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1. The subject of the present note is the so-called “small-z physics”
which is being vigorously studied at HERA. More precisely, I shall discuss
deep inelastic lepton scattering in the Lipatov limit: v — oo and Q? fixed at
a large value. Lipatov was the first one to realize that in QCD this limit has
two very interesting features. On the one hand, since we are in the region
of large Q2, the scattering amplitudes are, at least in principle, calculable
by perturbative methods. On the other hand, the standard features of the
high-energy scattering are expected to show up. In particular, one may
hope to see the regge behaviour which thus becomes calculable from “the
first principles” i.e. from Quantum Chromodynamics. In a series of papers,
Lipatov and his collaborators showed that this is indeed the case [1].
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One of the important results from the work of Lipatov et al. is that the
exchange of multi-gluon ladders between two colliding point-like particles
gives the elastic amplitude which increases as a power of the center-of-mass
energy of the collision. The power corresponds to the “pomeron intercept”

4aN,

ap=1+Ap=1+ log 2 (1)

s

which is larger than 1 and thus gives a total cross-section increasing as a
power (Ap) of the energy. Although such a behaviour contradicts unitarity
(and thus corrections are necessary to restore the Froissart bound), the
observation of the power law increase of the structure function F3 at small
zj [16, 17] indicates that in the kinematic range of the present experiments
the “Born” formula of Lipatov et al. may be sufficient to describe the data.

This is surely far from trivial and the question stirred a hot debate (see e.g.

(2]).

Recently, a new approach to the problem of high-energy scattering at
large Q? was developed independently by Mueller [5-7] and by Nikolaev [8].
They observed two points:

(i) For collisions at high energy it is advantageous to work in impact pa-
rameter space rather than in transverse momentum space. The reason
is clear: at high collision energies, impact parameter is a good quan-
tum number, conserved in the collision process. This fact significantly
simplifies the form of the scattering amplitudes, as was shown already
long time ago, in a somewhat different context [9, 10].

(i) Since we are always dealing with the collisions of composite colourless
objects, it seems reasonable to describe them in terms of the simplest
colourless structures, i.e. the ¢g colour dipoles, rather than in terms of
elementary (but coloured) objects, i.e. quarks and gluons. This idea
is not new [11], but it becomes particularly natural at high energies:
because of Lorentz contraction, the longitudinal positions of the mem-
bers of the ¢ pair are close to each other (provided the ratio of their
light-cone momenta remains finite). Therefore, such a pair can indeed
be imagined as a well-defined object. A practical advantage of this de-
scription is a substantial simplification of the colour structure of the
system, in particular of the colour flow between its different parts. The
disadvantage is that the equivalence between the two descriptions can
only be proven in the large N, limit and it is not clear if this restriction
can be avoided.

2. In the following we shall discuss the formulation proposed by Mueller
[6-7]. He follows the idea of Balitsky and Lipatov [12] and considers “onium-
onium” scattering, i.e. scattering of two ¢g bound states whose transverse
size is concentrated at sufficiently small values to justify application of per-
turbative QCD for the calculation of their internal structure. For a real ¢g
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pair such situation occurs, e.g. for J/1 and 7. But it can also be realized
in case of a virtual photon of sufficiently large Q2.

The internal structure of such an “onium”, when calculated in the
leading-log order of perturbative QCD, is dominated by a cascade of glu-
ons. In Ref. [7] the impact parameter representation of this perturbative
gluon cascade in terms of ¢g dipoles was explicitly constructed (as we al-
ready mentioned, this was possible only in the large N, limit). Thus the
two colliding “onia” can be represented by two “clouds” of the ¢g dipoles
whose distribution in transverse size and position in the impact parameter
space is explicitly calculable. It was furthermore shown [6] that the result
(1) of Lipatov et al. for the total onium-onium cross-secton is obtained if
the dipole-dipole elastic amplitude is approximated by the exchange of two
gluons. At this point it is worth to emphasize another advantage of the
dipole representation: the dipole-dipole cross-section is finite (in contrast
to the gluon-gluon one). In the two-gluon-exchange approximation the total
cross-section for the collision of two dipoles of the transverse sizes r, and
ry (re < rp) is given by

0 (ra,rs) = 2matr? (1 +log (}”)) . (2)

a

Note that this cross-section is energy-independent.

From all this work one obtains a fairly simple and intuitive picture of
the scattering of two strongly interacting objects in the Lipatov (or light-
cone) limit: It can be considered as a collision of two bunches of gg dipoles.
Each dipole from one bunch interacts with each dipole from another bunch
by exchange of two gluons. The power law increase of the cross-section with
increasing energy is obtained because the number of dipoles in each bunch
increases as a power of the incident energy. This is a direct consequence of
the cascade nature of the dipole emission: since the length of the cascade
is proportional to the available rapidity interval Y, the number of emitted
dipoles is expected to be proportional to exp(cY). Explicit calculations [5]
show that the constant c is equal to Ap given by (1).

Using this idea, the formula for the total cross-section in onium-onium
scattering is written as

dpa d
Otot = ‘&ﬁna(l)mya)nb(pb’yb)a(pa’ pb) ’ (3)
Pa Pb

where n4(pa,ya) is the density of dipoles in the incident onium (p, is the
transverse size of the dipole and y, is the rapidity difference between the
fastest and slowest (anti)quarks involved). Graphical representation of this
formula is shown in Fig. 1.
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I'ig. 1. Graphical representation of the formula for total cross-section.

The dipole density in an “onium” is a convolution of (i) the square of
the (modulus of) the wave function of the onium and (i) the distribution
n(re,r, y) of the ¢ dipoles of transverse size r emitted by the original dipole
of size r¢ in a cascade of length y

na(p,y) = / 0 potlz | Ya(por2) [2 1(porpr9) (4)

where z is the light-cone momentum fraction carried by one of the par-
tons forming the onium. The density n(rg,r,y) can be determined from
an equation describing the evolution of the QCD cascade in the light-cone
limit. The equation was discussed at length in [5-7] where also its solution
was derived.

3. To apply these results to deep inelastic lepton-nucleon scattering one
makes an (admittedly rather crude) assumption that the target proton can
be adequately represented by an “onium”!. Once this is accepted, it turns
out that the distribution n,(pp, yp) contains only one effective parameter r,
which is the average transverse size of the “onium” representing the target
proton:

rp = /dzdzr | Yp(z,7) 12 r, (5)

where 1, is the wave function of the “onium” in question and z is the
light-cone momentum fraction carried by one of the partons forming the
onium.

The wave function of the incident virtual photon (i.e. the probability
amplitude to find a ¢§ pair inside the virtual photon) is known since some
time [9, 10]. For transverse photons, the corresponding probability distri-
bution summed over quark and antiquark polarizations reads (8]

| Uy (r,2,Q%) I*= %e?(zz +(1-2)3HQ*KE(Qr) (6)

1 1t appears that this assumption can be relaxed without major changes in the
results, except for the overall normalization [13].
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with Q% = z(1 — 2)Q? (quark masses are neglected for simplicity). e?f
the sum of the squares of the quark charges and K; stands for the Bessel
function of the second kind. One sees from this formula that the end-
points in longitudinal momentum (z = 0, z &~ 1) give a non-vanishing
contribution. One sees also that in this region of z the transverse size of the
qq pair can take arbitrarily large values. Therefore doubts were expressed
if the perturbative approach can be applied in this region (and if the onium
picture is adequate at all) [14, 15]. While accepting these objections, I feel
that a good way to evaluate their quantitative importance is to complete the
perturbative calculations and compare them with the data. The difference,
then, would signal the non-perturbative contribution. It seems to me a good
enough reason to pursue the perturbative calculations.

Using (3) and (6) and the formula for n(rg, r, y) derived in [5, 6] one ar-
rives at the following expression for the total cross-secton in virtual photon-
proton scattering

is

973 2 2 —Ap (2(1(:83]'))1/2 Tp

Ttot — ?{Nca Cem€slpg; - Q
X exp (—ﬂ%};—j)logz (%—Q)) , (7)
where i
o2) = 7N <) log(1/7) ®)

The prediction for the proton structure function Fy is obtained from

the relation
2

F2 Ttot - (9)

T AT 0em

An important consequence of (7) is that the structure function does
not factorize: zp; and Q2 dependencies are interconnected. This effect is
illustrated quantitatively in Fig. 2 where the “effective” pomeron intercept
Afpﬁ = —d(log F3)/d(log zg;) is plotted versus zp; for two values of Q2.
One sees that Eq. (7) predicts Q?-dependent deviations from the simple
power law. However, on the average, the value of A?pﬁ is not very different
from the “true” value of Ap obtained from theory.

These ideas were applied and confronted with experimental data ob-
tained by ZEUS and H1 collaborations [16, 17] by Navelet, Peschanski and
Royon [18]. It was shown that the Q% and zp; dependence given by (7)
is consistent with the data and even the normalization is not too far apart
(they used a different form of normalization than that in (7), however, so
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Fig. 2. Effective pomeron intercept from the structure function Fy.

this point requires more discussion?).

4. This unquestionable success of the model invites one to extend the
investigations to other processes. Diffractive dissociation is an obvious next
candidate. It was discussed already by several authors in the general frame-
work of perturbative QCD and/or pomeron exchange [19]. Recently, to-
gether with Robi Peschanski, we have been trying to complete a calculation
of diffractive production in the triple-pomeron limit started some time ago
by Mueller and Patel [6]. I am now going to describe results of this work.

The graphical representation of the formula for the cross-section of
diffraction dissociation is shown in Fig. 3. One sees that it consists of
two terms:

(a) The “triple-pomeron” term giving the dominant contribution at
large masses of the excited system. It is the sum of all dipole-dipole inter-
actions.

(b) the “elastic” term which represents the elastic scattering of the
onium on the target proton.

Mueller and Patel [6] gave an explicit formula for the “triple-pomeron”
term of Fig. 3(a). When adapted to virtual photon-proton collision, it reads

fdop

l2 ﬂdad(f7 ﬂa .’L"p)
dp

DRI )

/dzfdz | U (7, 2, Q%)

2 It may be noted at this point that the normalization of the cross-section is
sensitive to the value of the dipole-dipole cross-section (2). It will change,
e.g., if the assumption of two-gluon-exchange is replaced by another one (cf.
also footnote 1).
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where 3 = Q%/(Q?* + M?) and where the single diffractive cross-section in
dipole-proton scattering is given by

d dr'
ﬂ Gd / dzslnp b+81,7’ f)/r—td2.§2np(5+§2,7",f)

———— g ( ; 81,715 82, T2; w? ,x;) T(r,71) T(r',72) d?b.
(11)

np(b, r, £) is the single dipole density in the proton at the transverse distance
b from its center within the rapidity interval y = —log&. ny is the double
dipole density in the colliding dipole of transverse size 7 [6]. 51,71; 82,72
are transverse positions and sizes of the two dipoles; log({/zp;) is the ra-
pidity difference between the slowest and fastest parton in the photon and
log(zp/zpj) = —log B is the rapidity range defining the mass of the diffrac-
tively excited system. Finally, T(r,7) = (1/2)o(r,7) where o is the dipole-
dipole cross-section given by (2).

(a)
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b
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Fig. 3. Graphical representation of the formula for cross-section of diffractive dis-
sociation.

To carry out the integrations in (11) it was necessary to find an analytic
formula for ny. This was obtained from the evolution equation derived in
[6], using the technique developed in [20]. Other elements of the Eq. (11)
were already given in [6, 7]. With this input it turned out possible to derive
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an explicit formula for Bdo/df3. Since the results are already published [21],
I shall only quote the final result and discuss its physical content.

We calculated the “diffractive structure function” of the proton follow-
ing from (11), i.e. integrated over the momentum transfer to the target. It
is related to Bdop/dg@ by

Q2 21 Bdop

D
F2 (3)(Q2’$’P’5) = 47‘_2&2 ,P dlB s

(12)

where op stands for the cross-section for diffractive dissociation of the vir-

tual photon. In the “triple-pomeron limit” g — 0, F2D(3) can be written in
a factorized form

Fy® = 0p(2p)Fp(Q, ) (13)

with
Pp = z;1—2AP (_Q_Z(Wip)_):s (14)

and

1/2
Fp(@ ) = 25 oo 2 Te g (20

X exp [ a(p) log? (TZQ)] (15)

where G = 0.915.. . .is Catalan’s constant3. The first factor in (13) is readily
identified (up to a multiplicative constant) as the “Pomeron flux factor”
inside the proton. The second factor is the “Pomeron structure function”.

The first observation one can make is that the pomeron flux factor given
by (14) differs substantially from the one usually assumed (¢.e. from a simple
power of zp) by a logarithmic factor (2a(zp)/7)3. This has an important
consequence for the phenomenology of diffraction. Indeed, Eq. (14) predicts
that the zp dependence of the diffractive structure function should differ
from the simple power law (at least for small values of 3). It will be of
course very interesting to test this prediction with the coming data. To
quantify this result, we show in the Fig. 4 the “effective pomeron intercept”
calculated from (14)

d(log FP) 3
eff —_ ___l ___2 fnt - e
A% = (” d(ogarp) ) = °F 7 2log(l/zp)

2 (16)
3 Note the extra factor 87 which was missing in the Eq. (11) of [21].
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One sees that not only A?pﬁ is not independent of zp (as it would be the
case for a simple power law) but, moreover, it is substantially smaller than
its “true” value (i.e. Ap) in the whole range of zp presently available.
When confronted with the results shown in Fig. 2, we thus conclude that
(a) the “effective” pomeron intercept determined from the power-law fit to
the diffractive structure function is expected to be substantially smaller than
the one determined from the structure function F3, and (b) that its value
should depend on the region of the fit. This seems to be indeed observed in
the HERA data [22, 23].

EFFECTIVE POMERON INTERCEPT FROM
DIFFRACTIVE STRUCTURE FUNCTION

3
w A% (x,)
04t
0.2 K
| Ap =0.25
oo} (_ “““““““
o -~
1 1 ] >
10°¢ 103 102 xp

Fig. 4. Effective pomeron intercept from the diffractive structure function.

Let us turn now to the pomeron structure function (15). When com-
pared with Eqgs (7), (9) one sees that the form of Fp is identical to that of F3
(with the obvious substitution # <+ ;). This result may be naturally un-
derstood in the Ingelman-Schlein picture of the pomeron [24], as can be seen
from the following argument. In the Ingelman-Schlein picture, the pomeron
is a part of the proton structure which is responsible for diffractive interac-
tions. In the leading-log approximation we are considering here, the dipole
(or gluon) content of the proton is described by a process of scale-invariant
cascade [5]. This implies a fractal structure of the system. Since any part
of a fractal has the same structure as the whole fractal, it is natural that
we recover the same dipole distribution in the Pomeron as in the parent
proton?. It would clearly be of great interest to verify this prediction with
the future data.

5. As should be clear from what was already said, more work is needed
to obtain a complete perturbative QCD description of diffractive dissocia-

% This explanation was suggested to me by J. Turnau.
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tion in deep inelastic scattering. Let me conclude this report by listing the

most obvious points.

(a) The limit (8 — 0) which we have discussed, covers only a very small
region of the available phase-space. Moreover, it is not easy to access
experimentally, particularly if one wants at the same time to keep zg;
and zp reasonably small. Therefore the extension of the formulae (13)-
(15) to finite 3 is necessary although, presumably, the triple pomeron
term is not very important in this region. This seems feasible, as shown
in [21].

(b) The “elastic” contribution shown in Fig. 3(b) is expected to dominate at
B > 0 [8, 26]. Therefore precise evaluation of this term is crucial if one
wants to describe diffraction dissociation at finite 5. We are presently
working on this problem within the dipole approach [25].

(c) The momentum transfer dependence of the process is of great interest,
because it may give information on the effective slope of the pomeron
trajectory.

(d) Double diffraction dissociation must be included for precise description
of the existing data (present detectors cannot identify the proton in the
final state).

Finally, let me add that, as is well known since long time [27, 28],
diffractive dissociation of the virtual photon plays an important role in
nuclear shadowing effects. To exploit fully this relation, however, one needs
to know dop/df in the full range of § at a fixed zp;. So it is necessary to
extend the calculation of diffractive dissociation to the region of fairly large
zp. It is not clear if this is feasible in the present framework.
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grant from the EEC Programme “Human Capital and Mobility”, Network
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