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In this talk we present some links of the theory of the odderon with elliptic
curves. These results were obtained in an earlier work {19]. The natural
degrees of freedom of the odderon turn out to coincide with conformal
invariants of elliptic curves with a fixed ‘sign’. This leads to a formulation
of the odderon which is modular invariant with respect to I'? — the unique
normal subgroup of SL(2,Z) of index 2.

PACS numbers: 12.38. Bx, 02.10. Rn

1. Introduction

Recently the study of the small Bjorken z region of Deep Inelastic Scat-
tering has attracted much attention. The behavior of the structure func-
tions in this limit turns out to be governed by the exchange of Regge poles.
The one most important for the F, structure function is the C' = +1 pole
with vacuum quantum numbers — the BFKL pomeron, described in the
framework of perturbative QCD as the exchange of two ‘reggeized’ gluons.
Already in the late 70’s this amplitude was calculated, and the formula for
the intercept of the renowned BFKL pomeron was derived (see [1, 2]). Lipa-
tov’s solution depends in a crucial way on the global conformal symmetry of
the problem. The next step led to the derivation of the Bartels-Kwiecifiski-
Praszalowicz equation describing the exchange of three reggeized gluons
([3, 4]). The corresponding C = —1 pole, called the odderon is thought
to have influence on the F3 structure function. Later this approach was
extended to the case of an arbitrary number of reggeons in the form of the
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Generalized Leading Logarithm Approximation (GLLA) [4]. It is important
to emphasize that the odderon should not be treated just as a correction to
the pomeron, but that it has it’s own distinct physical signature.

The theory of the odderon turned out to be much more difficult to solve
than the BFKL pomeron case, and a wide variety of approaches have been
attempted. Among them is the very surprising connection with exactly
solvable lattice models, namely the Heisenberg XXX s=0 spin chain ([6, 5,
8, 9]). Within this framework variants of the Bethe ansatz have been tried
([8, 7, 9, 10]), quasiclassical approximation [11], but still the explicit value
of the odderon intercept is unknown, apart from some variational bounds
(112)).

In this talk we will present the results obtained earlier in [19], that
the theory of the odderon possesses modular invariance, well known from
conformal field theory and string theory. This observation follows from an
intriguing link of the odderon with invariants of elliptic curves. First we will
recall the theory of the odderon, then, following Lipatov, the consequences
of global SL(2,C) invariance. The new results in [19] were the analysis of
the role of cyclic symmetry in this framework and the link with modular
invariance through the theory of elliptic curves.

2. The odderon

The Regge limit of QCD is defined as the kinematical region
s> —t~ M? , (1)

where M is the hadron mass scale, or, in the case of Deep Inelastic Scatter-
ing, as the small z = Q?%/slimit. Here we sketch the equivalence between the
Regge intercept of amplitudes and energy levels of a two-body Hamiltonian
within the GLLA approximation.

AMPLITUDE Als,t)~s""
MELLIN TRANSFORM Ale,b)-w-p)
BETHE SALPETER EQ. Tw)=THw-H)
FOURIER TRANSFORM k—(x,y,)
2=X 4y,
HOLOMORPHIC COORDINATES 2=x-iy,

Fig. 1. The main steps leading to the equivalence of the Regge intercept and energy
levels of a certain hamiltonian.
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The main steps leading to this equivalence are briefly summarized in
Fig. 1. The aim is to find the Regge behavior of the amplitude A(s,t) ~
s»o*l This amplitude is described in the framework of perturbative QCD
as a sum of graphs corresponding to the exchange of N reggeized gluons with
all possible gluonic interactions between them. The BFKL pomeron corre-
sponds to graphs with N = 2, while the odderon is the N = 3 contribution
(apart from higher N corrections). The Regge behavior of the amplitudes
can be directly translated, in the case of DIS, into the z-dependence of the
appropriate proton structure functions at low z.

In the first step the power behavior of the amplitude is translated into
singularities of the Mellin transform

§+ico
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Rewriting this amplitude as the convolution of “hadron” wave functions
® 4,5 and a kernel T({k;}, {k}},w) we get:

Aw,t) = [ &b [ EE@AENTURY, (K51 0)2a({E) . ()

where {k;} and {k} are the transverse momenta of the IV exchanged reggeons
(in the case of odderon N = 3). The rest of this work deals with the sin-
gularity structure of the kernel T'({k;}, {k}},w). The next step amounts to
writing the Bethe—Salpeter equations for the kernel T

wT(w) = To + HT (w) (4)

which corresponds to the iteration of gluon interactions between the reggeons.
Here Tp is the free propagator and H is the operator corresponding to the
insertion of single gluonic interactions between all pairs of reggeons. This
equation can be formally solved:

To
= (5)

It is clear now that in order to find the Regge intercept it suffices to find
the eigenvalues of the Hamiltonian operator H. The last step is to go to
transverse ‘impact parameter’ space and introduce holomorphic coordinates.
After performing Fourier transformation ( k; — b;) and using the complex
notation z; := z; + 1y;, the Hamiltonian splits into a sum of a holomorphic
part and an antiholomorphic part. In the large N, limit the two commute.
Due to this so-called holomorphic separability we may seek eigenfunctions
of the Hamiltonian as a product of eigenfunctions of the holomorphic and
antiholomorphic operators. Before we discuss the odderon case let us recall
the description of the BFKL pomeron in this framework.

T(w)
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2.1. The BFKL pomeron

The BFKL pomeron corresponds to the exchange of 2 reggeons. The
holomorphic and antiholomorphic hamiltonians are given by:

H(z,z) = gzufiﬁ% _142-1’ ©)
H(%,7) = gl(l _fll;r_l% - 142-1’ (7)
where
L%z = “Zfza%d—i“v (®)
L3, = dil digfz (9)

being the holomorphic and antiholomorphic Casimir operators of the group
SL(2,C) . Although the problem seems at first glance to be quite intractable,
it is in fact quite easy to solve. The crucial ingredient is the SL(2, C) invari-
ance of the system. This enables us to consider wavefunctions in a definite
unitary representation of SL(2,C) , and simply insert the eigenvalues of the
Casimir operators into (6) to obtain the energy.

The celebrated BFKL solution (N = 2 case) corresponds in this language
to finding the maximal eigenvalue of the equations

H(zy, 22)¥(21,22) = EW(21,20) H(%,2)¥(21, %) = E¥(2,2), (10)
and has the known solution

E=-[p(m)+p(1-m)-24(1)] E=—[p(m)+y(1-m)-2¢(1)], (11)

where 1 is the derivative of the logarithm of the Euler I" function and m
is a conformal weight. The maximum of (11) is achieved at m = 1/2 and
reproduces the BFKL slope

BFKL QCYSN (E+E) Ofch
4

(12)
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2.2. The odderon

In the case of the odderon the problem looks deceptively similar. Now
the (holomorphic) hamiltonian is given by the sum of three terms, each
identical to the ordinary BFKL hamiltonian, namely:

(H(z1, 22) + H(z2, 23) + H(23,21))¥(21, 22, 23) = EW (21, 22,23), (13)

where H(z;,2;) is given by the same expression as (6). The eigenvalue E
of the holomorphic hamiltonian and the corresponding eigenvalue E of the
antiholomorphic one are related to the Regge intercept by the formula:

o N,

4

(E+ E). (14)

Wy =

The reason why this makes the problem at least an order of magnitude
more difficult is the fact that the three terms in (13) do not commute.
Furthermore there is no natural small parameter in which one might try to
perform a kind of perturbative expansion.

2.3. SL(2,Q) invariance

Since the global SL(2,C) invariance has proved to be so powerful as
to solve the BFKL pomeron, it is natural to try to use it to simplify the
problem also in the case of the odderon. This analysis has been done by
Lipatov [14].

The Hamiltonian H is invariant with respect to the action of SL(2,C)
on holomorphic functions given by:

az1+b azpg+b azg+b>
cz1+d ezg+d czz+d

for g = ( Z (Ci ) € SL(2,C) . (15)

(9-%)(z1, 22, 23) :q-/(

Therefore, it commutes with the holomorphic Casimir operator for this rep-
resentation:

. ,dd ,dd ,d d

[ SR Sl Sl 16
= A s B dey e dzy (16)

where z;; = z; — z;. This enables us to consider functions transforming
under the unitary representations of SL(2,C) labelled by » € Nand v € R.
In this case the eigenvalue ¢z is ((1+ n)/2+ w)((=1+n)/2 + ).
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Lipatov [14] has chosen an ansatz, which automatically diagonalizes ¢»:
z12293231 \ ™3
U, (21, 20, 23) = (m) (), (17)
210720430

where m = 1/2+ iv + n/2, n is an integer and v is a real number. Here,
29 € C is just a parameter and A is the anharmonic ratio:

)\ = 2230 (18)
213220

A breakthrough occurred when Lipatov [13] established the existence of
another integral of motion — an operator §s:

§3 = 212223231010203 , (19)

which commutes with the hamiltonian H.
Lipatov further derived the form of the operator ¢z within this ansatz.
Inserting ¥, (21, 22, 23) into the equation

qA3WZg (217 22, 23) =4gs: WZO (Zl, 22y 23) 3 (20)
and canceling the factor (...)™/3 he obtained:

1

\Z! mvzvsw(/\) = g3¢(A) , (21)
where

vV, = %3(1 —20) 4+ A(1 - M)a, (22)

v, = -’;3.(1+,\)+A(1-A)a, (23)

Vs = —-—7;1(2—)\)4—/\(1—)\)8. (24)

One of the strategies for solving the odderon problem, proposed by Li-
patov [13], was to diagonalize the conservation laws §; and 3 and to substi-
tute the solution into the Schroedinger equation in order to find the energy
eigenvalue.

Unfortunately no one has succeeded in doing this. So it is quite natural
to seek for a new symmetry which might be powerful enough to obtain some
progress.
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3. Cyclic invariance

It is easy to see that both the Hamiltonian H and §s are invariant under
cyclic permutations of the gluonic coordinates z;, 27, 23. We show now how
this symmetry manifests itself in the formalism of the preceding section.
Under the permutation z; — 2z — 2z3 the anharmonic ratio transforms
as follows:

1 1
A—1l- - — —. 25
A 1-X (25)
As we are interested mainly in obtaining the leading behavior of the odderon
amplitudes, which corresponds to finding the energy of the ground state of
the system, it is natural to postulate that the relevant eigenfunction is

symmetric under this transformation and so

QO()\) = f(sh 52, 337j) ) (26)

where s; are the symmetric polynomials in z; = A, 22 =1~ 1/A and z3 =
1/(1 — A), and j is the Vandermonde determinant. Namely

AMB-3x+1
81 = x1+x2+x3:-3\—-()\—:—f)—, (27)
A —322+1
Sg = Z1Z2+ T2x3+ 2321 = BREE (28)
s3 = xjzox3= -1, (29)
-~ (/\2 — A+ 1)3
] = (.’L’l -172)(:1?2—11,‘3)(1‘3—-1‘1) == m— (30)

It turns out that the only independent quantity is

(A4 1)(2A - 1)(A - 2)

A=sita= A= 1)

related to 7 by the equation 45 = A2+ 27. It is convenient to introduce the
notation:

B = 8A=./j— 1728, (31)
(A2-X4+1)° (32)

. o "’._ 8
J = 2565 =2 (1)
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At this moment we make a refinement of Lipatov’s ansatz, namely

. _ 212223231 m/3
V.o (21,22,23) = (m) f(B)
m/3
(212223Z31) f (8(/\ +1)(2A = 1)(A - 2)) (33)
AA=1) ’

where m = 1/2 + v 4+ n/2, n is an integer and v is a real number. ) is the
anharmonic ratio:

2 .2 .2
210220430

) = 212430 (34)
213220
Now we insert the function ¢(A) = f(B) into the conservation law (21).
After reexpressing the result in terms of j and B = +/j — 1728 we get:

<2 3 2

Jj° d . d : m(l — m) 8) d
{2dB3+QB]dB2+ (]<1+ 6 ) 32 )i
(m — 3)m?

+ 27

B- 8q3}f(B> =0.  (35)

The advantage of considering this equation is that all the discrete sym-
metries present in the form of the nonlinear transformation (25) act trivially
on this equation. The variable j ( or really 4/7 — 1728 ) seems to be the true
physical variable of the theory. There are no additional residual symmetries
which one could take into account. In the next section we give a geometrical
interpretation of the j variable in terms of elliptic curves. This will enable
us to rephrase the theory of the odderon in a modular invariant way.

4. Modular invariance

According to one of the many possible definitions (see e.g. [15]), an
elliptic curve is a complex curve of genus one (see Fig. 2). There are two
alternative descriptions of these objects.

The first one, very common in the physics literature dealing with CFT
and string theory, is the description of elliptic curves as complex tori C/(Z +
Zt) parametrized by 7 € C in the upper half-plane. Tori are obtained by
identifying opposite edges in the parallelogram bounded by 0, 1, 7 and 1+7.

Obviously for some values of the parameters, say 7, and 75, we may ob-
tain indistinguishable tori. For example if we cut through a non-contractible
loop, rotate one edge through 27 and glue back the edges, we obtain an
equivalent torus. Such an operation is called a Dehn twist. The notion of
isomorphic tori makes this more precise.
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y =x(x-1)(x-A)

Vi '\ A y

Fig. 2. Elliptic curves or complex tori.

Two complex curves are isomorphic (i.e. can be considered as indistin-
guishable) when there is a one to one holomorphic mapping between them.
It is natural to look for some parameter which is identical for isomorphic
tori, but enables us to distinguish between distinct ones. Such a parameter
is called a modulus. In fact one can associate with each elliptic curve a com-
plex number — its j-invariant, which possesses precisely those properties.
Two elliptic curves are isomorphic if and only if their j-invariants coincide.
In this description the j-invariant is a well known transcendental function
of 7. Moreover, the symmetry which leaves j invariant corresponds in this
description to modular invariance in the r-plane i.e.

iM=j(r") == (Z:D for (ﬁ Z) €SL2,Z) . (36)

The geometrical meaning of this symmetry is as follows: all modular trans-
formations are generated by ‘Dehn twists’ (see e.g. [17]) — these are iso-
morphisms obtained by cutting the torus along one loop, then twisting one
edge through 27 and gluing it back.

At this point we see that if we could express all the operators in our
theory in terms of the j-invariant, we could reformulate everything in terms
of 7 and obtain a modular invariant theory.

The reason why this might be interesting is that modular invariance has
proven to be a very strong constraint in QFT, allowing for example for the
classification of the partition functions of minimal models in CFT. Recently
another application which could be relevant in our case was the work of
S.-T. Yau and B.H.Lian on solution of 3" order Fuchsian ordinary differ-
ential equations in terms of modular forms [18].
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Before we make the connection with the odderon, consider functions
of the form /j(7) — ¢. It turns out that the only possible value of the
constant ¢ for which this function is globally well defined is 1728. Such an
expression can be seen as parametrising tori with a ‘sign’. We treat two
tori as equivalent if one can obtained from the other by an even number
of Dehn twists. Using the above mentioned correspondence between Dehn
twists and modular transformations one can find that the invariance group
is now an infinite group generated by the transformations 7 — 7+ 2 and
7 — —1/7 . This group is the unique normal subgroup of SL(2, Z) of index
2 and is denoted by I'2.

4.1. Modular invariance of the odderon

To apply the preceding concepts to the odderon, we must use an alterna-
tive but equivalent description of elliptic curves. This is the Weierstrass pa-
rameterization which labels each elliptic curve by a complex number A € C.
The curve given by A is given by the equation

yQ:x(x—l)(ay—/\), (37)

where & and y are complex coordinates. This is also a complex torus but
presented in a different way. In fact the link between those descriptions is
given by the correspondence [16]:

_ [(©2(0;7) 4
0= (Gwn) )

where ©3(0; 7) and ©3(0; 7) are the Jacobi theta functions.
The j-invariant considered earlier can be expressed in terms of the pa-
rameter A labeling the elliptic curves. It is now given by the formula:

. as (A2=A+41)°
j=2 NG (39)
Note that this expression is identical to the Vandermonde determinant con-
sidered before (32), which is (up to the square root) the correct physical
variable of the odderon. We see that our physical variables (31) and (32)
are just conformal invariants of elliptic curves, and using the more com-
mon description in terms of the 7 parameter we obtain a modular invariant
theory with respect to the group I"2. The benefit is that we may use an al-
together different set of tools which has proven to be very useful in a variety
of applications.
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5. Conclusions

In this talk we have presented the derivation of the modular invariance of
the odderon. We have shown that the global SL(2, C) invariance and cyclic
symmetry lead to the introduction of certain natural variables in terms of
which the theory can be formulated. Furthermore these quantities can be
interpreted as conformal invariants of elliptic curves with a ‘sign’ — the
parity of the number of ‘Dehn’ twists. This at once leads to the modular
symmetry of the theory.

Since the modular symmetry is a very strong constraint in QFT, we hope
that one can obtain some progress in solving the odderon, especially as this
symmetry opens up a new set of tools to attack the problem. Furthermore
it is very intriguing that such geometrical interpretation of the odderon
symmetries exists. It is challenging to exploit this fact to obtain some
relation with an effective string theory.

[ would like to express my gratitude to Dr. Maciej A. Nowak for many
helpful suggestions. I would like to thank Prof. Lev Lipatov for interesting
discussion during the conference.
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