x), we obtain
for the cross section d®c 4 /dk zdk,dE, the expression:

00

d30 4/ dk pdkrdE, =

ExE M,k k . “)u
I({2W)5(fjlcc)6kKA|t/drexp(—zqr)¢(/1, kA;r)( ) (,o(r)|2. (11)

Notice that in the case of (K™, 7 1) reaction considered here, we do not
have direct transitions to the A component x. A R
To obtain the energy spectrum of pions at fixed kr, d?0,/dkrdE,

when A is not detected, we have to integrate (11) over k4

20 4/ diedE, = / dip[d%0 4 ) dbe g dor d ] (12)
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By applying the partial wave expansion to the X scattering wave func-
tions ¢(Z,kg;r)(_) and ¢(A,kA;r)(_), we obtain the final expressions
for the double differential cross sections d?c s/ dk dE, and d%c 4 / dkrdEy,
given in Appendix A.

To get the pion spectrum measured in an inclusive experiment,

d o1 /dk,dE,, one has to add expressions (2) and (12):

oy /dkrdEy = d*05/dkrdEy + d20y/dkrdEx . (13)

3. Results for the 180 target and discussion

We consider the case of the inclusive (K ~, 7 ) reaction on 160 at py =
450 MeV/c (8 = 0°) investigated at CERN by Bertini et al. [7]. This is the
case considered in the single Y channel approach in [5]. Here, we extend
the approach of [5] to two coupled channels ¥ and A.

Similarly as in [5], our ¥ s.p. potential has the form of an attractive
square well plus a repulsive surface delta bump,

Vs(r) = =Vsob(r — R) + V16(r — R), (14)

with R = 3 fm, Vs = 20 MeV, and V7 = 20 MeV fm. Our Vg is compat-
ible with the model D [8] of the Nijmegen baryon-baryon interaction (see
[9-11]), and our V7 is estimated from the repulsive surface bump calculated
in [12, 13].

For the target proton wave function ¢, we use — as in [5] — the bound
state solution of the Schrédinger equation with the proton s.p. potential

Vp('l’) = ——Vpoe(R - 7‘) - Vpl,lsﬁ(r - R) s (15)

with Vpy = 46 MeV and Vp;; = 15 Mev fm. This potential leads to the
s.p. proton energies in the py/, and p;/, states: ep(p;/2) = —12.5 MeV
and ep(p; /2) = —19.1 MeV, which agree with the corresponding empirical
proton energies in 10, -12.5 and -19 MeV (see [3]).

The Coulomb interaction of ¥~ and the target proton is disregarded.
Inside the nuclear core its average value is ~ £4 MeV, and we assume that
it is included into V¢ and Vpy.

For A, we assume a square well s.p. potential,

Va(r) = ~Vaob(r — R), (16)

with the value of V4o = 30 MeV, suggested by empirical values of A binding
energies and by calculations {14, 10] starting from the Nijmegen baryon-
baryon interaction.
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For the Y A coupling s.p. potential, V, , we also assume a square well
shape,
Ve(r) = Voo8(r — R), (17)

with Vzo = 5 MeV. Notice that the sign of V¢ is irrelevant, because
Eqgs. (3)—(4) are invariant under the transformation V, — —V;,x — —x.

For the parameter z = A'/A, we use the value 0.2, i.e., we have A' =
16.1 MeV.

The values of V¢ and z were obtained by adjusting them so as to get
an agreement with the CERN data [7]. Our value of V¢ coincides with the
central value of V, used in [3]. With our z, we get for M4 /M5 the value
of 0.985 which almost coincides with the value 0.99 used in [3].

With the square well potentials, Eqs. (14), (16), (17), our system of
coupled equations for ¢ and x, Egs. (3), (4), has been solved analytically
(see Appendix B).
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Fig. 1. Pion spectrum from from (K ~, 7~) reaction on %0 at 6 = 0° at px = 450
MeV/c. See text for explanation.



On the (K~ ,nt) Inclusive Reactions with ¥~ or A Production 991

In Fig. 1, we show our results for d’o5/ dk dE, (curve X)), d?a,/
dk dE, (curve A), and d?07/dkrdE, (curve T), at px = 450 MeV /c and
6 = 0°, as functions of By, the separation (binding) energy of ¥~ from the
hypernucleus produced (in the ground or excited state) with the nuclear
core left in its ground state. Since the data of [7], shown also in Fig. 1, are
only counting rates, our calculated results include a normalization to match
the overall magnitude of the data.

In the energy range considered there are two contributions which result
from the K~ interaction with p;/, and p3/; protons in 16Q. In the case
of the p,/, contribution, the final state of the nuclear care is a p, /2 hole
in 180, i.e., the ground state of 15N, and we have —By = Eg. In the
case of the p3/; contribution, the final nuclear core configuration is a p3/,
hole in!%0, i.e., an excited state of 1N with the excitation energy E* =
ep(p1/2) — €p(p3/2) = 6.6 MeV, and we have —Bg = Ex + E*.

The two peaks denoted by A and A* result from the K~ interaction
with the p, /2 and p3 /2 Protons respectively. The dominant contribution
to the A (A*) peak comes from the py/; (ps/z) component of the final
state of ¥ 7, and both peaks corespond to the p state resonance of ¥~
in Vy. Thus the A (A*) peak is the substitutional state [pl/z,pl"/lz];;-p
(P32, p;/lz] sp) in which ¥~ is in the continuum, with Ex in the vicinity
of the resonance energy. Notice that because of the coupling of the A and
X’ channels, also the cross section for A emission (curve A) shows maxima
at about the same energies as the cross section for ¥ emission (curve X).
Hence the total pion spectrum in an inclusive experiment (curve T') shows
substitutional states similar to the exclusive pion spectrum accompanied by
X emission (curve X).

The ¥ emission requires that Fy; > 0, and thus the contribution of
the K~ interaction with p; /; and p;/, protons to the X' curve vanishes for
—By < 0and —Byx < E* = 6.6 MeV respectively. Similarly, the A emission
requires that E4 > 0, and the contribution of the K~ interaction with p; /2
and p; /2 protons to the A curve vanishes respectively for —~Byg < —A' =
~16.1 MeV and —~By < —A'+E* = —9.5 MeV [see (5)]. Consequently, the
P12 contribution to the inclusive pion spectrum for —16.1 MeV < —By < 0,
and for the p; /2 contribution for —-9.5 MeV < —By < 6.6 MeV, is entirely
due to the A emission.

The peak denoted by B at By, = 5.94 MeV is produced by the K~
interaction with p; /, protons, leading to ¥~ and subsequently to 4, both of
them in the s, /2 state. The appearance of this peak is due to the production
of ¥~ (in the primary K~ P — =t X~ process) in the $1/2 bound state
which decays into A with E4 > 0 in the secondary X' A conversion process.



992 J. DABROWSKI, J. ROZYNEK

In the absence of the ¥ A coupling (V,9 = 0), our ¥ potential Vy leads to
a $1/; bound state with the binding energy Bx(s1/2) = 6.87 MeV. In the
presence of the ¥ A coupling, the bound state acquires a width and a shift
towards smaller binding. Both the width and shift increase with increasing
Vzo in agreement with [15].

Our present approach should be contrasted with our much less satisfying
one-channel approach with a complex s.p. ¥ potential [16], where a peak
similar to B was obtained by hand”: first we obtained a é§ type peak by
calculating the transition to the discrete bound state of ¥~ in the case of
pure real Vy, and next we smeared it out to a Breit-Wigner shape with the
width equal twice the imaginary part of the eigenvalue of the complex ¥
s.p. Hamiltonian.

The peak denoted by B* is similar to the B peak. The only difference
is that it is produced by the K~ interaction with p3/, protons instead of
the p, /, protons in the case of the B peak.
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Fig. 2. Same as Fig. 1 but for V4 = 0.
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Our results are sensitive to the s.p. A potential V,, as is seen from
Fig. 2 which shows our results obtained with V4 = 0. Otherwise Fig. 2
does not differ from Fig. 1 (also the normalization in both figures is the
same). Comparing the two figures, we notice two effects. First, without
V4 the peaks in the calculated pion spectrum become essentially broader.
Because of this broadening, the bound state peaks B and B* cease to be
visible. Second, switching off V4 increases the cross section for the emission
of A. The two effects may be understood in the following way. When ¥~
converts into A4 on which no potential V, is acting, then most probably 4
will leave the hypernucleus, and we have a fast A emission after the first
XY A conversion process, i.e., an appreciable cross section for the strangeness
exchange reaction accompanied by the emission of A. Such a fast A emis-
sion broadens the resonances and bound states in the X channel, and thus
also the corresponding peaks in the cross section. On the other hand, a
sufficiently attractive ¥V, keeps A within the hypernucleus where the ¥'4
coupling potential may convert it back into Y. Consequently, 4 emission
becomes less probable compared to ¥ emission, and the broadening of ¥
resonance and bound states due to YA conversion weakens.

The position of our two substitutional states 4 (at By = —5.5 MeV)
and A* (at By = —12.0 MeV) in Fig. 1 agrees nicely with the position of the
two narrow peaks which in the analysis of the CERN data [7] were located at
By; = —5.9+ 1 MeV and —12.4 4+ 1 MeV. On the other hand, our ¥ bound
state peaks B and B* are too narrow and too steep compared with the
CERN data. However , the CERN data are not very accurate, and it would
be highly desirable to perform the experiments with an improved statistics.
In the case of the strangeness exchange reaction on ?Be, such experiments
have been performed recently at BNL [17], and they do not reveal the peaks
in the pion spectrum reported in the earlier CERN experiments [18]. In this
situation it would be premature to adjust the parameters of our model so
as to get a precise agreement with the existing 160 data [7].

A serious shortcoming of the present approach is the effective two-
channel approximation. We hope to improve this point by representing
the nuclear core by a system of nucleons similarly as we did in Ref. [19].

Appendix A
Final expressions for the cross sections

Let us rewrite expressions (1), (2) and (11), (12) in a compact and a
more precise form:
EKEWMYcZkaY
(27)%(he) kg

d*oy(lpjp)/dksdE, = |t Sy (Ipip), (A1)
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Sy(pip)= Y [abyl[drexp(~igrp(¥, by pys ) D prpipmp ()

Ky mp

(A2)
where Y = ¥, A, [ dr denotes the integration over r and summation over
the spin coordinate £. By d?oy(Ipjp)/ dk-dE, we denote the cross section
for the production of the (ic,r, E) pion, accompanied by the emission of the
hyperon Y in any direction i}y and with any spin projection uy, and with
the target nucleus left with a proton hole in the I[pjp state with any jp
projection mp.

The target proton wave function ¢ is

Pipipmp (7€) = ylp%jpmp (*§)Ripjp(r)/7 5 (A3)
where
Vipyipmp(F) = D (Ip3mulipmp)Yipm(#)nu(), (A4)
mp

where 7, denotes the spin wave function.
The partial wave expansion of ¥(~) is (see Appendix B):

(¥, kypy;r6) ) =
ar Yy i‘nm(éy)*(z%mﬂy}jmj)yl%jmj(ﬁf)uzj(Y,kz;r)(")/r-(A5)

Ilmjm;
After inserting expressions (A4) and (A5), and the expansion

e ' = 4m Y (i) Ym(d)*Yom (#)iL(ar) (A6)
LM

into expression (A2), a straightforward calculation leads to the following
result for Sy in terms of Wigner 3—j and 6 —j symbols:

Sy(lpjp) =(4m)*(2ip + 1)(20p +1) Y (27 + 1)(2L + 1)(21 + 1)
Llj

2 . 2
X ({; 163 (I)) {]f % I;'D} [(lilic(ar)llpip)y|®,
(A7)

where

(liliclgr)llpir)y = /druzj(Y, k7))L (qr) Ripjp () - (A8)
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In the case of a pure central potential Vx (without spin-orbit coupling),
(=) (=)

S

Ij , and

considered in Section 3, functions u do not depend on j, u
Egs. (A5), (A7) take the simpler form:

Y, ky py;76) D = dr Y iV (k) Vi (Amu(Ou(Y, ks ) ),

Sy(lpip) =(4m)*(2jp + 1) Y (2L +1)(20 + 1)
Ll
2
<(§ ) Wieneien . (a0)

where the expression for < I|jz(¢r)|lpjp >y is identical with (A8) except
that ugj_) is replaced by ug_) .

Appendix B

Solution of the coupled equations for v and x

Here, we outline the procedure of solving the coupled equations with
the interactions Vg, V4, V., considered in Section 3.

For the hyperon wave function in the Y channel, we use partial wave
expansion (A9), and in the A channel an analogical expansion,

XV, by py 7)) = 3 i1 by ) ¥ign (P (€Y (Y i 7)),

Ilm
(B1)
When we insert expansions (A9) and (B1) into Egs. (3), (4), we obtain:

2 l(l+1 - _
{W_ (r2 )~v2(r)+kf\3}ul(Y,k2;T)( ):vzg(r)wl(Y,kA;r)( ),

(82)
2
{%ﬁ‘ B l(l; 1) va(r) + kﬁ}wl(Y, ks 7)) = v () (Y ks ),
(B3)
where
vy (r) = (2My /W)y (r), vay (r) = (2My [W*)Va(r).  (B4)

Let us present our procedure in the case when ¥ is emitted. In this case,
we have for distances larger than the range R of the interaction, » > R:

kgu(Z k)T = Jy(kgr) = o*H P (kgr), (B5)
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kawy(Z, ka;r)7) = 8*H (kar), (B6)
Here, we use the notation:
Ji(2) = zji(z), YD (2) = 2h(2) . (B7)

The particular form of the partial wave expansion of ¢, Eq. (A9), was
chosen to get the required asymptotic behavior:

($(Z, kgpg;re) ) —eksTy, (6}, ~nug(€)e” 77 /r.  (BS)

The partial wave expansion of x, Eq. (B1), is then implied by the system
of the coupled equations for 3 and x.

In calculating the cross sections, we need u;( ¥, kx; 7){=)* which enters
into < l|jr(gr)|lpjp >. Thus we introduce

wi(Z, kg r) ) = wy(Z, kgyr) ", (B9)
wy( B, ki) = wy(Z, k). (B10)

Functions u§+), w§+) satisfy the same system of equations as ug_), wl ™)
and represent the outgoing wave radial wave functions. In place of (B5) and
(B6), we have for r > R:

K

ksw(Z, kg r) P — Tksr) = aH D (kpr), (B11)
kqwi(Z, ka5 7)) = BH D (kyr) . (B12)

Let us introduce a simplified notation:
w(Z, kg r) ) = w(r), wi(Z, kar) ) = wy(r). (B13)

With potentials (14), (16), (17), Egs. (B2), (B3) for » < R are:

2  (I+1)
{W T2 T Ky (U= Ve zoWi, (B14)
¢ (l+1)
{d—rz‘ — —'7'2— + K/A}wl = VzA0Ul, (B15)
where
FL%; = k%/ + (2My/h2)VY0 y UpVo = (2My/h2)Vzo . (Blﬁ)

For the solution (u;, w;) regular at » = 0, we make the Ansatz:

u; = AxpJi(kr), w; = ApJi(kr). (B17)
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We insert this Ansatz into Egs. (B14), (B15), use the equation

2 Il(1+1
{Eﬁ - (—rz——)}Jl(nr) = —&2Jy(kr), (B18)
and obtain:
(K% — &) Ay —vo5044 = 0, (B19)
—~vz a0l s + (K,i - K,Z)AA =0. (B20)

Nonvanishing solutions A5, 44 of these two equations exist only if
(k% — K2)(K4 — k%) — v 50vp40 = 0. (B21)

This equation for k2 has two solutions:

1] _ 1 Ii2+ﬁ:2:l:\/(2—- 2)2 4 4, 500 (B22)
£2 - 2 z A Ky K4 z30Vz A0 .
2

Notice that for vanishing coupling, we have k2 = k% (and 4,4 = 0), and
k3 = k% (and Ag = 0).
For k% = k2 the two equations, (B19) and (B20), are linearly dependent.
If, e.g., we use Eq. (B19), we obtain (for each of the two values of «?,
1=1,2)
4D = (% - wD)/va 50145, (B23)

and the corresponding two solutions (for » < R):

3 T R K’z
ug ) - A(E)Jz(ni’l‘) ( ) = A( ) izZ’O Ji(kir), (B24)

where A(Zl,) and A(Zz) are undetermined so far.

The general solution (for » < R) of the system of linear differential equa-
tions (B14), (B15) is a linear combination of the two solutions, Eq. (B24),
which we write in the form

2
= ZA;’J[(K,"I‘), (B25)

kL — k2
w; = ZA ixZO L Ji(kir). (B26)
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The two arbitrary constants A; and A, are determined by the require-
ment that the functions u;(r < R),w;(r < R), Egs. (B25), (B26), join
smoothly at 7 = R the functions u;(r > R), w;(r > R), Egs. (B11), (B12):

w(R—¢) = w(R+e), (B27)
d%ul(R )= d;iu,(ﬂ +e)—viw(R+e), (B28)
wi(R — ) = wy(R +¢), (B29)
L oR-e) = SR e), (B30)

where ¢ — 0. The extra term vyu; in Eq. (B26) (with v; = (2Mg/A*)V1)
represents the change in the slope of u; at » = R produced by the surface
delta bump in Vg, Eq. (14).

From the four equations (B27)—(B30) one determines A;, A2, and also
the constants a, 8 which appear in u;(r > R), w;(r > R), Egs. (B11), (B12).
Solving the four equations for Ay, A3, a,f is elementary and straightfor-
ward, and we do not feel that it would be justified here to write down the
relatively lengthy expressions for A;, A2, a, 8.

The procedure in the case when A is emitted is similar. The only
difference is that now instead of Egs. (B11), (B12), we have

ksu(4, kg r) ) = aH D (kgr), (B31)
kawi(4, ka;r)(P) = Ty(kar) = 5H¢(1)(km‘) . (B32)
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