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Novel features of field mixing transformations in Quantum IField The-
ory (QEFT) have been recently [1-3] discovered. In particular it has been
shown [1,3] that the generator of such transformations induces a non trivial
structure in the vacuum which turns out to be a coherent state, both for
bosons and for fermions, although with a different condensate structure.
The Fock space for mixed fields has been explicitely constructed and it has
been shown that, in the infinite volume limit, it is unitarily inequivalent
(orthogonal) to the Fock space of the corresponding massive (free) fields.

As explained below, such new and. almost unexpected features find their
origin in the existence, in QFT, of infinitely many inequivalent representa-
tions of the canonical (anti-)commutation relations [4, 3].

The question arises, however, if such a new and rich structure leads to
any new and possibly testable effect. For such a purpose, neutrino mixing
and oscillations [6,7] have been investigated in Ref. [1, 2] as a practical
example and a new oscillation formula (different from the usual one) has
been found. In particular, we have found a correction on the oscillation
amplitude which turns out to be momentum and mass dependent. However,
in the relativistic limit, the usual formula is recovered: this is in general
agreement with other studies of neutrino oscillations in the non relativistic
region [8].

The aim of the present paper is to report on such results and to discuss
in some detail phenomenological features of the modified neutrino oscillation
formula.

In the simple case of two flavor mixing [7] (for the case of three flavors
see Ref. [1]) the mixing relations are:

ve(z,t) =11 (a,t) cosb + vo(z,t) sinb

ve(r.t)= —vi{a,t) sinf + va(x,t) cosh, {1
where » denotes the {three) spatial coordinates; ve(z,t) and v,(z,t) are
the (Dirac) neutrino fields with definite flavors. vy(z.¢) and vp(z.t) are
the (free} neutrino fields with definite masses mjp and mg, respectively.

Here we do not need to distinguish between left-handed and right-handed
components. The fields v (2,t) and vo(z.t) are written as

vile, Z af e+ (0BT i= 12, (2)

\/T’

a};,i and Bp ;& = 1,2 , r = 1,2 are the annihilator operators for the
vacuum state [0)g o: a};’ithg = ;3;,?;]0>12 = (. For simplicity, we use the
same symbol for the vector k& and for its modulus. The anticommutation
relations are:

{vi{z, 1), ﬁTJ ey = 83 (z — y)8 apdij, o3=1,...,4, (3)
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and
(0]} = Sugbrsbiss  ABL0BIL) = Ghgbrabij, iG=1.2. (4)

All other anticommutators are zero. The orthonormality and completeness
relations are the usual ones.
Eqs (1) relate the hamiltonians Hq 2 {we consider only the mass terms)
and He , [7):
Hy 9 = mq tqv1 + ma Days {5)

>

He,y = Mee VeVe + Mppy Dply + Mey (Vely + Vple) - {(6)

where mee = mq cos? 8+ mq sin? 6, My = M1 sin? 8+ mq cos? @ and Mey =
(mg — my)sinfcosf.

In the LSZ formalism of QFT [4] observables are expressed in terms
of asymptotic in- (or out-) fields. These fields. also called free or physical
fields, are obtained by the weak limit of the Heisenberg or interacting fields
for t — —(or+)oo. The system Lagrangian and the resulting field equations
are given in terms of the Heisenberg fields and therefore the meaning of
the weak limit is to provide a realization of the basic dynamics in terms of
the asymptotic fields. The weak limit is however not unique since infinitely
many representations of the canonical (anti-)commutation relations exist
in QFT [4, 5] and as a consequence the realization of the basic dynamics
in terms of the asymptotic fields is not unique. Therefore, in order to
avoid ambiguities, it is of crucial importance to investigate with much care
the mapping among Heisenberg fields and free fields (generally known as
dynamical mapping or Haag expansion) [4,5].

For example, since unitarily inequivalent representations describe phys-
ically different phases, in theories with spontaneous symmetry breaking the
same set of Heisenberg field equations describes the normal (symmetric)
phase as well as the symmetry broken phase, according to the representa-
tion one chooses for the asymptotic fields.

It should be observed that no problem arises with uniqueness of the
asymptotic limit in quantum mechanics, namely for finite volume systems.
In such a case indeed the von Neumann theorem ensures that the repre-
sentations of the canonical commutation relations are each other unitary
equivalent. However, the von Neumann theorem does not hold in QFT
since infinite number of degrees of freedom is there considered and much at-
tention is then required when considering any mapping among interacting
and free fields [4, 5].

For these reasons, intrinsic to the QFT structure, the mixing relations
(1), which can be seen as a mapping among Heisenberg fields and free fields.
deserve a careful analysis.
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To this aim, we can rewrite the mixing relations (1) in the form:

v (z.t) = G718, 1) v (x, 1) G(0,t)

v (x,t) = G716, t) vs' (. 1) G(6,1) (7)

and the generator G{#,¢) can be written as:
G(6,1) = exp[0(S4 (1) — S ()] (8)

with
Si{t) = /(13:5 z/;((:z;,t)z/z(a:,t) ,
S_{t) = /dsoj I/;r(x,t)vl (@,t) = (S_|_(t))T . (9)

In the following we will omit for simplicity the time dependence. It is easy
to see, by introducing S3 = (1/2) [d*z (v;(z)u;(m) - I/i(;?)}Vz(l?)), that

the su(2) algebra is closed:
[S4+.5-] =253, [S3,54] = +5+. (10)

The main point (see Ref. [1] for details) is that the above generator
of mixing transformations does not leave invariant the vacuum of the free
fields v1,2, say |0)1,2, since it induces an SU(2) coherent state structure of
neutrino-antineutrino pairs in this state [9, 1]. This coherent state is the
vacuum for the fields v, ,., which we denote by {0} .

10>e’p:G_1(9} 10)1,2. (11)

It is then possible [1] to construct explicitely the Fock space for the
mixed operators which can be rewritten in the form:

Z Wer (a6 + T (03T (0], (122)

Ve

\/1_/
Vula, ) = fZe““*‘ ),’;,M(t)+v£k,2(t)ﬁi,,l(t)], (12b)

where the wave functions for the massive fields have been used [1, 3] and (in
the reference frame & = (0,0, ]k|)) the creation and annihilation operators
for the mixed fields are given by:

ay e(t) = cosfap 1 +sin (L",:(t) af g+ Vil(t) ‘BiTk,z) . (13a)
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of () = cos o], —sin 8 (Ur(t) ol — Vi) 871 ), (13D)
BT g elt) =cos BTy | +sind (U,:(t) Bl r2— " Vi(t) a;J’[Z,) . (13c)

BT 4 u{t) = cos8 47, —sin (Uk(t) BT 1+ Vi) a;fl) . (13d)

with 7 = (=1)7 and

Vi(t) = [Vale @ rton)t Dy (t) = [Dgleilerz et (14)
|U|_(wk,1+m]> 1/2 (wk,2+‘m2)1/2 (1+ k2 >
k 2w, 1 2wk,2 (Wi,1 +ma) (w2 +ma) )
(15a)
V| = (wk,1+m1>1/2 (wk,2+m2)1/2( k k )
Bl = - —_— - ’
ka,] ka,Z (wk,g + mz) (wk,l + ml)
(15b)
|URI2 4+ Vi =1, (16)

k2 [(wh g + m2) — (@1 +m1)]”
4w 1wk, 2 (w1 + ma) (w2 + ma)

(17)

Vil? = |V (k, my, ma)[? =

where wy, ; = 1/ k% + m?.

By using Eqgs. (13) the expectation value of the number operator N(Z’r
is obtained as:

,2(0

Eq. (18) gives the condensation density of the vacuum state |0)1,2 as a func-
tion of the mixing angle #, of the masses my and mg and of the momentum
modulus &, and it is in contrast with the usual approximation case where
one puts |0)e,, = [0)1,2 = |0) and it is (0|Ng.'|0) = <0|/V’c /10y = 0. Also
note that 1’2(011\7£Z’r]0>1,2 plays the role of zero point contribution when
considering the energy contribution of ¢;* particles [1].

The oscillation formula is obtained by using the mixing mappings (13) [1]:

)12_s1n IV, o=a,8, l=eupu, (18)

Atk
(ak, (DN |k (1)) =

A
1 — sin? 8 [Vi|? — |Ug|? sin? 26 sin® (—;’it) . (19)
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The fraction of aﬁ’r particles in the same state is

(ke (DINSTF o ()

Al
= |U)? sin? 20sin? (%t) +sin? | V4)? (1 - sin? 8]V4[?) . (20)

The terms with [V%]? and [Ug]? in (19) and (20) denote the contribution
from the vacuum condensate. We have

(0% (DINGTa% (1)) + (af NINET Ik (1) =

ATk, k, <
<a£,e *\raarlaz,e> + <&z,e“\r r|ak e) ) {\21)

where |a} ) = |ag (¢ = 0)), which shows the conservation of the number

(’V’c I Vcl,ler) . The expectation value of this number in the state |0); 2 is
not zero due to the condensate contribution.

Eqgs (19) and (20) are to be compared with the approximated ones in
the conventional treatment:

Ac :
(af.(OIN k, ar g (1) =1~ sin? 26'sin® (——;—'ﬁit> (22)
and A
(0% ((DINETIag (1)) = sin? 20sin® (—2‘%) : (23)
respectively.

Eqs (19) and (20) reproduce the conventional ones (22) and (23) when
[Ug]l — 1 (and |V3| — 0).

In conclusion, in the proper QFT treatment we obtain corrections to
the flavor oscillations which come from the condensate contributions. The
conventional (approximate) results (22) and (23) are recovered when the
condensate contributions are missing (in the |V| — 0 limit).

The phenomenological implications of the results (19) and (20} have
been discussed in Ref. [2] where we have studied the function |V|2.

Here we note that |Vi|? depends on k only through its modulus and it
is always in the interval [0, [. It has a maximum for k = (/mima. Also.
|Ve|? — 0 when k& — oo. I\loreoxer‘ Vil? = 0 when m; = ma (no mixing
occurs in Pontecorvo theory in this case).

This last feature is remarkable since the corrections to the oscillations
depend on the modulus k through |Vi|? (and |Ug|? = 1 — V|?). So,
these corrections disappear in the infinite momentum or relativistic limit

k> /mims (note that ,/mymy is the scale of the condensation density).
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However, for finite &, the oscillation amplitude is depressed, or “squeezed”,
by a factor |Ug|?: the squeezing factor ranges from 1 to /2 depending on k
and on the masses values. The values of the squeezing factor may therefore
have not negligible effects in experimental findings and the dependence of
the flavor oscillation amplitude on the momentum could thus be tested.

To better estimate the effects of the momentum dependence we rewrite
the |V3]? function as

. 1 ~
W= Vpar=1[1- a (24)
_P
1+a (p2+1)
with R
p—_———k— a = (A7n) 0<a< +oo, (25)

Jmimg mimg

where Am = may — my (we take m; < ma).

At p = 1, |V(p. a)|? reaches its maximum value |V (1, a)
asymptotically to 1/2 when a — oo.

It is useful to calculate the value of p, say pe, at which the function
[V (p, a)|? becomes a fraction ¢ of its maximum value V (1, a):

2 - 2
pe=V-ct+vVer -1, czb—(a—_‘_@——z, bEl—e(l—\/m>.

262 — 1) o

The values of \/mymz and of a corresponding to some given values of
my and mq chosen below the current experimental bounds are reported in
Table L.

2, which goes

TABLE 1
The values of /m;m5 and of a for given values of my and ma.

my(eV) my(KeV) /mimyz(KeV) a
A 5.0 250 1.12 ~5-10%
B 2.5 250 0.79 ~1-10°
C 5.0 200 1.00 ~ 4104
D 1.0 100 0.32 ~1-10°
E 0.5 50 0.15 ~1-10°
F 0.5 1 0.02 ~2-10%

3 — Acta Physica...
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TABLE 11
|U (pe, a)|?vs.k..

[U(1,a)? ki (KeV) [U(pl/r_),a)|2 ki/2(KeV) IU(pl/IO: a)|” kl/lo(KeV)
A ~ 0.5 1.12 ~0.75 ~ 146 ~ 0.95 ~ 519
B ~ 0.5 0.79 ~ 0.75 ~ 145 ~ 0.95 ~ 518
C ~ 0.5 1.00 ~ 0.75 ~ 117 ~ 0.95 ~ 415
D ~ 0.5 0.32 ~ 0.75 ~ 58 ~ 0.95 ~ 206
E ~ 0.5 0.16 ~ (.75 ~ 29 ~0.95 ~ 104
F ~ 0.5 0.02 ~ 0.75 ~ 0.6 ~ 0.95 ~ 2
Three sets of values of |U(pe, a)|? and of k., for e = 1, 14, 140, cor-

responding to the values of my and my given in Table I, are reported in
Table IT (see also Fig. 1). We used |U(pe,a)|* = 1 -+ ¢|U(1,a)|? and

ke = pe /ima.

IU(p,a)l?
=)
~1
W

I 10 100 1000

Fig. 1. The function [U(p, a}|? for the values of parameters of Tabs I, II: A (con-
tinuous line), B,D.E (dashed line), C (small-dashed line), F (dotted line).

We note that neutrinos of not very large momentum may have sensible
squeezing factors for the oscillation amplitudes. Larger deviations from the
usual oscillation formula may thus be expected in these low momentum
ranges. We note that observations of neutrino oscillations by large passive
detectors include neutrino momentum as low as few hundreds of KeV [6].

We observe that an indication on the neutrino masses may be given by
the dependence, if experimentally tested, of the oscillating amplitude on the
momentum since the function |Uy|? (cf. Eqgs (16) and (19)) has a minimum

at k = /myma.
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Another interesting case not considered in Ref. [2] occurs when one
of the two masses, say mj, goes to zero. In this case, the maximum of
the condensation density (the function |V}|?) occurs at & = 0; however,
since @ — oo when my — 0, it is still possible to have non neglegible
effects at rather “large” momenta; mz should be large in order to provide
appreciable corrections. The situation is illustrated in Table II1, where for
the calculation we used mq = 10719 eV.

TABLE III

|U (pe.a))® vs.k. for m; ~ 0 and different. values of ma.

my(eV)  ma(KeV) lU(PI/"Z‘ a) |2 A?1/2(K€V) |U(P1/10,- a) |2 kl/lO(KeV)
~0 250 ~ 0.75 ~ 144 ~ 0.95 ~ 516
~0 200 ~ .75 ~ 115 ~0.95 ~ 413
~0 100 ~0.75 ~ 57 ~ (.95 ~ 206
~0 50 ~ 0.7 ~ 29 ~ .95 ~ 103

Let us also observe that since the vacuum condensate induces the cor-
rection factor, the vacuum acts as a “momentum (or spectrum) analyzer”
for the oscillating neutrinos: neutrinos with k > ,/mim2 have oscillation
amplitude larger than neutrinos with k& ~ | /mymz, due to the vacuum struc-
ture. Such a vacuum spectral analysis effect may sum up to other effects
(such as MSW effect [10] in the matter) in depressing or enhancing neutrino
oscillations; in this connection see Ref. [1], where the above scheme is also
generalized to the oscillations in the matter.

On the basis of the above discussion and results we can conclude that
probing the non relativistic momentum domain seems promising in order to
obtain new insights in neutrino physics.

Further studies on neutrino oscillations in the framework here discussed
are in progress [11].

Finally, let us mention that the study of the mixing of boson fields
shows [3] that relations analogous to Eqs (13) and (18) hold and the vacuum
also acquires a non trivial condensate structure. In the boson case we find

W

Ui| = cosh oy and |Vy] = sinh o, with o = 12 log(w—k*;—) where wg ;, 1= 1,2

>

is the boson energy.
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