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We solve a unified integral equation (the CCFM equation) for the
gluon distribution of a proton in the small x regime. Here z is the longi-
tudinal momentum fraction of a gluon probed at a scale Q). The equation
generates a gluon with a steep z=* behaviour, with A ~ 0.5. We com-
pare our solutions with, on the one hand, those that we obtain using the
double-leading-logarithm approximation to Altarelli-Parisi evolution and,
on the other hand, to those that we determine from the BFKL equation.
We examine what the consequences of this gluon evolution are for the
structure function, Fa(z,@?), as measured by the HERA electron-proton
collider. Following this we investigate the effect of imposing an additional
kinematic constraint, k2 < g%4/z, on the CCFM equation. In particular
we examine its implications for Fo(z,Q?) as a function of Q?, the charm
component, F§(z,@?) and diffractive J/3 photoproduction.

PACS numbers: 12.38.Lg, 12.38.Qk

1. Introduction

The reliable prediction of many QCD processes requires a thorough un-
derstanding of the behaviour of parton distributions. In order to achieve
this it is necessary to resum the large logarithms which arise, not just from
single, but from multigluon emissions to all orders in ag. A typical contribu-
tion is shown in Fig. 1, where a gluon of low space-like virtuality evolves to
higher virtuality and lower energy by the emission of another gluon. Such
logarithms are traditionally summed by either the DGLAP equation [1]
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X, kT

dr

x/z, kr

Fig. 1. Gluon emission which forms the basis of the evolution equation (3) for
the unintegrated gluon distribution F(z,k2,Q?%). « and z/z are the longitudinal
momentum fractions of the proton’s momentum carried by the respective gluons.
Throughout we use ¢gr and kr to denote, respectively, the transverse momentum
of an emitted gluon and of a gluon along the chain.

(Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) or the BFKL equation [2]
(Balitzkij, Fadin, Kuraev and Lipatov). These equations sum the o, log(Q?)
and a,log(1/z) terms respectively. They are therefore valid in quite sep-
arate regions of the (z,Q?) kinematic region, depending on which set of
logarithms is dominant. Recently, however, a theoretical framework which
gives a unified treatment throughout the (z,Q?%) region has been provided
by Catani, Ciafaloni, Fiorani and Marchesini [3, 4]. The resulting equation,
which we shall call the CCFM equation, treats both the small and large z
regions in a unified way. The equation is based on the coherent radiation of
gluons, which leads to an angular ordering of the gluons along a chain of mul-
tiple emissions. The angular ordering introduces an additional scale (which
turns out to be essentially the hard scale @) of the probe), which is needed
to specify the maximum angle of gluon emission. The CCFM equation is
thus defined in terms of a scale (Q) dependent unintegrated gluon density
F(z, k%, Q%), which specifies the chance of finding a gluon with longitudi-
nal momentum fraction z and transverse momentum of magnitude k7. The
traditional integrated gluon density can be recovered via the relationship
2

09(2,QY) = [ ik Fla 5. @2). &

At very small z the angular ordering does not provide any constraint on
the transverse momenta along the chain and F becomes the Q-independent
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gluon of the BFKL equation. At moderate z the angular ordering becomes
an ordering in the gluon transverse momenta and the CCFM equation be-
comes equivalent to standard Altarelli-Parisi evolution.

In this contribution we examine the CCFM equation and its conse-
quences for some physically observable quantities as measured by the HERA
electron-proton collider. We begin in Section 2 with a brief review of the
equation. This is followed in Section 3 with a comparison of a numeri-
cal solution of the CCFM equation with the corresponding DGLAP and
BFKL solutions. In Section 4 we examine the consequences for the struc-
ture function, F3, as measured at HERA. In section 5 we examine the effect
of introducing an extra “consistency” constraint on the CCFM equation
and in Section 6 we examine the effect of this constraint on predictions
for Fz(z,Q?), its charm component, F§(z,Q?) and the cross section for
diffractive J/¥ photoproduction. Section 7 contains our conclusions.

2. The CCFM equation

The CCFM equation is based on the summation of multigluon emissions
which are coherent in the sense that there is angular ordering, 8; > 6;_1,
along the chain, where §; is the angle that the i** gluon makes to the original
direction [3, 4]. Outside this region there is destructive interference such
that the multigluon contributions vanish to leading order.

It is convenient to express the concept of angular ordering in terms of
the various gluon momenta. Firstly it is helpful to introduce the rescaled
transverse momenta

!

qE-——qT ~0E', ¢ = 7 ~§'E", (2)

1-2 11—z

where 1 — z is the longitudinal momentum fraction of the gluon emitted
at angle @ and E' is the energy component of the exchanged gluon with
spacelike momentum z'p. Here we have used the small angle approximation,
tan @ ~ 6. The coherence constraint § > 8' therefore implies ¢ > 2'q'.

With the angular ordering constraint expressed as a theta function, the
CCFM equation is given by

F(x,k%,Q%) =F%(z, k%, Q%)

1
d? - T
+ [a [LL6(Q - 20 25(@ 200 Plova b (21 )

3)
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The inhomogeneous or “no-rung” contribution, F°, may be regarded as the
non-perturbative driving term. It should be noted that the variable k7. is
the magnitude of the vector sum kg + (1 — z)q and, so, in principle, the
angular integration in d2q is non-trivial. The function P is the gluon-gluon
splitting function

P=as [1—%—+AR——2+Z(1—Z)]» (4)

where @g = Cjag/m = 3ag/m. The multiplicative factors Ag and Apg
are known as the Sudakov and Regge form factors. They arise from the
resummation of the virtual corrections and cancel the singularities manifest
as z — 1 and z — 0 respectively. Their explicit form can be found in, for
example, Ref. [5].

3. Numerical solution of the CCFM equation

In this contribution we are interested in the CCFM equation at small
z. In this region we may simplify the equation (3) as follows

F(z, k%, Q%) =F°(z, k%, Q%)

d;. d T
+ s/ / q@ ~2q)AR(z, ¢, k1) F (;,(kT+q)2,q2) ;

()

where we have set Ag = 1 and retained only the 1/z term in the splitting
function P. We have also approximated (1 — z)g by ¢ in the argument &/ of
F. In this small z limit, the variable ¢ reduces to the transverse momentum
g of the emitted gluon, see Eq. (2). This simplified form of the CCFM
equation is the one which we shall investigate. This requires us to make
several choices. Firstly we need to specify the scale of the running coupling,
oa,. We take this scale to be k% since this value is usually assumed for
small z studies involving the BFKL equation. Secondly, we need to assume
some form for the driving term, F®. We would like to choose something
simple, so we choose our F® such that it would generate a “flat” gluon,
zg ~ 3(1 — z)5, in the absence of angular ordering and the Ag correction
term. As F corresponds to the unintegrated gluon we also need to specify
its initial k2, dependence. We take an exponential form exp(— k2 /Qo) with
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Q2 taken to be 1 GeVZ2. The driving term is then given by

1
FO (@, ke, @) =N exp(—43/Q3) [ 20(Q - kr2)0(@* - 4?)

dB3(1 - 2/2)°
dlog(z/z) '

where the normalization, NV, is fixed to ensure that the gluon carries half of
the momentum of the proton. For computational convenience we have in-
troduced a resolution variable, u%, which will have the effect of providing a
lower cut-off on the dg? integration in the CCFM equation (5). This param-
eter can, however, be chosen sufficiently small (u% ~ 1072) so that it does
not affect the final result [5]. With these choices we solve (5) by iteration
from the starting distribution (6). We restrict the iterative procedure to the
domain k%,,kg >Qi=1 GeV?. We also introduce an upper limit cut-off,
Q%, on the ¢? integrations which is in the region 10* — 10° GeV?, though
the results are insensitive to variations around and above these values.

The calculation is now repeated using the double-leading-logarithm
(DLL) approximation! in which we replace angular ordering, ©(Q — zq),
by ordering in transverse momenta, ©(Q — ¢), and in which we set Agp = 1.
In this case the equation reduces to

AR(z, kr, kr; 1) (6)

1
2 ,
Fo k5, @1) = F(a, 1, QY +as [ £ [ S0@-0FC k). ()

Fig. 2 shows our solution for both equations in terms of the integrated
gluon distribution, zg(z,Q?) of (1) with lower limit Q3. Remember that
the gluon distribution is generated radiatively from an input which is “flat”
at small z, and so the rapid rise of the CCFM gluon with decreasing z is
generated by the CCFM equation. By contrast the dashed curves in Fig. 2
show the characteristic double-leading-logarithm (DLL) small z behaviour

292, Q%) ~ exp [z{e(c;ﬂ, Q) log(l/z)}%] ®)

appropriate to a “flat” input, that is zg(z, Q%) — constant as z — 0.

1 This procedure only becomes equivalent to the conventional DLL approxima-
tion for zg(z, @?) after we integrate over kr.
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Fig. 2. The integrated gluon distribution zg versus z, obtained from both the
CCFM (continuous curves) and the DLL (dashed curves) integral equations, for
Q2% = 4,10,102,10% and 10* GeV?. Recall that our solutions are obtained from a

“flat” gluon input.

To quantify the increase in zg, we show in Fig. 3 the effective value of
A, defined by
29(2,Q%) = Az~ (9)
For small z we see that the solutions converge to a typical %% behaviour,
approximately independent of )%, which, as we shall see below, is consis-
tent with that obtained from the solution of the (leading log(1/z)) BFKL
equation. To be precise we solve the BFKL equation

dki2
2

1 [e%)
d
Fla,kr) =FO o k) +5s0) [
T Q(z)
KZF(z,kl) — k3 F(z,kr) ~ k&F(z,kr) (10)
(W7 = R3] (4t + k)2 ]
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Fig. 3. The effective values of ), defined by zg = Az~*. The CCFM values
(continuous curves) are compared with those obtained from the BFKL (dot-dashed
curves) and DLL approximations (dashed curves). In each case we show curves
corresponding to five different values of Q2.

with the driving term
FOL (g, ky) = 3(1 — z)° N exp(—k%/Q3) - (11)

The integration region is restricted to k% > Q=1 GeV2. Fig. 3 shows the
resulting effective slopes Aeg. Since the solution, F(z, k), of the BFKL
equation is independent of Q, the % dependence observed for zg comes
entirely from the kr integration of (1). On the other hand the solution
F(z, k'%,Qz) of the CCFM equation has an intrinsic ) dependence arising
from angular-ordering, ©(Q — ¢z). From Fig. 3 we note that the effec-
tive slopes, Aeg, of the integrated CCFM and BFKL gluons are remarkably
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similar at small z. We conclude that the next-to-leading log(1/z) effects
included in the CCFM formalism have a comparatively weak effect on the
2~ behaviour, although we note that the onset of the £~ form is more
delayed for the CCFM solution.

4. The structure function, F3

The gluon distribution itself is, of course, not an observable. However,
the behaviour of the gluon feeds through into physical quantities such as
the structure functions. In deep inelastic scattering the virtual photon cou-
ples to the gluon via the ¢ — ¢g transition. We therefore calculate the
structure function Fy from the unintegrated gluon distribution F using the
kp-factorization theorem [6, 7]

1
dz’
F2(m7Q2) :Z/dk%/?/dzﬁf‘(m’,k?[‘,n2)
q =
x , =
X F;)OX (yvava7Q2’mq) + F2sv (12)

where F;mx includes both the quark “box” and “crossed box” contribu-
tions which originate from virtual photon-virtual gluon ¢g production, that
is from vg — ¢q. The convolution is sketched in Fig. 4. For the u,d
and s quark contributions we take the quark mass mg = 0, while for the
charm component we take m. = 1.5 GeV. The explicit expressions for F;”x

including quark mass effects can be found? in Ref. [8]. The background
contribution, FZ‘,S, behaves as Ff ~ F(z,Q%) at large 2, but is a slowly
varying function of z and Q? at small z.

Before calculating F there is an extra correction that we can apply
to our gluon distribution to improve its Q? dependence. Recall that the
small z approximation of the CCFM equation that we have used amounts
to setting the Sudakov form factor Ag = 1 and to approximating the gluon-
gluon splitting function by its singular term as z — 0, that is Pyy ~ 6/2.
We can, however, approximately account for the remaining finite terms in
Pgg by multiplying the solution F(z, k%., Q?) by the factor

2
d2
exp | -4 [as@) || (13)

2 There is a typographical error in the expression for 2’ below Eq. (19) in Ref. [8];
the factor 3(1 — B) should be in the denominator.
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Fig. 4. Pictorial representation of the kp factorization formula, that is of the
convolution Fy = ZqF ® F;mx of (12). F(z',k%,«?) is the unintegrated gluon
distribution and }, Fqb°" is the off-shell gluon structure function, which at lowest
order is determined by the quark box (and “crossed box”) contributions.

where A is defined by
7 6
/z"’ng(z)dz == 6A. (14)
0

That is A = (33 4 2ns)/36, where the number of active flavours ny = 4.
With this factor (13) included we calculate F» using the formula (12).
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Fig. 5. A comparison of the HERA measurements of F [9, 10] with the predictions
obtained from the kr-factorization formula (12) using for the unintegrated gluon
distribution F the solutions of the CCFM equation (continuous curve), and the
DLL-approximation (dot-dashed curve) of this equation. We also show the values
of F, obtained from collinear factorization using the MRS(A’) [11, 12] and GRV
[18] partons.

Fig. 5 compares the CCFM and DLLA predictions for F; with the
recent HERA measurements [9, 10]. We use the kp-factorization formula
(12) with an infrared cut-off, Ic%. > k2. For the non-perturbative background
contribution, F¥, we use the value of F3(z, Q%) obtained from the MRS(A')
set of partons [11, 12] at z = 0.1, and extrapolate below 0.1 assuming the
normal z 7908 “soft” behaviour. '

From Fig. 5 we see that the CCFM and DLLA predictions coincide at
large z, as indeed they should. The two schemes start to differ at small z
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and Fig. 5 indicates the value of z at which the resummation effects become
important. The rise of the gluon, and hence of F;, is generated by the
evolution equation and hence is within the domain of perturbative QCD.
Of course, our prediction is not absolute. The normalisation depends on
the choice of kg, which delimits the infrared region, and also on the choice
of the driving term and the lower limit of integration in (13). Here we take

this to be @3 = 1 GeV2. Recall that the correction factor (13), and hence
Qy, only occurs because we solve a simplified form of the CCFM equation
appropriate to the small z region. In summary there is some freedom in the
normalisation of F3, though the prediction of the shape of the z dependence
is characteristic of the CCFM equation. It is encouraging that the physically

reasonable choice k2 = (2 = 1 GeV? gives a satisfactory description of the
HERA data.

5. An additional constraint

There exists a kinematical constraint which is not included in the CCFM
equation, but which is fairly easy to implement, it is [3, 13]

k3 > 2¢%. (15)
or, to be precise, it is actually [14]
2 2
G < (1- 2)kh/z. (16)

The constraint® arises since, in the small z regime where the BFKL equa-
tion is valid, we require that the virtuality of the exchanged gluons arises
mainly from the transverse, rather than the longitudinal, components of
their momentum; that is
2 2
[&']? ~ k%. (17)

There are also constraints from energy-momentum conservation [15] but
these are not expected to be so important [14].

In the small z, large Q2 regime the kinematic constraint ¢3 < (1 —
z)k%./z is a stronger limitation than the angular ordering constraint ¢? <
Q?/2%, and we anticipate that the CCFM solution F(z, k%, Q%) will become
independent of @Q%. In other words in this limit the kinematic constraint
automatically embodies the angular ordering constraint [13] and since the
former is independent of Q? the unintegrated gluon distribution F' does not

3 Throughout we call this a kinematic constraint although its origin is partly
dynamical. The derivation of {16) can be found in Ref. [14].
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depend on this variable either. However, as Q? decreases below k2 the
angular ordering constraint becomes stronger and F' begins to decrease.

The effect of imposing this constraint on the gluon’s effective slope,
Aeff, is to make it smaller by about 0.1 [14]. However, of more immediate
interest to us here is the effect it has on physical observables such as Fy. It
is therefore to this subject that we now turn.

6. The impact on observables

Here we investigate the influence of the constraint X on several physical
observables. These are the structure function, F, its charm component, Fy
and the cross section for diffractive J/v photoproduction. Previously we
examined the behaviour of Fp versus z. Here we examine Fy versus Q2.
This has the pleasant property that the slope, F3/81n Q?, should be par-
ticularly insensitive to any ambiguities due to Fzs. However, note that
when Q? becomes large (beyond the range of the data that we consider
here) some care is needed. The kinematic constraint is only applicable in
the small z region and so the normalisation of the gluon is suspect at large
z, particularly for large Q2. We therefore, renormalise the solution of the
CCFM equation with the kinematic constraint imposed so as to agree for
z > 0.1 with the unmodified solution and its DLL approximation. In this
way we allow for the small 2 approximation of the equation. The renormal-
isation only affects the solution for Q220 GeV2. With this understood,
we show in Fig. 6 the predictions for Fy(z,Q?%) at small = together with
the latest HERA measurements. Including the kinematic constraint (16) in
the CCFM equation for the gluon F(x,k,_zr,Qz) has the effect of taking us
from the dashed to the continuous curves in Fig. 6. The relevant compar-
ison is the slope (8F;/81n Q?) of the curves which is proportional to the
gluon distribution. With the present experimental errors the comparison is
inconclusive, but it is evident that, as the statistical and systematic errors
are reduced, future measurements of dF,/81In Q? will give insight into the
properties of the gluon distribution F(z, k%, Q?).

Recently the charm component of F» has been measured [16] at HERA
in the small z region. These measurements of F§(z,Q?) are shown in Fig. 7,
together with earlier EMC values [17] at larger . We compare these data
with the charm component F§ determined from the gluon distribution, F,
using the ¢ quark contribution to the kp-factorization formula (12). We
show the values obtained by taking the mass of the charm quark to be m, =
1.4 and 1.7 GeV. We also show predictions based on GRV [18] and MRS
partons [12]. The first of these two is obtained from yg — ¢¢ at NLO [19]
using massive charm quarks and the integrated (GRV) gluon distribution. In
the MRS analyses [11, 12] the charm quark is treated as a parton. The charm
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Fig. 6. Predictions of the proton structure function Fy(z, Q?) as a function of In Q?,
at fixed values of ¢, compared with recent measurements made by the experiments
at HERA [9, 10]. The continuous and dashed curves are respectively the predictions
obtained from the CCFM equation, via the kr-factorization theorem, with and
without the kinematic constraint (16) incorporated. The dotted curves are the
predictions obtained from the GRV set of partons [18].
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Fig. 7. Predictions for the charm component F$ of the proton structure function,
F5, compared to recent preliminary H1 measurements [16] and older EMC data
[17]. The predictions were obtained by solving the CCFM equation (with kinematic
constraint) for the unintegrated gluon and then using the kp-factorization formula
with m. = 1.4 GeV (upper continuous curve) and m. = 1.7 GeV (lower continuous
curve) Also shown are the next-to-leading order predictions [19, 11] based on GRV
[18] and MRS [12] partons.

distribution is assumed to be zero for Q2 < m?, while above this threshold
(Q% > m?) it is evolved assuming that m. = 0. The value m? = 2.7 GeV? is
determined by fitting to the EMC data [17] for F5. Although the H1 small
z data are preliminary, it is clear that an improved measurement of Fy
will be valuable. At present there are indications that our kp-factorization
approach underestimates the H1 data at the lower Q% values; in fact the
imposition of the kinematic constraint worsens our previous description of
these data [20].

The final observable process that we study is high energy diffractive J/4
photoproduction, yp — J/¢¥p. Since this is essentially an elastic process,
the cross section is dependent on the square of the unintegrated gluon dis-
tribution, F(z, k2 ,@%). The relevant values of z and Q?* are z = J\/I;‘;/VV2

and @2 = M;‘;J/4, where M, is the mass of the J/¢ meson and W is the yp
centre-of-mass energy. The cross section is given by [21]

3M;';,a§(69"2)ree
3bo

dk2 1 2 =2

where I, is the leptonic width describing the J/¢ — eTe™ decay, « is the

do
d (

o{yp— J/1¥p) —%

2
, (18)
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QED coupling, and b is the slope parameter of the differential cross section,
do/dt = Aexp(—b|t]). We take the experimental value b = 4.5 GeV~2. We
include the effects of ¢ rescattering and the small contribution of the real
part of the amplitude as described in Ref. {21]. It was noted in Ref. [21]
that the effects of Fermi motion of the ¢ and ¢ quarks in the J/¢ lead to a
sizeable (+30%) uncertainty in the normalization of the perturbative QCD
prediction of the photoproduction cross section, but that the “shape” of the
W (or z) dependence is unaffected.

200 T
+ H194 (Prelim.)
—
2 Q ZEUS 94 (Prefim.)
.
o b zeuses
+ %
~N 7 .‘__.,,,-
+ 0
~— - 0
20 A R
kin. con.}
£

W (GeV)

Fig. 8. The measurements [22] of the cross section for diffractive J/¢ photoproduc-
tion compared with the perturbative QCD description based on the unintegrated
gluon distribution obtained by solving the CCFM equation with (continuous curve)
and without {dashed curve) the kinematic constraint (16) included. The dotted
and dash-dotted curves are the predictions obtained from the GRV and MRS(A’)
set of partons [18, 12], calculated as in Ref. [21].

The predictions for diffractive J/¢ photoproduction are compared with
recent HERA data in Fig. 8. At present the data extend up to energy W ~
140 GeV, that is down to  ~ 5 x 10™%. The prediction in the absence of
the kinematic constraint (the dashed curve) implies that the gluon increases
too fast with decreasing z. On the other hand if the kinematic constraint is
incorporated in the CCFM equation, then the continuous curve is obtained
and the description is improved.

For completeness we also show in Fig. 8 the description of the J/4¢ data
calculated from two recent sets of partons (GRV [18] and MRS(A') [12]) as
described in Ref. [21]. Neither parton set incorporates In(1/z) resumma-
tion effects. The J/v data appear to favour the phenomenological gluon
distribution of the latter set of partons.
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5. Conclusions

We have solved a unified equation for the unintegrated gluon distri-
bution which incorporates BFKL dynamics at small z and Altarelli-Parisi
evolution at larger x. We called it the CCFM equation after its origina-
tors — Catani, Ciafaloni, Fiorani and Marchesini. Starting from a driving
term based on a “flat” 3(1 — z)° gluon with a narrow kg distribution,
exp(—k%/Q3%), we used an iterative procedure to find the & dependence of
the gluon.

We concentrated on the behaviour of the gluon in the small z regime.
The key ingredients of the CCFM equation are the angular-ordering of gluon
emissions and the presence of a Regge form factor. We found that the CCFM
equation generates a gluon F(z, kp, Q) with a singular 2~ behaviour, with
A ~ 0.5 The angular-ordering introduces a dependence of the unintegrated
gluon on the scale @, especially at the lower values of Q2.

We compared our CCFM solutions with the conventional DLL approxi-
mation in which angular-ordering is replaced by strong-ordering in the gluon
transverse momenta and in which the Regge form factor is omitted, Ag = 1.
The gluon was then found to be much less steep with decreasing = The
DLL approximation starts to differ from the CCFM results in the region
<1072, We also compared the CCFM solutions with the solutions of the
BFKL approximation. Fig. 3 quantifies the z~* agreement between the uni-
fied CCFM solution and the approximate BFKL solution. The agreement
is remarkably good at small z, especially at the larger values of Q%. Both
the CCFM and BFKL solutions have a behaviour zg ~ z~* at small z,
where the value of A is in the region of 0.5 with only a modest dependence
on Q?, in contrast to the dependence of A on the evolution length for the
DLL approximation.

We next examined what such a gluon distribution predicts for the struc-
ture function, F». We found reasonable agreement with the HERA data,
but clearly this does not imply angular ordering effects have been firmly
established. GLAP and BFKL evolution can give an equally good de-
scription. There are two characteristic features of the gluon distribution

F(z, k%,@z) obtained from an evolution equation which includes a resum-
mation of In(1/z) terms. These are a steep rise of f with decreasing z
which is accompanied by a diffusion in In k%"} - F; measures only the rise.
A distinctive test will involve both features. For this we need to explore
final state processes such as deep inelastic events containing an identified
energetic forward jet. Here we have focused on F% and obtained predictions
based on angular-ordered evolution which embodies both BFKL and GLAP

resummastions.
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We have investigated the effect of imposing an extra constraint
O©(k%/¢% — z) on the evolution equation. This is needed to ensure that
the virtuality of the gluons along the chain is controlled by the transverse
momenta, that is |k%] ~ kZ.. For running ags we solved the CCFM equa-
tion numerically and obtained the gluon distribution F(z, k%, Q2) with the
kinematic constraint imposed. In this case the constraint has the effect of
reducing Aeg by about 0.1.

In Section 6 we studied the impact of imposing the kinematic con-
straint on the description of three observables which are sensitive to the
gluon distribution at small z and which are being measured at HERA. The
observables are 8F,/91n Q?, F£(x,Q?) and the W dependence of the cross
section for high energy diffractive J/¢ photoproduction. As expected J/4
photoproduction offers an especially sensitive measure of the gluon.

Of course, these comparisons with data should be regarded as
exploratory. To obtain a true quantitative prediction for all z we must
include a proper treatment of the z = 1 behaviour and include the quark
distributions in the evolution equation. Strictly we should also include the
effects of energy-momentum conservation and even possible gluon shadow-
ing corrections. The latter, however, are expected to be small in the HERA
regime, as evidenced by the persistent rise of the F; data with decreasing
for Q% as low as Q% = 2 GeV2. Last, but not least, the full next-to-leading
In(1/z) contribution is not understood at present. This is needed to check
the prescription for the running of ag and to specify the scale dependence.

My congratulations to the organisers for a very enjoyable Epiphany
Conference. I would like to thank Professors A.D. Martin and J. Kwiecifiski
for their collaboration in the work discussed here.
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