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Some perturbative approaches to the QCD description of the deep-
inelastic ep scattering at the small Bjorken variable z are reviewed. It
is shown, that in the leading logarithmic approximation the gluon is
reggeized and the pomeron is a compound state of two reggeized gluons.
The relation between the Schrédinger equation for the compound state
of several reggeized gluons in the multi-colour QCD and the completely
integrable Heisenberg spin model is discussed. The effective action for the
gluon-Reggeon interactions is constructed and applied to the problem of
finding next to leading corrections to the QCD pomeron.

PACS numbers: 12.38.Cy

1. Introduction

Recently in experiments at HERA the rapid growth of the structure
functions for the ep scattering at small z was discovered. It is related
with the corresponding increase of the parton distributions n;(z) inside the
rapidly moving proton as functions of the decreasing parton momentum
fraction z and the increasing photon virtuality Q2. In the framework of
the Dokshitzer-Gribov-Lipatov-Altarelly-Parisi (DGLAP) equation [1] the
parton distributions grow at small z as a result of their Q%-evolution. In the
framework of the Balitsky—-Fadin—Kuraev-Lipatov (BFKL) equation [2] this
growth is a consequence of their z -evolution. Within the double-logarithmic
accuracy these equations coincide and the increase of the structure functions
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at small z is related with the singularities of the anomalous dimensions for
the corresponding twist-2 operators at non-physical values 7 — 1 of the
Lorentz spin [3]. The existing experimental data on structure functions
agree with the DGLAP dynamics provided that the evolution equation in
Q? is applied starting from rather small Q% = Q2 [4]. The growth of the
structure functions at small z can be also obtained with the use of the BFKL
equation [5]. In this case a large uncertainty is related with the fact, that
the next to leading corrections to this equation have not been calculated yet
contrary to the case of the DGLAP equation where they are well known.

In this talk the approach based on the BFKL evolution equation and
on its generalizations will be reviewed. In the next section the basic prop-
erties of the solution of the BFKL equation are discussed in the frame-
work of the impact parameter representation. In the third section it will
be demonstrated, that in the Regge limit of large energies /s and fixed
momentum transfers /—¢ the gluon having the spin j = 1 at ¢t = 0 lies
on the Regge trajectory j = j(t) and the BFKL pomeron is a compound
state of two reggeized gluons. Here it is shown also, that the Bartels—
Kwiecifiski-Praszalowicz (BKP) equations [6] for compound states of sev-
eral reggeized gluons in the multi-colour QCD have remarkable properties:
the two-dimensional conformal symmetry, the holomorphic factorization of
their eigen functions and the existence of non-trivial integrals of motion in
holomorphic and anti-holomorphic subspaces. The corresponding Hamil-
tonian turns out to be equivalent to the local Hamiltonian of the exactly
solvable Heisenberg model with the spins being the generators of the con-
formal (M&bius) group. At high energies it is natural to reformulate QCD
as an effective field theory for regeized gluons. In the fourth section the
effective action for the interactions between the reggeized gluons and the
usual quarks and gluons is constructed. The program of finding next to
leading corrections to the BFKL equation is discussed in the fifth section.
In the Conclusion the unsolved problems are discussed.

2. BFKL pomeron in the impact parameter space

In QCD the most important processes at large energies E (s = E?) are
governed by the gluon exchanges. For example, the Born amplitude for the
parton-parton scattering is [2]

A(S, t) = 2s g(s)‘mAa, Tj{'A % g(s)‘b,)\b, TE’B ; (1)
where A; are helicities of the initial and final particles; A, A', B, B' are their

colour indices and T§; are colour group generators in the corresponding
representation. The s-channel helicity for each colliding particle is conserved
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because the virtual gluon in the t-channel for small ¢ interacts with the total
colour charge Q¢ commuting with space-time transformations.

Let us consider now the high energy amplitude for the colorless particle
scattering described by the Feynman diagrams containing only two inter-
mediate gluons with momenta k and ¢ — k in the t-channel. With a good
accuracy we can neglect the longitudinal momenta in their propagators:

K~ kh, (g- k)2~ (g-k)3. (2)

The polarization matrix for each gluon can be simplified at large energies
s = (pa + pp)? > m?. Namely, if its indices u and v belong to the blobs
with incoming particles a and b correspondingly, then with a good accuracy
we have

(Y
grv _y DoPa 3)

PaPb

By introducing the Sudakov parameters
a_—kpa:_sa/sv /3: kpb:sb/sa
PaPs PaPb
Foky, dk=d2k 25l (4)
2 |s]

for the virtual gluon momenta k& , ¢ — k one obtains for the asymptotic con-

tribution of the diagrams with two gluon exchanges the following factorized
expression:

A(s,t) = 2i{sl-1—/ Pkl gk g BB EG-F),  (5)

3 2! k2 (q_'— k)Z ] b

corresponding to the impact-factor representation [7]. Here the sum over

the colour gluon indices is implied. The impact factors @*® are defined as

integrals over the energy invariants s, j from the photon-particle amplitudes
a,b,
py

oo [ v
/ dSa,b pb,a pb,a a,,b(s b ]; q’_];) (6)
———— e a,bry vy *

&>k, §—k) = et e e s,

-0
The impact factors describe the inner structure of colliding particles. For
large k they are proportional to the number of partons N; weighted with
their colour group Casimir operators. .
The impact factors are real functions of k, G-k, vanishing for small |k |

and |§— k | in the case of the colorless particle scattering (e.g. photon-
photon collisions), which is a consequence of the gauge invariance and of
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the absence of infrared divergencies in the integral over s, ; for small |E |
and |§—k |.

It is convenient to present the scattering amplitude in the form of the
Mellin transformation

st-—z|s[/ - sY fwl(g ), ——f]2 (7)

and to pass to the impact parameter representation performing the Fourier
transformation [8]:

The quantity f,(p7,p3;P1,ps) can be considered as a four point Green
function:

fu(P1, 53510, Pz1) = (016(p1)d(p2) B(p1/)B(p2:)| 0) (9)

where the field ¢(p) describes the (reggeized) gluons. In the Born approxi-
mation ¢ — 0 with the use of the colorless property of the colliding particles
it can be written as follows

2
fg(ﬁ),ﬁ),ﬁ,@) — .2._7_7__111 Pi11/P22/ In P11/P22/
w |pr2rpr2| | pr2pv
ik =7 7t (10)

This expression is unique in comparison with all other physically equivalent
expressions for f because it depends only on two independent anharmonic

ratios of the vectors py, p3, pr’ and pz which can be chosen as follows

=8

(07

P11/P22
P12/P1/2

_ {P1v/ P2y
P12p12!

P121P12
P12p112/

(11)

& =

Therefore, f2 is invariant under the conformal (M&bius) transformations:

cpr+dpk
for arbitrary complex a, b, ¢ and d provided that we use the complex coor-

dinates
P =Tk + 1Yk, Pr =Tk — Yk (13)
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for all two-dimensional vectors pj (Tk, Yk)-
The solution of the BFKL equation is also M&bius invariant in LLA and
can be written in the form [8]:

+oo 2
. 57 7)) (v +n?/4) dv
fw(pi, p3:p1, p2l) n_z_:oo / 2 + (n— 1)2/4][v2 + (n + 1)2/4]
Gun(p1, P3; P1', P3")
X : (14)
w—w(y,n)
where for n = £1 the integral in v is regularized as follows:
+o0 1
/dI/— _llm (7/ du (v _6) (1/)—2@). (15)
v? le]
—o0

In the “energy propagator” (w—w(v,n))~! the quantity w(v, n) is the eigen
value of the BFKL equation [2]:

1
w(y,n) = ]g;gzz / ld—ma; [m(lnl_l)/z cos(vln z) — 1]
0
_ _]Z;%z Re (¢(1 *’2’7" + iv) _ ¢(1)) . (16)
The Green function Gyn(p1, p3;p1), P) is given below:
Gun(P1,P3; 010, P2)) =/d2PoE (P1705 P270) Evn(p10, p20) , (17)
where

_ P12 \m, Pl2 \m
Eyn(p10, p20) = (0| ¢(p1)9d(p2)Oun(po) | 0) = (pwpzo) (Pi‘opé‘o) (,18)

are the solutions of the homogeneous BFKL equation [8]. They are equiva-
lent to the Polyakov three-point function for the case when the fields ¢(p;)
describing the reggeized gluons have vanishing conformal quantum numbers
v and n. The composite field O,, describing the BFKL pomeron has the
conformal weights

1 n 1
i .o 1 . n 1
m_2+w+2, m_2+w 3 (19)
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with real v and the integer conformal spin n in accordance with the fact that
they belong to the basic series of the irreducible unitary representations of
the conformal group.

One can present G ,,n(;Tl), 0391 5;) (17) in terms of the hypergeomet-
ric functions F(a, b, ¢; ) taking into account its conformal invariance:

Gun(Pi, 0391, Pa)) =C1 & m g¥m F(m,m,2m;z) F(m,m,2m;z")
+ ¢ xl_mm*l_;ﬁF(l -m,1—m,2— 2m;z)

x F(1 - - m,2—2m;z"), (20)
where z is the complex anharmonic ratio:

r = P1zPr2 (21)
P11’ P22r

The coefficients ¢1,2 can be obtained from ref. [8]. The ratio c1/c2 is fixed
from the condition, that G is a single-valued function of its arguments. With
the use of the various relations among the hypergeometric functions one can
derive other representations for the Green function G to continue it in the
regions around the points £ = 1 and * = oco. One can use the representation
in terms of the hypergeometric functions to obtain the scattering amplitude
in various limiting cases with the use of the operator expansion of products
of fields ¢.

3. Multi-Regge processes in QCD

The most probable process at large s is the gluon production in the
multi-Regge kinematics for final state particle momenta ko = pys, k1 =

91— 92, ---kn = Gn — Gn+1, knt1=pp:

s> 5 =2ki1k; >t =¢} = (PA—Zkr) )
r=0
n+1

b _)2 __>2
[si=s]]k .Ki=-% . (22)
i=1 =1

In LLA the production amplitude in this kinematics has the multi-Regge
form [2]:
n+1 (
t;)
AI2J£>A2+n t211::32-!-':1. H sw (23)
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Here s; “(t) are the Regge-factors appearing from the radiative corrections
to the Born production amplitude Ag’ffz_*_n. The gluon Regge trajectory
J =14 w(t) is expressed in terms of the quantity:

2 —~2
: g“N, o g 2
t) = — o, I = —§F“. 24
o) = o [ g 1= (24)

Infrared divergencies in the Regge factors cancel in 04o¢ with analogous
divergencies in the contributions of real gluons. The production amplitude
in the tree approximation has the following factorized form [2]

1
t —_ dn Cn41
42{?:24'77- ngA/AFI T €2€1 FZ lt ' chn+lCn F‘r?—{-l,n bt TB’B Iy.

(25)
Here A, B and A', B',d, (r = 1,2...n) are colour indices for initial and final
gluons correspondingly. TS, = —ifgp. are generators of the gauge group
SU(N.) and g is the Yang-Mills coupling constant. Further,

I = e,,e idd AT, = _%Fu(9r+la q,.)e;"’*(k,.) (26)

are the Reggeon—Particle-Particle (RPP) and Reggeon—Reggeon-Particle
(RRP) vertices correspondingly. The quantities A\, = 1 are the s-channel
gluon helicities in the c.m. systemn. They are conserved for each of two
colliding particles: Iy = dys5. The tensor ' can be written as the sum
of two terms:

' ’ 1 ’
v ="t — g (n*) = (nh)”, (27)
Pa
where we introduced the light cone vectors
n~ =24 ,+_ 21—3—, E=s/2,ntn~ =2, (28)

E’ E
and the light cone projections k¥ = k"n of the Lorentz vectors k7. The
first term is the light cone component of the Yang-Mills vertex:

/ ! /
YE = + 058 — 2% (n ) - 2%, (nF) (29)

The second (induced) term in (27) is a coherent contribution of the Feyn-
man diagrams in which the pole in the t-channel is absent. Indeed, it is
proportional to the factor ¢? cancelling the neighboring propagator.
Similarly the effective RRP vertex I'(q2,¢1) can be presented as fol-
lows [2]
o ot _o2(nT)7 5 (nF)7
r (QZv QI) =7 2q — + 2(]2 T (30)
ky ky
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where
vt =2¢5 + 245 — 2(n7)7k{ + 2(nt) kT (31)
is the light-cone component of the Yang—Mills vertex.
Note, that I'® has the important property:

(k1)PTu(q2, 1) =0, k1 =q1 — q2, (32)

which gives us a possibility to chose an arbitrary gauge for each of the
produced gluons. In the left (I) light cone gauge where pae!(k) = 0 the
polarization vector e!(k) is parameterized in terms of the two-dimensional
vector efL

l — i kJ—eﬂ_ (33)

and satisfies the Lorentz condition ke! = 0. The matrix element of the
reggeon-reggeon-particle vertex I’ takes an especially simple form [9]

*

r}y=Ce'+C%, c=48, (34)
1

if we introduce the complex components

e=€,+ iy, " =€, —iey; k=ky+iky, K* = ky —iky (35)

for transverse vectors e, k_f_ This complex representation was used in [9]
to construct the effective scalar field theory for multi-Regge processes.
Using the explicit expressions for production amplitudes in the multi-
Regge kinematics one can calculate the imaginary part of the elastic scatter-
ing amplitude with the vacuum quantum numbers in the crossing channel.
Due to the factorized form of the production amplitudes one can write down
the Bethe-Salpeter equation for the vacuum t-channel partial wave describ-
ing the pomeron as a compound state of two reggeized gluons [2]. The
contribution to its integral kernel from the real gluons is proportional to
the product of the effective vertices calculated in the light cone gauge (34):

* ke
C(p1,pr) C*(p2, po) + hc. = plﬁzkpllz/——pzl

+h.c., (36)
where p1,p2 and p,r, pys are the corresponding complex transverse compo-
nents of initial and final momenta in the t-channel (¢ = p1 +p2 = pyr +par)-
In turn, the contribution related with virtual corrections to the produc-
tion amplitudes is proportional to the sum of the Regge trajectories of two
gluons:

2 2
w(=p1 ) +w(=p3") ~In|p1 | +In|p2 |* +c, (37)
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where the constant ¢ contains the infraredly divergent terms which are can-
celled with the analogous terms from the real contribution after its integra-
tion in k. The final homogeneous equation for the t-channel partial wave
fw(k,q — k) introduced above takes the form [10]

8 2
EW = HyW, E = — ‘;Z . (38)
Here the “Hamiltonian” Hjys is [2, 10]
Hiz=In|pi 2 +1n | pg |? +—m—
| | | | |P1|2|P2|2
X (pip2In | p12 12 p1p} 4 h.c) — 49(1), (39)

where 9 (z) = % In I'(z) and I'(z) is the Euler I'-function. We introduced
here the complex components pp = z + ty; for the impact parameters
canonically conjugated to the momenta pp = iﬁ: (pik = pi — pr)- The

Hamiltonian H has the property of the holomorphic separability [10]:
Hyz =hi2+hj,, E=c+¢, (40)

where ¢ and € are the energies correspondingly in the holomorphic and
anti-holomorphic subspaces:

e(p1, p2) = ha2 ¥(p1, p2), EB(p}, p3) = h1y¥(pt, p3), ¥(p1,73) = lb%- )
41
The holomorphic hamiltonian is [10]
1 1
hiz = - In (p12) p1 + ;;111 (p12) P2 + In(p1pz) — 29(1) . (42)

The solutions of the homogeneous BFKL equation belong to irreducible
unitary representations of the Mdbius group. The generators of this group
for an arbitrary number n of particles are

n n n
M= ppdp, M~ =3 &, MT == p}os. (43)
k=1 k=1 k=1

Its Casimir operator is

M? = (M7)? — %(M“LM‘ MM ==Y 2,0,0,.  (44)
r<8
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The holomorphic factor ¥, is an eigenfunction of the corresponding Casimir
operator:

M2t = m(m — 1), . (45)

Simultaneously it is an eigenfunction of the BFKL equation in the holomor-
phic subspace:

h'l/Jm = 5¢m7 &= 7L‘(Tn’) + 1/7(1 - m) - 2¢(1) . (46)

The eigenvalues of the second Casimir operator M?* are expressed
through the conformal weight m = % + v~ 3.
The simple method to unitarize the scattering amplitudes obtained in
LLA is related with the solution of the BKP equation [6] for compound

states of n reggeized gluons:

EW=> HuV. (47)
i<k

Its eigenvalue E is proportional to the position w = j — 1 of the singularity
of the t-channel partial wave:

]2

F=—-—uw
g2N. "’

(48)
The simplest non-trivial example of the BKP equations is the equation for
the Odderon which is a compound state of three reggeized gluons [10].

In the multi-colour QCD (N, — oo) according to ’t Hooft only planar
diagrams in the colour space are important. Because the colour structure
of the eigen function at large N, is unique, the total hamiltonian H can

be written as a sum of the mutually commuting holomorphic and anti-
holomorphic operators [10]:

H= %(h+h"), [h,h*] =0, (49)

where % is a colour factor appearing for each pair of the neighboring gluons
in the octet state

n
h= Z hijit1 - (50)
i=1

Thus, in this case the solution of the Schrodinger equation has the property
of the holomorphic factorization:

U= citr(pr, -pn) Pr(pls ) - (51)
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where 1 and {/; are correspondingly the analytic and anti-analytic functions
of their arguments and the sum is performed over the degenerate solutions
of the Schrodinger equations in the homomorphic and anti-holomorphic sub-
spaces:

e =ho, e P =h*y* E=L(e+e¥). (52)

These equations have nontrivial integrals of motion [10]:
t(0) =trT(6), [t(u),t(v)]=[t(0), ] =0, (53)

where 4 is the spectral parameter of the transfer matrix ¢(d). The mon-
odromy matrix 7'(d) is constructed from the product of the L-operators

T(6) = L1(8)L2(0)...Ln(6) (54)

expressed in terms of the M&bius group generators:

. 9+ipkak i0k -
Lk(a) o ( —-lpkak 0 — ipkak> ) (05)

Thus, the solution of the Schrédinger equation is reduced to a pure algebraic
problem of finding the representation of the Yang-Baxter commutation re-
lation [11]:

111/ (w)T; (v)(v —u+iP2) = (v—u+ “)IZ)Tizi’z(”)Tili’l (u), (56)
where the operator Pja in its left and right hand sides transmutes corre-
spondingly the right and the left indices of the matrices T'(u) and T(v).
Moreover, Hamiltonian (50) for the Schrédinger equation (52) coincides
with the Hamiltonian for a completely integrable Heisenberg model with the
spins belonging to an infinite dimensional representation of the non-compact
Mboébius group and all physical quantities can be expressed in terms of the
Baxter function Q(A) satisfying the equation [11]:

QM) = (A+)"QA+1) + (A= )"Q(A = i), (57)

where t()\) is an eigenvalue of the transfer matrix. The solution of the Baxter
equation is known for n = 2. In a general case n > 2 one can present it
as a linear combination of the solutions for n = 2 and obtain a recurrence
relation for their coefficients. But up to now the explicit solution was not
obtained even for the case of the Odderon in QCD.
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4. Effective action for small-z physics in QCD

At high energies the rapidity ¥ = In Z—f constructed from the light-cone

components kt = .’c"‘nf,[E of the particle momenta is similar to the time in
quantum mechanics. The corresponding Hamiltonian is determined by the
interaction of gluons and quarks with a nearly equal rapidity. The gauge-
invariant effective action Seg local in a rapidity interval (yo — 7,%0 + 7)
was constructed recently [12] and includes apart from the usual Yang-Mills
action also the interaction terms:

Seg(v,Ay) = — /d‘*z

tr [3Gh, (0) + (A= (v) — A_)F58 + (A1 (v) - A4)57F]
(58)

where the anti-hermitian SU(N,.) matrices v, and A+ describe correspond-
ingly the usual and reggeized gluons. Because the action is local in the
rapidity space, we omit temporally y as an additional argument of these
fields. The reggeon current j:teg depends on A4 in a very simple way:

j;:eg = aczr A:i:v (59)

which guarantees, that the interaction disappears on the mass shell k% = 0.
The fields A4 are invariant

6AL =0 (60)
under the infinitesimal gauge transformation
&Ua' = [Da7 X] y (61)

with the gauge parameter y decreasing at  — oo, but they belong to the
adjoint representation of the global SU(N,.) group and are transformed at
constant x as follows:

§Ax =g[Ax,X] - (62)

As usual,
Guv(v) = % [Dy,Dy] = 8uvy — Oyvp + glvu,v], Do =00+ gvs - (63)
The fields A4 obey the additional kinematical constraints

B A_ =0, 0_Ay =0, (64)
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meaning that the Sudakov components «, 3 of the reggeon momentum
g = app + Bpa + k, are negligible small in comparison with the cor-
responding big components ay, B;_1 of the neighboring particle momenta.
Such simplification takes place at the quasi-multi-Regge kinematics where
the gluons in the final and intermediate states are separated in the clus-
ters. The invariant mass of each cluster is restricted from above by a value
proportional to exp(n) and the neighboring clusters significantly differ in
their rapidities: yg_1 — yg > 7. Further, the Sudakov components oy,
B of their total momenta are strongly ordered: aj > aj_1, Bk < Br—1
and the transfer momenta k, are restricted. The effective action describes
the self-interaction of real and virtual particles inside each cluster and their
coupling with neighboring reggeized gluons.
The composite reggeon field A4 (v) is given below
1

1 1
Ax(v) = vt — g5V + g%vs oy ta T (65)

and can be written in the explicit form

:t:i
Ax(v) = va D0 = —i—aﬁ:U(Ui) , Ulvg) = Pexp(—g / dz'Fog(z"),

(66)
where the integral operator D;lai is implied to act at an unit constant
matrix from the left hand side and the symbol P for the Wilson exponent
means the ordering of the fields v in the matrix product in accordance
with the increasing of their arguments 2'*. Because the interaction terms
in the momentum space contain the factor ¢t = ¢? killing the pole in the
neighboring gluon propagator the corresponding scattering amplitudes does
not have simultaneous singularities in the overlapping channels ¢ and s.
The interaction terms contain contributions of the Feynman diagrams, in
which the gluons in the given rapidity interval (yo — 7, yo + 77) are coherently
emitted by the neighboring particles with essentially different rapidities.

The interaction terms of the action are gauge invariant due to the fol-
lowing relations

<

in 5 9
D, 3] =0, 3¢ = 5 (A4 (0) 545) (67)

where jf,“d is the induced current. Note, that for the particles belonging to
the same cluster the parameter 5 plays a part of the ultraviolet cut-off in
their relative rapidity.
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One can verify, that the physical results do not depend on 7 due to
cancellations between the integrals over the invariant masses of the produced
clusters of particles and the integrals over their relative rapidities (for which
7 plays a part of the infrared cut-off). This criterion is very important for
the self-consistency of the effective action.

The effective action Segq has a nontrivial stationary point v = v satis-
fying the following Euler-Lagrange equations [12]:

[Dav Gai] - j:'}:nd» [Da's Gi_p] =0 ) (68)
where the induced current jg‘d equals
ind _ L 2 L ina
J£° = 505 (01,4%) O 5~ 716 =0, (69)
¥ F

and due to (9) satisfies the covariant conservation law:
[Da, ji;‘d] =0, (70)

We can construct a perturbative solution v = T of the classical equations
for example in the Landau gauge. By inserting it in Seg one can write the
reggeon action in the tree approximation as follows:

Siree — / dz tr (s2+gs3+ g% sq + ) (71)

where
sy =0 Ay OF A, (72)
s3=— (02A_) AL 07 Ay — (02A4)A_0T A, (73)

sa == (Ouf})? - FIA4, AT
+(02A_) Ay0T AL 0T AL + (02A4) A_OTTA_OTIAL, (T4)

where
05t = (04,051 A5] ~ 5 [AF, 0+ Ax].

In a general case to cancel the infrared divergencies one should take into
account apart from the classical contribution to the corresponding transi-
tion vertices also the contributions from quantum fluctuations near classical
solutions. For example in LLA they are responsible for the gluon reggeiza-
tion.
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One can use the simple parametrization of the initial field v4:
ve =Vi+ 4. (75)
In this case one have also V4 = 0 at ¢ = 0 in the Landau gauge d,vs = 0

and the homogeneous polynomials L? of fields A4 appearing in the expan-
sion of Seg:

Seg(V,Ax) = /d% tr ZL’ (76)

agree with the Steinman relations. The terms Lz do not have simple gauge
properties but the corresponding scattering amplitudes are invariant under
the gauge transformation after using equations of motion.

In the above expansion L? describes the interaction of physical glu-
ons with i reggeized gluons. The corresponding Feynman vertices contain
the usual Yang—Mills vertices and the induced nonlocal terms. Below we
construct the gluon production amplitudes in the quasi-multi-Regge kine-
matics using these effective vertices. One can find in the framework of this
approach also the perturbative expansion of the reggeon action Sregg defined
as follows

exp(—iSregg(A+)) /DV exp{—1Sesr) , (77)

which depends on the reggeon fields 44.

The subsequent functional integration over A4 corresponds to the solu-
tion of the reggeon field theory acting in the two-dimensional impact param-
eter subspace with the time coinciding with the rapidity. It is important,
that in the above approach the t-channel dynamics of the reggeon interac-
tions turns out to be in the agreement with the s-channel unitarity of the
S-matrix in the initial Yang-Mills model. In the Hamiltonian formulation
of this reggeon calculus the wave function will contain the components with
an arbitrary number of reggeized gluons. Nevertheless, one can hope that at
least some of the remarkable properties of the BFKL equation will remain
in the general case of the non-conserving number of reggeized gluons.

Note, that to build the effective action for the multi-Regge kinemat-
ics one should take into account only two first terms of the perturbative
expansion of L:

Lpr =3 (0,Ve —0,V,)? + 05 A4 0L A + gbs(A4, A V),
by =—144071430%,A- — 1A 0T AL A + Fro [A-, A4]
~ (03107 Py - ) 05 A—, 0, 44) + (027F-0) [A-, 05 A4]
+ (07 Fyo) (A4, 0oA] - Ay [F_,,,OZIF_U]
— A [FJM,, 8;1F+0] , (78)
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where we introduced the abelian strength tensor:
Fup = 0.V, —0,V,, (79) -

and omitted in the last line some terms containing the factors d,V, and
9%V, and vanishing for the real gluons. The Feynman vertices of this theory
coincide on mass shell with the effective reggeon-particle vertices of the
leading logarithmic approximation.

5. Next-to-leading corrections to the BFKL equation

The imaginary part of the elastic scattering amplitude calculated with
the use of the s-channel unitarity condition through the squared production
amplitude in a quasi-multi-Regge kinematics contains the infrared diver-
gences at small k? 7. and k. To avoid such divergencies the dimensional
regularization is used in the gauge theories. It is important, that in the
D-dimensional space the gluon has D — 2 degrees of freedom.

The generalized BFKL equation for the virtual gluon cross-section can
be written in the integral form as follows

dq+ _ _ N
o(qt,qf) = oo(@d, i) + | =2u*"P [ dP*@ Ks(q1, 630 (@, 43)
o

2
(80)
where the integration region for the longitudinal momentum q;" is restricted
from above by the value proportional to q;' :

g < dqf. (81)

The intermediate infinitesimal parameter § > 0 is introduced instead of
the above parameter 7 to arrange the particles in the groups with strongly
different rapidities. The integral kernel K,g(q_l), Z]_{) takes into account the
interaction among the particles inside each group where § plays role of
the ultraviolet cut-off in their relative rapidities. The kernel K5 can be
calculated in the perturbation theory:

o) 2 r
Ks(@. @) =Y. (Ef-),;—_;) K@ @) (52)
r=1

The next-to-leading term in K related with the two gluon production
is given below [13]

2 _ 16N dD 2k1 (83)
gluons — 2__)2_>2 .’E(1~ZE) '
é

q1 42
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For the physical value D = 4 of the space-time dimension one can
express R as the sum of two terms:

R= R(+-)+ R(++), (84)

where R(+—) and R(++) are the contributions from the production of the
gluons with the same and opposite helicity correspondingly.

R(+-) =
- _ — k3 k
F (160 k) P e k) P R e (b, k) O k) )
2
R(++) =
kY ks
% (l C++(k1’ k‘g) !2 + l C++(k2, kl) |2 +Re C++(k1’ kz) C++(k‘2, kl)ﬁi) .
(59

Here the complex functions ¢~ (ki, k2) and ¢+ (kq, k2) describing the
production of two gluons with the same and opposite helicity correspond-
ingly are given below:

ko) = 11 c12 22 _ —F 92491
T (k1 k2) = '+ ic*! +c et (ky, ke) = ———_(kl—xA)k*’
+(k1, k‘z) =1 + ic*? + ict? — 22 = C——(k‘l, kz)
2
_ z (Q1)? T (ka)?
o 2 2 2
((H—$H)2+x(l~z)q_f> A ((H-zz’)um(l—x)z’)
2(1 — z)qik2q3 zqrki1gz 2¢3Q1
A (k1 oB)k] | 7 Ak (86)

A (k] — zA*)

These expressions were obtained independently also in Ref. [14].

All divergencies were extracted in an explicit form from the gluon and
quark production using the dimensional regularization [13]. The infrared di-
vergencies should cancel with the corresponding virtual contributions. The
one-loop corrections to the particle-particle-reggeon vertex and two-loop
corrections to the gluon Regge trajectory were calculated earlier [15]. The
total one-loop correction to the BFKL equation will be calculated soon in
an explicit form in terms of the dilogarithm integrals [13].



1262 L.N. LiraToV
REFERENCES

(1] V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438, 675 (1972); L.N.
Lipatov, Sov. J. Nucl. Phys. 20, 93 (1975); G. Altarelli, G. Parisi, Nucl. Phys.
B26, 298 (1977); Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[2] L.N. Lipatov, Sov. J. Nucl. Phys. 23, 642 (1976); V.S. Fadin, E.A. Kuraev,
L.N. Lipatov, Phys. Lett. B60, 50 (1975); E.A. Kuraev, L.N. Lipatov, V.S.
Fadin, Sov. Phys. JETP 44, 45 (1976); Sov. Phys. JETP 45, 199 (1977);
Ya.Ya. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

[3] A. De Rujula et al., Phys. Rev. D10, 1649 (1974); R.D. Ball, S. Forte, Phys.
Lett. B335, 77 (1994).

[4] M. Gliick, E. Reya, A. Vogt, Phys. Rev. D46, 1973 (1992); Phys. Lett. 306B,
393 (1993).

(6] A.J. Askew, J. Kwieciiiski, A.D. Martin, P.J. Sutton, Phys. Rev. D49, 4402
(1994); N.N. Nikolaev, B.G. Zakharov, V.R. Zoller, JETP Lett. 59, 6 (1994).

[6] J. Bartels, Nucl. Phys. B175, 365 (1980); J. Kwieciniski, M. Praszalowicz,
Phys. Lett. B94, 413 (1980).

[7] H. Cheng, T.T. Wu, Ezpanding Protons: Scattering at High Energies, MIT
Press (1987); G.V. Frolov, V.N. Gribov, L.N. Lipatov, Phys. Lett. 31B, 34
(1970); G.V. Frolov, L.N. Lipatov, Yad. Fiz. 13, 588 (1971).

[8] L.N. Lipatov, Sov. Phys. JETP 63, 904 (1986).

[9] L.N. Lipatov, Nucl. Phys. B365, 641 (1991); R. Kirschner, L.N. Lipatov, L.
Szymanowski, Nucl. Phys. B425, 579 (1994); Phys. Rev. D51, 838 (1995).

[10] L.N. Lipatov, Phys. Leit. B251, 284 {1990); B309, 394 (1993).

[11] L.N. Lipatov, High-energy asymptotics of multi-colour QCD and exactly solv-
able lattice models, Padova preprint DFPD/93/TH/70, October 1993; L.N.
Lipatov, Sov. Phys. JETP Lett. 59, 571 (1994); L.D. Faddeev, G.P. Korchem-
sky, Phys. Lett. B342, 311 (1995).

[12] L.N. Lipatov, Nucl. Phys. B452, 369 (1995).

[13] V.S. Fadin, L.N. Lipatov, Next-to-leading corrections to the BFKL equation
from the gluon and quark production, preprint DESY 96-020, February 1996.

[14] V. Del Duca, Real next-to-leading corrections to the multigluon amplitudes in
the helicity formalism, preprint DESY 95-249, December 1995.

[15] L.N. Lipatov, V.S. Fadin, Sov. J. Nucl. Phys. 50, 712 (1989); Nucl. Phys.
B406, 259 (1993); V.S. Fadin, R. Fiore, A. Quartarolo, Phys. Rev. D50, 5893
(1994); V.S. Fadin, R. Fiore, M.I. Kotsky, Phys. Lett. B359, 181 (1995).



