Vol. 27(1996) ACTA PHYSICA POLONICA B No 6

ON DYNAMICALLY GENERATED PARTON
DISTRIBUTION FUNCTIONS AND
THEIR PROPERTIES*

J. Cuyra

Institute of Physics, Academy of Sciences of the Czech Republic
Na Slovance 2, 180 40 Praha 8, Czech Republic

(Received February 26, 1996)

The idea of “dynamically” generated parton distribution functions,
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with particular emphasize paid to its compatibility with the factorization
mechanism. Basic consequences of this approach are discussed and com-
pared to those of the conventional approach, employing singular initial
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1. Introduction

One of the highlights [1, 2] of the recent International Conference on
High Energy Physics in Brussels has been the remarkable success of “dy-
namically” generated parton distribution functions (DGPD) advocated by
Gliick, Reya and Vogt (GRV) [3-8], in predicting the rapid rise of proton
structure function F3¥(z,Q) at low z, observed at HERA [9, 10]. ?

The GRV group is one of three main groups (the other two being the
Durham (MRS) [11-13] and the CTEQ [14, 15] ones), which systematically
analyze hard scattering data within the framework of perturbative QCD.
What distinguishes GRV approach from those of the other two groups is
their claim that the DGPD are more than just parametrizations of our in-
ability to compute structure functions directly from first principles. GRV
argue that by imposing certain condition on the initial parton distribu-
tions at low momentum scale, one obtains more predictive results. Without

* Presented at the Cracow Epiphany Conference on Proton Structure, Krakéw,
Poland, January 5-6, 1996.

! Throughout the paper the term “distribution” stands for distribution function.
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this additional theoretical input the conventional parametrizations, using a
moderate initial scale Q¢ ~ 2 GeV, are unstable when extrapolated to low
z region. For that reason both the MRS and CTEQ groups usually present
several sets of such parametrizations, differing just in low z region.

The idea of DGPD is intuitively appealing and actually almost as old
as QCD itself [3]. Confronted with growing amount and variety of data, it
has, however, undergone significant modifications [4, 5, 7] and in the process
lost most of its original appeal. As the GRV approach relies on very low
initial scale in the range 0.5 — 0.6 GeV, it has been met with reservations
and scepticism [16-18]. In response to this criticism and in order to bring
further arguments in favour of their approach, GRV have included in their
recent paper [7] an extensive discussion of several of these points.

To relate physics of short distances, the true realm of perturbative QCD;,
to that of distances comparable to the proton size would certainly represent
a major achievement. The purpose of this paper is to discuss whether this
can really be done in the way suggested in [3-8]. Throughout this paper I
shall concentrate on the analysis of the basic assumptions and consequences
of the GRV approach, with only occasional reference to comparison with
experimental data.

The paper is organized as follows. In the next section I shall briefly
recall the development of the idea of DGPD, from its inception [3] up to
the present status [7]. In Section 3 the applicability of perturbative QCD at
distances as large as 0.4 fm will be discussed. In particular I shall comment
on the implications and interpretation of recent lattice calculations [19],
quoted in [7]. The indispensable role of power corrections in going from
short distances (where partons live) to distances comparable to the proton
size (where the appropriate degrees of freedom are the constituent quarks)
is emphasized in Section 4. In Section 5 the compatibility of the DGPD
with the factorization mechanism is discussed in detail. In particular it is
shown why it is very difficult for gluons and sea quarks to be valence-like.
This discussion also shows how the conventional parametrizations, based
on singular input distributions, avoid this problem. In Section 6 results of
the conventional approach in the small z region are briefly reviewed and
cast into a simple form suitable for the comparison with the DGPD. This
comparison, carried out in Section 7, identifies two basic signatures of the
DGPD. Throughout the paper I adopt the notation in which the QCD
coupling @ = o, /7 satisfies the usual RG equation

da(M, RS)

TiN T —ba®(M,RS) (1 + ca(M,RS) + cza*(M,RS) +---) , (1)
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where b, ¢ are the first two, universal, coefficients ?
_33—27'lf _ 153——1971f

b =
6  ° 66—4ns

(2)
while all the higher order coefficients cg, & > 2, in (1) are free parameters,
defining the so called renormalization convention (RC) [20]. Together with
the specification of the initial condition on the solution of (1) they define
the renormalization scheme (RS).

2. The evolution of the idea of dynamically generated partons

The original idea of [3] was to generate parton distributions at large
momentum scales, where experimental data are available, by means of the
DGLAP leading order ®, leading twist evolution equations, starting at some
small momentum scale ¢ p ~ 0.55 GeV from purely valence-like quark
distributions, with vanishing light sea and gluon ones ®

G(z,p) = U(z, p) = d(z,p) = 3(z, 1) = s(z, 1) = 0. (3)

The quark distributions at the initial scale g, obtained by backward evo-
lution from measured structure function F;N(x,Q) at Qg = 3 GeV2, were
constrained to satisfy quark number sum rule

1

[ delute, ) + (e = 3, (4)
0
which provides a fundamental bridge between the parton model of Feyn-
man and the old nonrelativistic “quasinuclear colored model” of Gell-Mann,

Zweig, Greenberg, Lipkin and others. The scale y was fixed by imposing
the momentum sum rule

1

/dxa: [u(z,p) +d(z,u))=1. (5)

0

Assuming QCD with three colors and ny massless quark flavors.

In later GRV papers also the NLO DGLAP evolution equations were used.
In the rest of this paper Qg is used for the general initial scale, while the
symbol p is reserved for the initial scale within the GRV approach, i.e. the
one at which the parton distributions become valence-like.

In GRYV approach heavy quarks ¢, b and ¢ are not considered as intrinsic partons

in the nucleon, but are produced from intrinsic gluons via the boson-gluon
fusion mechanism [7].
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In 1976 there were too few data on hard scattering processes to test the
DGPD thoroughly. With more and increasingly accurate data becoming
available in late eighties, the GRV group was forced to modify their orig-
inal idea by allowing nonvanishing valence-like gluon distribution G{(z, )
as well [4]. Moreover, G(z,u) was related to the input valence-like quark
distributions as follows:

Glo,p) = S [u(e,p) +d@, )] . (e =0. (6)

In [4] 4 and ng were fixed by means of the momentum sum rule at the
initial scale p, now including also the gluon contribution, together with the
comparison of theoretical predictions with data on direct photon production.
About the same g as in [3] and ng = 2, was obtained.

Confronted with still more data GRV had finally to include in their
initial parton distributions also the valence-like nonstrange sea [5] so that
the momentum sum rule now reads

1
/dm:z: [to (2, 1) + do(z, ) + 28(z, ) + 2d(z, p) + G(z, )] = 1.  (7)
0

In one of their latest NLO global analysis, published in [7], g = 0.58 GeV
and

Uy (2, ) = 0.9882°-543 (1 +1.58y/7 + 2.58z + 18.1x3/2) (1 - z)338,

(8)

zdy(z, ) = 0.18220-316 (1 +2.51/7 + 25.02 + 11.4w3/2) (1 - z)*113,

B (9)
z(T +d)(z, p) = 1.092°3(1 + 2.652) (1 — )33, (10)
2G(z, p) = 26.221°(1 — z)4°, (11)
zs(z, pu) = z5(z,pu) =0. (12)

3. Does perturbative QCD make sense at 0.4 fermi?

The initial scale u = 0.58 GeV corresponds to a distance 0.37 fermi. As
pointed out by a number of authors [16-18] such distances are probably too
large for a meaningful purely perturbative treatment. It is fair to say that
GRV do not trust their results at such low momentum scales but claim they
are good approximations only above somewhat higher scale ppert = 0.75
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Fig. 1. Results of nonperturbative evaluation of particularly defined QCD running
coupling o2 (y) on the lattice. Taken from Ref. [19].

GeV [7]. However, even the latter value seems too low for the applicability
of leading twist, low order (LO or NLO) perturbative QCD. The following
paragraphs are intended to throw some light on this problem.

In this context let me first comment on the results of recent lattice
calculation [19], quoted in [7]. According to [7] these results “confirm the
perturbative NLO (2 loop) predictions for a,(Q) down to Q = 0.55 GeV.”
This claim relies on Fig. 1, taken from [19], where the results of nonpertur-
bative lattice evaluation ¢ of the QCD running coupling al®*t(g) is plotted
as a function of ¢ in the region of ¢ € (0.5,14) GeV. The agreement between
ozlftt(q) and the curve corresponding to 2-loop perturbative -function, i.e.
the solution of (1) with only the first two universal terms on its r.h.s., down
to 0.5 GeV is indeed remarkable. However, what is demonstrated by Fig. 1
is merely the fact that a particularly defined lattice coupling oA?** coincides
with the coupling defined in the so called ’t Hooft RC 7 down to ¢ = 0.55
GeV. It is worth emphasizing that even on the lattice there is no unique

“nonperturbative” S-function and, consequently, no unique nonperturba-

 The definition of a!2** used in {19] is rather involved and is therefore not
mentioned here.

7 In this RC all nonunique §-function coefficients ¢;,j > 2, are set to zero by
definition.
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tive coupling ozl;‘“! While asymptotic freedom of QCD guarantees that at
short distances couplings in different RS coincide, they may be arbitrarily
far apart at large ones. Fig. 1 contains an interesting evidence for the close-
ness of two (out of an infinite number) definitions of the coupling, but tells
us nothing about the applicability of perturbation theory in any of them.
The authors of [19] are well aware of this limitation and on page 495 of
(19] therefore write: “We would like to emphasize, however, that our results
do not prove that perturbation theory provides a good approximation to
all quantities of interest up to couplings as large as 3.48. Such a general
statement is bound to be false and the running coupling in our scheme may
very well turn to be an exceptional case.” 8

To illustrate the importance of nonperturbative effects at distances 0.3—
0.4 fermi, let us consider the magnitude F(r) of the force between two static
quarks at a distance r. This quantity has been extensively studied on the
lattice and is usually written as the sum

O(qa r

+ &= Fp(r)+ Fnp, (13)

where the first term, dominant at short distances, comes purely from per-
turbation theory while the second term describes the nonperturbative, long
range confining force with x denoting the string tension. The coupling o3?
in the numerator of (13) is related to o®*t, mentioned above, as follows [19]

o7 (M) = e (M) (1+ kaol (M) +--) , k1 =133776.  (14)

Evaluating both terms in (13) for k = (0.48 GeV)? and two values of M
(M = p = 0.55 GeV, corresponding to r = 0.37 fm and M = ppere = 0.75
GeV, corresponding to rpert = 0.27 fm), using the values of o2** from [19],
we find

Fp(0.37 fm) = 0.17 GeV?, F(0.27 fm) = 0.27 GeV?, Fpp = 0.24 GeVZ.

(15)
This is the kind of comparison which really tells us how important is the
perturbative contribution to a particular physical quantity, in this case the
interquark force (13). For this quantity the nonperturbative contribution
clearly dominates over the perturbative one at the distance r = 0.37 fm
and is roughly equal to it at r = 0.27 fm, the distance at which dynami-
cal perturbative predictions should, according to [7], “become reliable and
experimentally relevant”. The above example is merely an illustration and

8 The value 3.48 quoted above corresponds to g2.
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the relative importance of perturbative and nonperturbative parts may well
depend on the physical quantity in question, but it gives at least some indi-
cation that at ppers = 0.75 GeV perturbation contributions can hardly be
expected to be a good approximation to the full results.

One of the basic features of perturbation theory at low momentum scales
(large distances) is the increasing sensitivity of finite order perturbative ap-
proximants to the choice of the renormalization and factorization schemes
and renormalization and factorization scales ®, which makes perturbative
predictions progressively more ambiguous in this region. To illustrate the
crucial importance at large distances of higher order terms in purely per-
turbative expansions let me briefly recall the essence of Ref. [21]. There
the familiar R-ratio in eTe™ annihilation into hadrons at the center of mass

energy (J

o(ete™ — hadrons)

ny
Rere-(Q) = 70 2 =3(Ze?) 1+r@Q),  (16)

=1

where in perturbative QCD
r(Q) = a(M, RS)
X [1 + 7 (%’ RS) a(M,RS) + ro (%, RS) a®(M,RS) + - - ] (17)

is investigated in the infrared region. This analysis has two important in-
gredients

e the use of the NNLO approximation to (17), with ¢z chosen by means
of the PMS [20],

e smearing of R +,.- (@) over some interval A of Q:

Rc+e“ (\/‘E) (18)

— _ A 7
Roro- (Q,A) = ;/ds(s_Qz)”Az.
0

The second ingredient of this procedure is vital as the detailed structure
of R +.-(Q) in the resonance regions is clearly beyond the reach of pertur-
bative QCD. Nevertheless the fact that after the smearing and for not too
small values of A, the agreement between (18) and the data is quite good, as
documented by Fig. 6 of [21], is remarkable. This agreement depends cru-
cially on the fact that ¢z, as chosen by the PMS, is negative since for positive

® In this note these two in principle different scales will be identified and the
dependence on the choice of factorization scheme disregarded.
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c2 the NNLO perturbative expansion for (18) blows up in the IR region, as
does the NLO one. Also the magnitude of ¢ is important as it determines
the magnitude of R in the IR region. The success of such a procedure might
look suspicious as in the QCD sum rule approach resonance parameters,
and thus also their contribution to the smeared spectra, are dual to power
corrections. The observed agreement between data and NNLO perturbative
approximation in the PMS approach can be interpreted as a signal that by
an appropriate choice of ¢z (or in general of the RC), it may be possible to
include in some sense also the effects of these power corrections. Such an
interplay of perturbative and nonperturbative contributions is quite plau-
sible, as they actually coexist within OPE. I have mentioned the analysis
of [21] merely to emphasize that at large distances the inclusion of NNLO
perturbative terms is probably indispensable for meaningful and reasonably
complete description of physical quantities.

The message of the previous paragraph may also have some relevance for
“perturbative stability” observed within the GRV approach [7] in the com-
parisons of the LO and NLO approximations to the leading twist DGLAP
equations. Since the LO approximation cannot be associated with any well-
defined RS, and the importance of higher order terms depends sensitively on
the RS, such a comparison makes little quantitative sense. Only by compar-
ing the NLO and NNLO approximation can such information be obtained.
Unfortunately, there are only a few simple quantities for which the NNLO
calculations are available. The perturbative part (17) of the ratio (16) is
one of them . Evaluating just for illustration the first three known terms of
(17) at pipert = 0.75 GeV, for three flavors and in the conventional MS RS,
we find that they are roughly in the ratio 1:0.22 : 0.33! Not only there is
no sign of perturbative stability for this quantity, but at such low scales the
complicated problem of the presumable divergence of perturbation expan-
sions in fixed RS becomes of utmost phenomenological importance.

4. The interpretation of input parton distributions

Let us now turn to the interpretation of parton distributions at the
initial scale g. While in [3] they were considered to correspond to three
constituent quarks, according to the latest paper [7] the initial valence-
like quark and gluon distributions “should rather be identified with current
quark content of hadrons.” This slight but crucial shift of interpretation
should justify why the sea and gluon distributions do not vanish at the initial
scale u, as would seem appropriate for real constituents of the proton. Such
an extension would still be reasonable if the additional sea quark and gluon
valence-like initial distributions were small admixtures to the basically three
valence quarks component of the nucleon.



Parton Distribution Functions 1377

In [4] the fact that two valence “constituent” gluons at p =~ 0.5 GeV
were required by the data was considered “fine”since “they may combine
to give color and spin singlets as it is required for the nucleon.”. However,
the success of the conventional SU(6) quark model relies on the fact that all
color singlet combinations of three constituent quarks do exist in the nature,
not only some of them! But in the color singlet state of three quarks and
two gluons the latter do not have to couple to a color singlet. The system of
three quarks and two gluons would have much richer spectrum of low-lying
states than the state of mere three quarks. It would be a kind of “hybrid”
states, suggested in the early eighties, but never found. In order to avoid
these problems arguments would have to be invented to show why these
two constituent gluons must (and not only may) couple to a color and spin
singlet. [ am not aware of any such argument.

Similar problems arise for the initial distributions in [7], summarized at
the end of Section 2. Integrating over the initial distributions without the
prefactor z to get the probabilities, we find 10

1 1
/G’(m,,u)da:i 1, /(ﬂ(m,u)—{—ﬁ(w,u))dwi 1.6. (19)
0 0

The more accurate and copious data used in [7] lead to the result that the
initial parton distributions describe a system composed of 2.72 u quarks,
1.88 d quarks, 0.72 i antiquark, 0.88 d antiquark and about one valence
gluon. So again valence sea (anti)quarks and gluons are by no means a
small admixture but on the contrary provide a dominant component of the
initial parton distributions.

According to GRV this is no cause for concern as perturbation theory
is not expected to hold at the initial scale 4 =~ 0.55 GeV, but only above
ppert = 0.75 GeV. If, however, initial parton distributions do not describe at
least approximately physics at the scale u, what justifies then the adjective
“dynamical”? In particular why to impose the fundamental sum rules (4)
and (5), or (7), upon which the GRV approach is based? For instance,
if the initial parton distributions ¢(z, u), q(z, ¢) and G(z, ) are irrelevant
for physics, why should they satisfy the momentum sum rule (7), which
expresses the fact that quarks, antiquarks and gluons carry together the
whole momentum of the proton? And why should there be just two u

10" There is an misleading claim in [7] that their input distribution functions imply
that “proton consists dominantly of valence quarks and valence-like gluons,
with only 10% qq excitations (sea quarks).” The mentioned 10% concerns the
momentum fraction carried by sea quarks and antiquarks, not the probabilities
themselves.
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and one d quarks at the scale u? The answer which GRV offer exploits the
invariance of these sum rules under the LO DGLAP evolution equations and
the fact their they do hold at short distances. This reasoning goes, however,
against the very spirit of the DGPD, which Isee in the possibility to use some
known features of physics at long distances in order to predict physics at
short ones. Imposing restrictions on the initial distributions in the situation
when the latter have no physical meaning is basically a mathematical game
with a little physical content. Nevertheless, such a game can have nontrivial
consequences, which, if confirmed by data, would signal some interesting
physics behind the GRV approach and would justify it a posteriori.

In my view the relation between constituent quarks and partons cannot
be described by the leading twist DGLAP evolution equations, even if these
were taken to all orders 1!. As pointed out in Section 2, the distance ~ 0.4
fm, which corresponds to u ~ 0.55, is not much smaller that the approx-
imate size of three constituent quarks in the proton. The whole point of
introducing the concept of constituent quarks is that it represents the ef-
fective degree of freedom appropriate for describing the proton at distances
comparable to its size. Contrary to the current quarks, which are associ-
ated with quark fields entering directly the QCD Lagrangian, constituent
quarks have no such firm basis and are merely an intuitively introduced con-
cept, a kind of quasiparticle, which is reasonably well-defined only in the
nonrelativistic quark model! The phenomenological success of this model
suggests that in low momentum transfer processes the proton behaves ap-
proximately as composed of three constituent quarks, each with a mass of
about 300 MeV. Constructing the fields corresponding to constituent quarks
from those of the current quarks could probably be compared to the Bogol-
ubov transformation between electrons and fermionic quasiparticles in the
BCS theory of superconductivity. We expect the transition from short dis-
tances, where current partons are the right degrees of freedom, to large ones,
where constituent quarks are the appropriate effective degrees of freedom,
to be smooth, but involve complicated multiparton effects. In the frame-
work of OPE such effects are described by multiparton distributions, which
naturally appear as a part of power corrections [23]. We cannot hope to get
constituent quarks at low scale from quarks, antiquarks and gluons at large
scales merely by means of the leading twist DGLAP evolution equations.

5. Valence-like initial distributions and factorization

In this Section the compatibility of the GRV approach with the mech-
anism of factorization of parallel singularities will be discussed. In order to

11 For related discussion see [22].
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make the discussion as clear as possible and to concentrate on the essence
of the problem, a number of simplifications will be made.

First, we shall be primarily interested in the low z domain, roughly
z < 1072, Secondly, all the considerations will be done within the LO
DGLAP equations. The inclusion of the NLO corrections is not essential
for any of the points discussed below. In the LO approximation the basic
quantity of interest, proton structure function F;’P(z, Q?), can be expressed
in terms of elementary quark distributions as follows:

FP(,Q) = o5 (u(2,@%) + 7(2,Q%)

+5 (d2,Q%) + (. Q%) + s(2,@%) + 5. @%)] . (20)

Assuming SU(3) symmetry of the proton sea the r.h.s. of (20) can be written
as a combination of the valence u,, d, and the common sea D = ugeq =
dsea = Sgea distributions

FP(2,Q% = -wv(x Q)+ 5 wd (z,Q%) + 3rD(x Q%, (21)

or, alternatively, as a sum of separate contrlbutlons from v and d quarks

FP(2,0%) = (§oua(2,Q%) + 32D (2, 0*))

+ (éxd,,(w,cf) + i;-w“)(x,czz)) - (22)

In terms of conventional moments of various functions (distribution, branch-
ing, etc.)
1
f,Q) = [4"f(@, Qs (23
0
the LO DGLAP evolution equation for the nonsinglet quark distribution

reads dans (0.0 ©
qﬁn% )2 Pid (Mans(n, Q) (24)

while for the quark singlet and gluon distributions we have a system of
coupled equations

il = 2 [P0 )G (n,@) + P ) a(n, Q) + 701, Q25

d(q(n,Q) +3(1. Q) _ ()
dlnQ 7r

x |20 PQ (MG, Q) + P (m) (a(n, Q) +7(n, Q)] - (26)
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As in the small z region the evolution of the gluon distribution is driven by
the branching G — G + G, we shall furthermore drop the second term on
the r.h.s. of (25). Moments of the gluon distribution satisfy then the same
kind of differential equation as quark nonsinglet distribution:

dG(n, Q)
din@Q

= 2@ p® (n)6(n, Q) (27)

and therefore also the corresponding solutions have the same form

ca ~P{Q(n) /b

ans (n, Q) = Ans(n) [iTc(%] ; (28)
ca ~P2(n) /b

6(1,Q) = Ag(n) [ 2] P (29)

where Ang(n), Ag(n) are unique finite constants, determining the asymp-
totic behaviour of the moments ¢ns(n,Q), G(n,Q) as Q — co. According
to the factorization mechanism [24] these constants contain all the informa-
tion on long range properties of the nucleon, incaiculable in perturbation
theory. They represent one way of specifying the boundary conditions on
the solution of evolution equations (24) and (27). Another and almost, but
not entirely, equivalent way follows from taking the ratio of (28) and (29) at
two different scales. In this case boundary conditions are specified at finite
initial ¢Jo and we have

. c P (n)/b
s (@) = s (n, Q)[R LD o
ca PO (n)/b
G(n,Q) = G(n,Qo) [C;((QQO)) 1]:ca((go))] ) (31)

Let me first discuss the compatibility of the initial valence-like distributions
with the factorization on the simpler case of the gluon density G(z, Q). Note
that although they are of the same form, there is a profound difference
between the solutions (28) and (29) for n = 0 (the moment giving the
integral over the parton distributions). This is due to the fact that while

Pq(g)(O) = 0, we have Pglc)v.(O) = 400! The former is a consequence of the
quark number conservation in the ¢ — ¢ + G branching, while the latter
comes from the 1/z spectrum of soft gluons. Eq. (28) implies that the
integral over the nonsinglet quark density, ¢gns(0,Q) = Ans is independent
of @ and provided it is finite at some () it stays so everywhere. For the
gluons there are two possibilities:
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a) Ag(0) > 0 and then G(z,Q) cannot be valence-like at any @ for which
a > 0 since

1+ ca(Q) +°°_ =
el ] = Ag(0)(+o0) = o0, (32)

b) Ag(0) = 0, in which case (32) is ill-defined, but (31) applied to n = 0
can still be used

6(0,Q) = A6(0) [

(33)

a(Qo) 1+ ca(Q) ]+°°
a(@Q) 1+ ca(Qo) '

If we now impose valence-like behavior on the gluon distribution at
the initial Qo = p, i.e. assume finite G(0,p), (33) implies, due to
monotonous behavior of the square bracket as a function of @, that
G(0,Q) is a discontinuous function of the factorization scale Q at Q = u:

G(0.Q) = G(0,Qo) [

G(0,Q) = +oo, YVQ > p
G(0,p) = const. > 0
G(0,Q)=0 VQ < p. (34)

Similar discontinuity at the initial scale p appears also for sea quarks
and antiquarks.

In the case b), realized in the GRV approach, it is difficult to understand

why the divergence of P((;OC);(O), which is a purely perturbative phenomenon,
should be accompanied by the vanishing of nonperturbative quantity Ag(0).
0)

For instance, in 4 — ¢ dimensions P G(n,€) is finite and there is no obvi-
ous reason to expect Ag(0,¢) = 0. Sending ¢ — 0 we understand why

P(Goc);((),e) — 00, but why should simultaneously Ag(0,¢) — 07 Although
the lowest twist contribution may not provide a reliable description of the
proton at the initial scale y, we are not free to impose arbitrary constraints
on its properties. Despite these reservations, the case b) is certainly math-
ematically interesting option and I shall therefore in the rest of this section
analyze some if its consequences, in particular for the behavior of F,* (z,Q)
as a function of Q.

In the small x region, to which we restrict our attention, the LO ex-
pression for the distribution of sea quarks within a single quark which at
the scale yu is described by the initial distribution 6(1 — z), has the form [25]

132 —ac I2(v c
DO(Z:’Q) = ;”3‘C2C2’3 C——Zv(Tl ’ (30)
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where for three colors and ng flavors

il

2n 1. a(p) 1 4
=114 == =—ln——= - = =
a + 57 5 In Q) v 48CIn 2 ) C2 3 (36)

and [3(v) is the modified Bessel function. For general initial distribution
g(z, p) we have

1

D(z,Q) = / %’iq(y,uwo(x/y,c;)

T

_1m
Tz 3

w?

1
Cy¢Zea¢ / dyq(y, i) LIC) (37)

where now w = 1/48( In(y/z). Note that for fixed « and ¢ — 0, correspond-
ing to Q — pt, v = 0 and the function Dg(z,Q) behaves as

Do(#,Q) = 73Ca¢?, (38)

vanishing for { = 0, i.e. at Q@ = p. However, the physically relevant case
of fixed @ > p and = — 0 corresponds to slightly more complicated limit
v — oo. Eq. (35) then implies

2y }_g 2_—al+v(z) 1 1
DO(va )_’ z 3 C?C € \/Q_W;)(—x—jvz(m) ’ (39)

where the terms depending on v(z) induce additional dependence on z. This
modifies slightly the behavior of Dy(z, Q) at small z, but does not change its
nonintegrability due to the dominant 1/z factor. Consequently, Do(z,@Q),
considered as a function of Q) does not vanish uniformly in the whole interval
of z € (0,1) when Q — ! The same holds for D(z,Q). This nonuniform
convergence means that for @ arbitrarily close to the input Qo = p, there
is always a region of  close to z = 0, where approximately D(z,Q) < 1/z.
And it is this region which causes the divergence of the integral

1
/de(w,Q) =00, (40)
0

for any @ > . In the conventional approach with singular, i.e. nonin-
tegrable, initial distributions, this discontinuity is absent. Using Eq. (37)
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and assuming for small z quark initial distribution in the form ¢(z,u) =
Az~=>, A > 1, we find that for small z and Q — pt the integral

1

/dyq(y,Q)

z

I (w)
w2

(41)

behaves differently than for A < 1. For A > 1 the integrand of (41) is a
nonintegrable function of z in the interval (0, 1), finite lower integration
bound is therefore crucial and we get for any Q > p

1 1
[ v, @ 2501 = Q) x; [ e as (@)

z x

The singular initial distribution overrides the radiation pattern character-
izing the emissions from individual quarks and the radiated sea quark dis-
tribution D(z, Q) is therefore of the same form as the initial g(z, ). This
well-known feature of singular initial distributions implies that for low z
the form of the z-dependence is essentially independent of @) and the initial
scale plays no exceptional role.

6. Conventional partons in the small z region

In this section results of the conventional analysis based on singular
initial distributions will be cast into a simple form suitable for the compar-
ison with the GRV results. In order to check the very essence of the GRV
approach only the results based on the original initial conditions (3) with
vanishing antiquark and gluon initial distributions will be discussed. More-
over, I shali concentrate on the small z region, where the approximations of
the previous section are expected to hold [25]. Neglecting the second term
in (25) the function H(z, M) = zG(z, M) satisfies the equation

1
dH(z, M) _ Az [ o)\ (2
din M ‘“(M)/j (:PS2(2)) H (2, M), (43)
where
Pg°g<z>56([ljz]++1;Z+z(1-z)+(§§;}_;_ng_l)5(l_z)>,
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Assuming H(z, M) in a singular factorizable form
H(z, M) =2 *F(M,)), A>0 (45)

and substituting (45) into (43) we get

%ﬂ — o(M)F(M, \) (C’(A) - / dZZ)‘P(GOC);(Z)) . (46)

0

where

1
O PRVOTE
0

AA+ D)+ A +2)(A+3) 1

3 oo
=0 AA+FDA+2)(A+3) _5‘&};(2%)(“2%)‘ (47)

extends the definition of the LO anomalous dimension 4{%)(n) to noninteger
positive values of A. Note that v(®)(}) is a decreasing function of its argu-
ment and negative for A above Ag &~ 0.85. The second term in the brackets
of (46) is proportional to z* and can therefore be neglected in the small z
region. F(M, A) then satisfies the equation

dF(M, \)

vl Skl R (0) 4
) = oMy OV F(M, ), (45)
which has a simple solution
F(M,A) = A (a(M))~ "N/ (49)

where A is an arbitrary overall normalization constant.

In the small = region the comparison of the GRV and conventional
results can be made particularly transparent by translating (49) into the
corresponding expression for the proton structure function Fy¥(z,Q?) by
means of the LO Prytz’s relation [26]

dF3?(%£,Q) 20

s T — g = — ., 50
L = ka(QH(2Q), k=5 (50)
This formula was shown to be a good approximation for F3 in the low z
region and should be sufficient for our purposes. Alternatively, we could
solve the DGLAP evolution equations for the coupled quark singlet and
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gluon distributions exactly, and then approximate these solutions by the
power-like behavior, but the procedure based on the combination of (49)
and (50) is much simpler. Anticipating also F3¥ in the factorizable form

FP(2,Q) =2 FP Q). (51)
and using (50) in combination with the explicit result (49) for F'(M, \) we
get

dF;P (M, )) 1\ —~(O(A)/b+1
— 2 = Ak (-) (a(M)) , (52)
from where we obtain
A
Ar 1 (0)
FEP(M,)) = — L a7/
(M) = 3 PO = i (5) (e) (53)

The positivity of F;P (M, A) requires positive C'(A), which in turn implies
A < Ag. The measured behavior of erp in the small z region is well within
this limit.

7. DGPD vs. conventional partons — numerical comparison

Can DGPD be distinguished from the conventional parton parametriza-
tions at all? In order to identify reasonably unambiguous signatures of
DGPD I shall concentrate on its “orthodox” version.

In the first kind of comparisons, the GRV results for F,P (z,Q?) were
obtained via (22) from u and d quark valence-like initial distributions (8)-
(9) 2. The valence distributions were evolved by means of the standard
DGLAP evolution equations using the method of Jacobi polynomials [27,
28]. For the sea parts (37) was used. Three light quarks were taken into
account in generating the sea. In order to facilitate the absolute comparison
between the two approaches without reference to experimental data, the
constants A and X in (49) were related in such a way that the conventional
results coincide with the GRV ones for = 10~% and Q% = 5 GeV2?. As
a result A becomes a function of . The choice of the normalization point
is, of course, to a large extent arbitrary, but none of the basic messages
of this section depends on it. In Fig. 2a results of the GRV approach are
plotted for 10 values of Q2 = 0.35, 0.4, 0.6, 1, 2, 5, 10, 20, 50, 100 GeV?,
i.e. starting very close to the initial p® = 0.34 GeV2. The thick solid
curve corresponds to the initial F3¥ (z, g). In Fig. 2b the corresponding sea

12 No essential features of the following comparisons depend on this particular
choice of the initial distributions.
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a) Q2=0.34 GeV?
A=0.2 GeV

(x,Q)

ep
Fz

sea(x,Q%)

Fig. 2. a) F5;°(z,Q?) as a function of z for the initial distribution (8)-(9) and 10
values of @? defined in the text. In the low z region the curves are in ascending
order in Q2 starting from below. The dotted lines correspond to the power-like fits
described in the text and the thick solid curve describes the initial F5¥(z,p). b)
The same as in a), but for the total sea component only.

distributions, which in the low z region are well approximated by the power-
like behavior of the form z~?, are plotted. Figs 2a, 2b nicely illustrate the
way F;P(z,Q) approaches the input function F;p(:c,u) as Q —» pt. In
particular the nonuniform convergence, discussed in Section 5, is clearly
visible. As @ — uT the region of increasing F;* moves steadily to the
left, but regardless of how close Q is to u, such a region eventually appears,
leading to the discontinuity of the integral over quark distributions at the
initial scale p.
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Fitting for each Q? the total GRV sea contribution in the interval of
z € (1074,1072) to the form A(Q)z~MD) leads to characteristic depen-
dence of the parameters A(Q) and A(Q) on Q, displayed in Figs 3a, 3b by
thick solid curves. The corresponding power-like fits are shown as dotted
curves in Figs 2a, 2b. As Q — ut the interval where they provide a good
approximation to the full GRV results shifts systematically to smaller val-
ues of z, reflecting the shift to the left of the relative importance of the sea
component.

Fig. 3. @2-dependence of the normalization factor A(Q) (a) and the exponent
A(Q) (b). In a) the thick solid curve is given by the power-like fit of the GRV
results, while the dashed lines, describing F,7(Q, A) of the conventional approach,
correspond to six values of A = 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. In b) the thick
solid curve describes again the GRV resuit for the initial distributions (8)~(9), while
the other curves correspond (from above in decreasing order of a) to five initial
distributions (54) with # = 3 and @ = 0.1, 0.3, 0.5, 0.7, 0.9. In b) similar curves
for § = 4 would be essentially indistinguishable from those in the figure.

In Fig. 4 GRV results are compared with those of the conventional
approach, shown as dashed lines, for six values of A and the same values
of Q? as in Fig. 2. The lowest, thick solid curves of the GRV approach
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(]

10 1 10 Q%GeV?] 10

1 10 QUGeVA 167

Fig. 4. The comparison of the GRV (solid curves) and conventional (dashed curves)
results for F;P(z, Q%) separately for six values of X in the latter approach.

correspond again to the initial distributions (8)-(9) at u? = 0.34 GeV?
and have no analog among the dashed curves. Note that for smaller values
of A not all curves of the conventional approach fit into the frame of the
plots. To summarize the message of the Fig. 4, F57(Q, A), defined in (51),
is plotted in Fig. 3a as a function of Q2 for six values of A together with the
corresponding function A(Q) of the GRV approach.
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In order to investigate the sensitivity of the parameters A(Q) and A(Q)
in the GRV approach to the choice of the initial distributions, I have re-
peated the calculations presented in Fig. 2a for the set of u and d quark
initial distributions of the form

zqy(z,pu) = Az®(1 - z)B, (54)

for two values of 8 = 3,4 and five values of & = 0.1,0.3,0.5,0.7,0.9. In
all cases the overall normalization factor A was fixed to give two u and
one d quark at the initial scale p. Results corresponding to 3 = 3 and
the five mentioned values of o are displayed in Figs 5a-5e. The general
pattern remains the same as in Fig. 2a, but there is a marked difference
between the dependence of the exponent A(Q) (curves included in Fig. 3b)
and the normalization factor A(Q) (see Fig. 5f) on « and 8 (not shown).
While the exponent A(Q) depends on the values of both «, 3 very weakly,
A(Q) depends on « strongly and S moderately. The insensitivity of the
exponent A(Q) to details of the initial distributions can be understood by
closer inspection of the formula (37). The figures 3-5 suggest two distinct
features of the GRV results:

e The characteristic Q% dependence of the exponent A(Q). In the con-
ventional approach A is arbitrary (Q%-independent number, while in the
GRYV approach it is an almost unique function of @, which starts rapidly
from zero at the initial scale y, but then progressively slows down. The
most sensitive region is clearly that close to the initial x, but even at
large Q2 the characteristic Q2 dependence of GRV results persists. In
the region of Q% between 2 and 100 GeV?, where leading twist can per-
haps be trusted and data from HERA are available, A(Q?) varies slowly
in the range (0.25,0.38). Unfortunately the current experimental error
on A at HERA is too large for a reliable discrimination of this depen-
dence from a constant one, characterizing the conventional approach.
The pinning down the Q? dependence expected in the GRV approach
reliably would require lowering the experimental error on A(Q) to about
0.03 in a broad range of Q2.

e The Q2 dependence of the normalization factors A(Q) and F;¥(Q, A)
respectively. Here the differences are much more pronounced and in-
crease as we go to both small and large values of Q2. They depend also
much more on the choice of the initial distributions. In GRV approach
we cannot go below the initial scale, while in the conventional approach
there is no such strict limitation in the small z region. Fig. 3a indicates
that the region close to the initial scale is particularly sensitive to the
differences between the two approaches.

The above comparisons show that the “orthodox” version of GRV par-
tons could be easily distinguished from the conventional parametrizations,
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S la)@i=0.34Gev* |G [b)Q2=0.34GeV* |G |c)Qi=0.34 GeV?
3 X A=0.2 GeV X [ A=0.2 GeV
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[ A=0.2 GeV
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107t 1072 1 107t 1072 1
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Fig. 5. The same as in Fig. 2a (a~e) and Fig. 3a (f), but for § = 3 and five values
of @ in (54). In f) the curves are ordered from above in order of increasing o.

based on the singular initial distributions. However, once valence-like initial
gluons and antiquarks are added, the difference in the behavior of normal-
ization factors A(Q) and F,¥(Q, A) largely disappears. This is documented
by the fact that the latest GRV as well as the conventional parametrizations
can accommodate new HERA data [9, 10] at low z and in a broad Q? range
equally well. On the other hand the characteristic Q% dependence of the
exponent A(Q)) remains essentially unchanged as it is still given by the ba-
sic radiation pattern (35). Similarly even in the refined versions of DGPD
[6, 7] F5P(z,Q) approaches the initial structure function F3P (z, 1) in same
nonuniform manner as discussed in Section 5 and displayed in Figs 2 and
5. The available experimental data either reach sufficiently low values of
z ~ 107* but stop at Q% > 2 GeV? (H1 and ZEUS at HERA), or reach
low Q2 but only touch the crucial region of z < 1072 (E665 at Fermilab).
Despite its limited z range the recent E665 data indicate deviation from the
latest GRV parametrizations for z below 1072 and Q% < 1 GeV? [29]. New
quantitative tests are expected from upgrades of H1 and ZEUS detectors,
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which will extend the region of accessible Q% down to a fraction of GeV?
and could soon throw some light on the questions discussed in this paper.

8. Summary and conclusions

In this paper I have discussed the basic idea and consequences of the
DGPD from physical as well as mathematical points of view. I have argued
that it runs into problems if we attempt to interpret the properties of initial
distributions in physical terms. The only way to avoid these problems,
and the one adopted by GRYV, is to assume that the initial scale p lies
outside the range of validity of leading twist perturbative QCD. All the
peculiar properties discussed in Sections 4, 5 are then of no concern, but
at the same time the approach looses its physical justification and becomes
primarily an exercise in mathematics. Investigating the consequences of
different initial parton distributions on the solutions of LO/NLO DGLAP
evolution equations is an interesting mathematical problem of its own and
I have therefore devoted the second part of this paper to it. In particular 1
have looked for signatures in the behavior of F;¥(z, Q?) that would provide
clear signals that the GRV dynamics is at work. The only, but on the
other hand rather unique signature of this kind is the characteristic Q?
dependence of the exponent A(Q) in (51). To best way of pinning down
this dependence at HERA is to extend the Q? range below 1 GeV?, where
the variation of A(Q) is strongest, and study in detail the Q2 variation of
A(Q) in the whole available Q? range. But even then a significant increase
in the precision of measuring A is necessary before a definite conclusion on
the Q2-dependence of A can be drawn.
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