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1. Introduction

As is well known, quantum chromodynamics (QCD), the theory of
strong interactions, has an approximate global SU(2)x SU(2) invariance.
This invariance is spontaneously broken and the relevant part of the order
parameter is a vector ¢ = (o, %) transforming under the O(4) subgroup of
SU(2)xSU(2). In the physical vacuum ¢ points in the ¢ direction. One calls
disoriented chiral condensate (DCC) a medium where ¢ is coherently mis-
aligned. Experimental observation of a signal of transcient DCC formation
would be a striking probe of the chiral phase transition.

DCC is now a topical subject. This research has a prehistory [1-6):
Some results have already been found long ago, but forgotten for various
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reasons, mostly because they were apparently lacking theoretical underpin-
ning. They have been rediscovered independently in the new context, with
a better motivation. Actualy the true history of DCC research begins in
the early 90’s, when several points have been simultaneously realized:

e In spite of the fact that confinement and hadronization are quantum
phenomena, the production of multiparticle hadron states can be de-
scribed in terms of an effective theory for which a classical approxima-
tion is meaningful. In practice, one is led to consider classical radiation
of soft, pions, described by the o-model, in very high multiplicity events,
where this radiation is intense (the most promising applications are in
high-energy heavy-ion collisions) [7-9].

e It is rather natural to expect that in some high-energy collisions there
could appear a space region, shielded for some time from the outer phys-
ical vacuum, where a DCC can develop [8]. In particular, this is what
one finds in the solution of the o-model corresponding to Heisenberg’s
idealized boundary conditions [9] 1.

e It is a common feature of the non-trivial solutions of non-linear field
equations with internal symmetries, that they break the symmetry. In
the present case one expect the field configuration to break the O(4)
symmetry. Since there is no a priori reason to priviledge any direction
in the internal space, all field orientations are expected to be equiprob-
able. Assuming that the isospin orientation of the pion field is constant
throughout a space domain — remember, that we are interested in long
wavelength modes — and points in some random direction, one predicts
that the ratio

N, o

= LS 1
/ Noo+ Nyp- + Nast (1)

should be distributed according to the simple law 2

_ Y
=577

Hence, DCC formation has a very distinctive signature, which actu-
ally reflects correlations coded in the classical, i.e. coherent field. The

dP(f) (2)

This solution belongs to a general class of solutions proposed earlier in [7].

2 Apparently this result appeared for the first time in [5], where the distribution
of the neutral pion fraction has been calculated for a coherent multipion state of
total isospin zero. A simple quasi-classical argument, given first in [9], enables
one to find (2) immediately: The intensity of pion radiation is quadratic in
the pion field. Hence, one seeks the probability that a unit vector, randomly
oriented in isospace, has its 3rd component equal to \/f. The calculation is
elementary.
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deviation from the narrow Gaussian centered at f = % predicted by

statistical arguments is striking.

e Long wavelength modes of the pion field can be dramatically amplified
during the out-of-equilibrium cooling of the quark-gluon plasma (10,
11).

We shall develop these points in the following sections. Our aim is to
explain some of the main ideas, not to give a comprehensive account of all
papers on this rapidly evolving subject. Reader’s attention is called to some
earlier reviews. Those of Bjorken and collaborators [12-14] are particularly
helpful in gaining physical intuition. They also contain a discussion of rel-
evant experimental matters. A comprehensive presentation of the subject
can be found in an excellent review by Rajagopal [15].

2. Choice of theoretical framework

For a DCC to be produced, there must be a stage, during the collision
process, where chiral symmetry is restored. It is tempting to identify this
stage with the formation of a hot quark-gluon plasma. The latter can be
directly described in QCD language, and insight into the corresponding
physics can be obtained using the perturbative aproach. The later stages of
the collision involve eventually soft pions radiation. This can be desribed
by an effective theory in which the Lagrangian has the form of a series
involving an increasing number of derivatives. The first term, the one with
two derivatives, is uniquely determined. It corresponds to the so-called
non-linear o-model and gives account of the physics of the softest modes.
An educated guess is needed to figure out what exactly happens at the
intermediate stage between these two extremes, i.e. to describe the cooling
of the plasma leading to its decay into pions.

One commonly uses for the description of this intermediate stage the
linear o-model. There are several reasons for this choice, which we briefly
discuss. First of all. the chiral symmetry is spontaneously broken when
one crosses the phase transition point. There exist suggestive arguments
[16, 10] to the effect that QCD with two flavors of massless quarks belongs
to the same static universality class as an O(4) Heisenberg ferromagnet.
Hence, in the static regime, the long wavelength modes can be described
by a Ginzburg-Landau Lagrangian, which in this case is identical to that
of the linear o-model. Integrating out the o field in the latter one gets the
non-linear o-model Lagrangian as the leading term, plus higher derivative
corrections. Thus, the linear o-model offers a correct description of very
long wavelength pion modes. Furthermore, it can be, at least formally,
extended to describe the disordered state, where all four components of ¢
are fluctuating independently.
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For these reasons, the linear o-model appears as a natural first choice
in the modelling of DCC formation and dynamics 2. The following caveat
should be, however, borne in mind: DCC can only be produced during
out-of-equilibrium cooling # and an infinity of distinct stochastic processes
can have in common the same equilibrium ensemble. Moreover, one is here
mostly interested in non-universal parameters, and not in the behaviour of
the system in the immediate vicinity of the phase transition.

With the appropriate choice of units, the Lagrangian is

L= 2(06) - (6~ 1) + Ho. 3
The small symmetry breaking term is introduced to take into account the
effect of small quark masses. Only the case A > H is relevant for phe-
nomenology. Since we are interested in the dynamics of the model, a speci-
fication of the initial conditions is mandatory. Here, we touch another source
of uncertainty: One wishes to start the evolution in a state with unbroken
chiral symmetry. But above the chiral phase transition point the use of
the o-model is questionable, and at very high temperature, it presumably
makes no sense !

At this point it is customary to introduce the idea of a “quench” [10].
One assumes that the hot plasma is suddenly frozen, and that its subse-
quent dynamics is correctly given by the (zero temperature) equations of
the linear o-model. In that way the problem becomes mathematically well
defined, although the difficulty has been actually only displaced: What is
the physical mechanism of the quench? As will be argued later on, it is likely
that a rapid expansion of the system produces a damping of fluctuations,
which is indeed approximately equivalent to a quench.

Most of the works which have been done so far, with the exception of
some attempts to incorporate quantum corrections which we shall discuss
in a later section, deal with the classical linear o-model. In particular, the
various “scenarios” proposed refer, in fact, to various approximations used
to solve the complicated classical dynamics of the model, and to different
ways of implementing the initial conditions. The purpose of the next section
is to give the reader a qualitative insight into the dynamics of the linear o-
model, through selected illustrative examples.

3 One should mention that interesting studies of alternative models have also
been presented. We shall not enter here into the discussion of these models
[17, 18]. The o-model will suffice to illustrate all the relevant points.

4 In an adiabatic process, the domain size is comparable to m;! ~ 77! and
there is no way of producing a coherent multipion state [10].
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3. Qualitative trends
The field equations read
9?9 = -A¢* - 1)¢ + Hno (4)

where n, is the unit vector in the ¢ direction. In this section, quantum
effects are neglected, so that ¢ is to be regarded as a classical field. The field
¢ evolves in a potential which, apart from the symmetry breaking term < H,
has the form of a “Mexican hat”. We wish to follow the time evolution of
¢, starting somewhere near the top of the “Mexican hat” and ending at the
very bottom. Mathematically, the classical problem is precisely defined once
the initial conditions ¢(z,t), dy¢(x,t) are specified. In its full generality
the problem is fairly complicated. We start by adopting an idealization,
originally due to Heisenberg [1]. This will enable us to follow analytically
all the stages of the time evolution of ¢, taking into account the expansion of
the system, at the expense of dramatically reducing the number of degrees
of freedom.

Time evolution during expansion [19]

Assume that initially, at time ¢ = 0, the whole energy of the collision is
localized within an infinitesimally thin slab with infinite transverse extent.
The symmetry of the problem then implies that ¢ is a function of the proper
time 7 = v/t2 — 22 only. The field equations become ordinary differential
equations and can be solved analytically. We shall not enter here into the
algebra, concentrating on the significance of the results.

Of course, viewed in the laboratory, the system expands: at time ¢
it extends from z = —t to # = t. Notice, that 8%¢ = ¢ + @/7, where
the dot denotes the derivative with respect to 7. Hence, the equations of
motion involve not only the acceleration term but also a friction term. This
“friction” reflects the decrease of the energy in a covolume, due to expansion,
and turns out to be very important .

From Eqs (4) one obtains easily

(5)

TXT =

REET

and
FOH |
76— o = —+ — | Trdr. (6)
T T
Eq. (5) is a consequence of the conservation of the isovector current, while
Eq. (6) reflects the partial conservation of the iso-axial-vector current. The

isovectors @ and b are integration constants. The lengths of these vectors



1692 J.-P. BraizoT, A. KRZYWICKI

measure the initial strength of the respective current. It is easy to see that
the component of @ along @ vanishes, my = 0.
One can show that the second term on the RHS of Eq. (6) is irrelevant

as long as 7 < b/vVH and a < b. With H = 0 one can write

Ty = —rsinf, (7)
a
e = T rcosé, (8)
a:~—b—7'c050, 9)
a? + b2

where &= &@ x b. Thus the motion is planar. It remains approximately so
even at later time provided the condition a < b is satisfied. The component
7 is then always very small and the pion field oscillates along the (random)
direction defined by the isovector b. We concentrate our attention on this
particularly simple and interesting case. Assuming that at 7 = 79 the
distributions of ¢ and ¢ are Gaussian, with variances o ¢ and o4 respectively,
one can calculate the probability that b takes a given value:
—b/b
WPO) L g caca<h (10)
db NG
with by = gf047g. This is an important result, because it turns out that
the initial strength b of the axial current controls the time evolution (see
below}).

The motion can be described by two variables, the radial variable r
and the angular variable #. Solving the corresponding equations of motion
one can identify several stages in the proper time evolution of this simple
dynamical system:

e By assumption, for 7 < 79 the model does not apply. (A plausible value
of 7¢ is 1 fm/c.)

e Formg <7 gb/\/Z—): the radial and the angular motion are strongly cou-
pled. Both are damped by friction, which, as we have already explained,
is another facet of the expansion.

e For b/v2X <rb/VH the radial motion corresponds to high frequency

damped oscillations about the equilibrium position » = 1. For large
enough 7 the solution takes the particularly transparent form
Ccos(TV2A+ 6

T™V2A

where C, § are constants sensitive to the initial conditions. Remember,
that in this context v/2X should be regarded as a large parameter. Set-
ting r — (r) = 1 in the equation of motion for 6, the latter becomes
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that of a damped pendulum. Provided b is large enough the motion of
the pendulum is circular:
-
8 =In—. 12

n— (12)
The regime just described corresponds to the non-linear o-model (we
recover the solution found in [9}).
o Near 7 = b/ H the damping produces a cross-over from the circular

to the oscillatory motion and one finds

Vbcos (T\/ﬁ +4")
VH .

The RHS of (13) is a solution of the Klein-Gordon equation, describing free
propagation of pions with mass vH. These are the DCC decay products
one hopes to observe.

It is elementary to find the Fourier transform (with respect to z) of the
RHS of (13) and to calculate the energy radiated at large t. One finds a
rapidity plateau of height b. The plateau is a consequence of the boost in-
variant boundary conditions. The relevant result is that the energy released
in the decay of DCC is proportional to the strength of the initial iso-axial-
vector current. This result together with (10) suggests that the probability
to release large energy via DCC decay strongly depends on the initial con-
ditions (via the parameter b) and that it is damped exponentially. Thus,
observable DCC are likely to be rare events. If this conclusion is correct,
then the calculation of average DCC characteristics is of little phenomeno-
logical interest.

Ty -0 (13)

Amplification of long wavelength modes [11, 20-22]

With Heisenberg’s boundary conditions the problem is eventually re-
ducible to that of a dynamical system in 0 + 1 dimensions. But the true
problem is 1 4+ 3 dimensional and its solution requires using a computer.
However, the most salient conclusions reached via numerical simulations
can be qualitatively understood within an approximate framework. This is
what we are going to explain now.

Let us separate the field ¢(z,t) into its spatial average (¢(t)) and a
space dependent fluctuating part d¢(x,t):

o(z, 1) = ($(1)) + 86 (x,1) . (14)

We have
6(0) = 35 [ B o), (15)
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where 2 is the volume of the system and, by definition, the spatial average
of d¢(x,t) vanishes: (d¢) = 0. By taking the spatial average of the equation
of motion, we get:

02((t)) = — A (($* (=, t)o(z, 1)) — ($())) + Hno (16)

where we have assumed that the spatial derivative of the field vanishes at
the boundary of the reference volume. By replacing, on the RHS of this
equation ¢(z,t) by its decomposition (14), one obtains an equation which
involves spatial averages of products of fluctuations, that is, the equation
for (¢(t)) is not a closed one. It needs to be complemented by the equations
of motion for the fluctuations.

At this stage, we introduce some approzimations in order to treat the
fluctuations.

(1) Given a product of fluctuation fields, one replaces all the pair products
6¢;00k by (8¢;0¢k), and one adds terms corresponding to different
contraction schemes, much in the same way as in writing the well known
Wick theorem in field theory. Consequently the Gaussian average of the
initial product of fields and that of the final approximate expression are
identical. Notice that, with this aproximation, the average of a product
of an odd number of fluctuation fields is zero.

(1) We assume that the 4 x 4 tensor (0¢;d¢;) is diagonal in the (moving)
orthogonal frame whose one axis points along (¢).
As a further simplification, we shall also use the formal large N limit

(of the O(N) o-model), neglecting terms like (6(15?}, of the order O(1), as

compared to (§¢?), which is of the order O(N) 5,

The equation for (@) is immediately found from (16). The equations
for the fluctuations are obtained from the exact (classical) field equations,
by subtracting the equation of motion for (¢). Introduce the notation:

wh (k,t) = k% 4+ X ((6(8))* + (867 (1)) = 1) (17)
wi(kt) = k2 + A (3(6(1))? + (6% (1)) — 1) - (18)
One easily finds
87 (6(t)) = — Wi (0,8)(e(t)) + Hno (19)
and
0780y (k1) = — wif (k,1)d¢y (K, 1), (20)
02661 (k,t) = — w3 (K, 1)dg (K, t). (21)

5 This approximation is necessary to fulfill Goldstone theorem when H = 0.
Otherwise, the Goldstone bosons acquire a non-vanishing mass, of order 1/N.
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Here d¢) (8¢ 1) denotes the fluctuation parallel (perpendicular) to (¢). The
approximation which we have just done is usually refered to as the Hartree
approximation. One encounters a similar structure when discussing quan-
tum corrections (see the next section). In the present section, the Hartree
approximation is introduced for purely pedagogical purposes: it helps to
understand the main features of the non linear classical dynamics. Solv-
ing numerically eqs. (19)-(21) is not really simpler than solving the exact
classical equations (4).

It is obvious from Eqs (19)-(21) that é¢ will be amplified during the
time evolution whenever the corresponding w? becomes negative. The fol-
lowing points should be clear from the inspection of the formulae for w:

e The amplification can only occur if k2 is small enough. In other words,
only long wavelength modes are amplified.
e The amplification of §¢ stops when (¢) approaches unity. The ampli-

fication of ¢ is not expected to be significant (notice the factor of 3

in front of (¢)2 in (18)).

e Large fluctuations prevent the amplification. Thus one does not expect
DCC domains to form when the energy density (temperature) is too
high.

One could derive Hartree equations taking into account expansion, as
in the earlier example. Assuming that the fields depend on time via 7 =
(% - E? 22)1/2 one finds a friction force —(D/7)d-¢. Since friction damps
fluctuations, we arrive to the conclusion:

e Introducing expansion favors the formation od DCC domains. The
larger is D, the stronger is the effect.

4. Quantitative estimates

More realistic calculations require the use of a computer. First simula-
tions [11] have been carried out in the static set-up, i.e. neglecting expan-
sion. Classical equations of motion have been used, assuming (ad hoc) that
initially ¢ and 8y¢ are Gaussian random variables living on a discrete grid
of points. A dramatic amplification of long wavelength modes have been
observed: the larger the wavelength, the stronger the amplification. These
results have been confirmed by other people [20]. Notice that the ampli-
fied soft modes are not spatially separated from the hard ones. One should
remember this point when refering to “DCC domains”. Moreover, the am-
plification of soft modes is a transcient phenomenon: The non-linearity of
the equation of motion leads eventually to the equipartition of the energy
in a static set-up. Of course, this does not mean that DCC signal will not
be observed, since, in particular, the expansion may prevent the system to
reach this regime .
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The expansion can be introduced as explained in the preceding sec-
tion. Upgrading the simple model presented there by assuming that ¢
depends not only on the proper time 7 but also on the rapidity variable
n=(1/2)In(t — z)/(t + ) it is found [23] that DCC is localized in a rapid-
ity interval 2 to 3 units long. In Ref. [24] the same group has assumed invari-
ance under longitudinal boosts, allowing the system to expand transversally.
The results are very encouraging. With appropriate initial conditions the
domains of DCC with 4-5 fm in size have been observed at 7 = 5 fm. But,
the emergence of DCC strongly depends on the choice of the initial condi-
tions (see also [25]).

A systematic method of sampling initial field configurations from an
equilibrium ensemble at a given temperature has been devised in Ref. [22].
In Ref. [26] the same author has studied the dynamical trajectories gener-
ated by the classical equations of motion (4) starting from initial configura-
tions generated using the sampling method quoted above. The trajectories
are drawn on the ((#), (062)) plane, where the region of instability is also
exhibited. When the system is prepared at the temperature T = 400 MeV
the incursion into the unstable region (i.e. amplification of soft modes) only
occurs for D > 1. At D = 3 instabilities occur for starting temperatures
ranging from 200 MeV to 500 MeV (at least). What happens, is that at the
initial stage of the evolution the fluctuations fall rapidly, while (¢}, small ini-
tially, changes little so that the system enters the instability region. Then,
(¢) increases steadily and eventually the instability is shut-off. At much
higher temperatures the fluctuations do not have time to decrease enough
before a substantial increase of (¢) and the instability conditions are never
met.

Although DCC is essentially a quasi-classical phenomenon, several quan-
tum effects could play a role. First, the classical evolution cannot continue
forever: when the energy density becomes low enough, the description of
the system of particles in terms of a classical field becomes meaningless.
There is also another effect [27]. less trivial and usually disregarded in the
DCC context: DCC evolves as an open system. The interaction with other
nuclear debris, acting as a “bath”, is the source of decoherence. There are
also quantum corrections to the dynamics of the condensate.

Attempts to deal with the last problem have been made by several
groups. The authors of Ref. [28] have considered a static set-up, analogous
to the one of Ref. [11], quantizing conventionally on the hypersurfaces ¢ =
const. In Refs [29. 30] the expansion is taken into account and the system
is quantized on the hypersurfaces 7 = const. Thus the two definitions of
the final state wave functions are not equivalent. Particle production is
calculated by following the adiabatic vacuum of the fluctuation and mea-
suring particle production with respect to this vacuum. In order to proceed
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both groups are led to make approximations and their final equations, those
used in the actual numerical work, have exactly the structure of the Hartree
equations written in the preceding section. There are obvious modifications:
(...) becomes the average over thermal and quantum fluctuations and one
has to define the product of fluctuation fields at coincident points, which re-
quires regularization and renormalization, in the standard fashion. On the
whole it appears that the quantum corrections do not change qualitatively
the picture, and that the conclusions of these studies are not in variance
with expectations drawn from the study of the classical equations. Starting
with thermal fluctuations one can hardly produce any amplification without
expansion. And the results are very sensitive to initial conditions. Let us
mention that an enhancement at low transverse momentum, correlated with
the DCC formation has been reported in [30].

5. Lessons from numerical simulations

The numerical simulations provide an underpinning to the qualitative
discusion presented in Sect. 3. The main thing that has been learned is that
in more or less realistic set-ups the initial fluctuations can get amplified
during the evolution of the system, giving rise to the emergence of a DCC-
like phenomenon. Thus, it is plausible, but not certain, that the effect will
be occasionally strong enough to be observable. The other important lesson
is that the results depend strongly on the initial conditions. And, as-we
have already emphasized, in the present state of the art the choice of initial
conditions is the Achilles’s tendon of the theory.

Nobody has been able to estimate the most relevant parameter: the
probability of producing an observable DCC signal. We are fully aware of
the fact that the calculations carried out so far are theorist’s games. Their
purpose is to gauge an idea, not to produce numbers to be directly compared
with experiment. However, even in a theory that is not fully realistic one
would be pleased to learn whether the effect is expected to occur at the level
of one per cent or one per billion. A result analogous to (10), but valid in a
more realistic set-up would be most welcome. One can associate a measure
with the thermal configurations of the o-model [22]. This measure can, at
least in principle, be used to estimate the probability we are talking about.
Although, as already mentioned, the use of the o-model is quaestionable
above the critical temperature, such a phase-space measure may be a good
guide. It is not uncommon in multiparticle production phenomenology to
obtain reasonable estimates from statistical arguments, also in instances
where, strictly speaking, thermal equilibrium arguments do not apply.
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6. Experimental signatures

There is no doubt that the predicted large fluctuations of the neutral
pion fraction are the most striking signature of DCC formation. There are,
however, at least two problems in identifying such a signal. First, one can
wonder to what extent the simple law (2) is distorted by secondary effects.
Second, assuming that the distortion is not very significant, one faces the
problem of extracting the DCC signal from the background.

Various corrections to (2) have been studied in the literature. Eq. (2)
could be modified due to the coupling of the DCC isospin to the isospin
of other collision debris. The authors of Ref. [31] find that the effect is
insignificant, at least for 0.1 < f < 0.9, as long as the isospin of DCC is
less than 30% of the pion multiplicity é. Another source of distortion could
come from final state pion-pion interactions with charge exchange. But,
the mean free path of soft pions is estimated to be much larger than the
DCC domain size, so that the final state interactions should not be very
important [33]. We suspect, that blurring of (2) will mostly come from the
pion field orientation in isospace being not exactly constant all over the
DCC domain.

Concerning the problem of DCC signal identification, we would like
to report about an interesting suggestion put forward in Ref. [34]. The
authors propose to use the modern technique of signal processing, the so-
called multiresolution wavelet analysis, to study the distribution of f on the
lego plot. Let us briefly explain the idea in one dimension.

Consider a histogram H® with bin size 1 {in appropriate units). Use
it to produce a smoother histogram H?!, doubling the bin size. Of course,
H® = H' + R? and there are fine structures in R! over distance 1. Repeat
the operation to get H® = H® + R* +...R™, n = 1,...N. By definition
N is such that H™ is structureless. The result of these manipulations is
a series of increasingly coarse-grained histograms: H™ is living on bins of
size 2" and the associated R™ has fine structures at scale 27! only. The
beauty of the story is that R™ can be written as a superposition of the so-
called wavelet functions WJ?‘(:L'), which form a set orthonormal with respect

to both indices. Furthermore all W[ (z) can be obtained by rescaling and
shifting a “mother” function W(z):

Wr(z) =2""2W(2 "z - j). (22)

Various mother functions have been explicitly constructed. There exist
computer programs performing the decomposition [35]. The extension to

6 It has been argued, however, that isospin non-conserving effects could be am-
plified due to coherence, altering the standard expectations [32].
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more than one dimension is straightforward. Wavelets are local in space and
scale and are therefore, contrary to trigonometric functions, particularly
suitable to uncover localized structures and find the associated scales.

The authors of [34] have applied this technique to analyse rapidity dis-
tributions of f generated by the classical evolution of the 1+1 dimensional
linear o-model, in the conditions leading to DCC formation. They compared
these “DCC data” with “random noise data” and found very significative
diferences. In particular, the power spectrum associated with a given scale

P = Z | (H°, WD) (23)
J

has a dramatic scale dependence for “DCC data”, while it is scale indepen-
dent in the random sample. It will be, of course, interesting to see how the
method performs in more realistic cases.

Secondary signatures of DCC formation have also been suggested. They
include specific pion pair correlations [36, 37] and anomalies in electromag-
netic decays of resonances [38].

7. Conclusions

There exist a few cosmic ray events, the so-called Centauros (see [39]),
where one observes jets consisting of as many as 100 charged pions and no
neutrals. Are Centauros an evidence for DCC formation? We would not
risk any definite answer. For the moment, the search for more Centauro-like
events in cosmic ray interactions and in accelerator data has been unsuccess-
ful. An experiment at the Tevatron [40] has been designed to look for the
phenomenon. Other experiments, with heavy ions, are being planned and
should be encouraged. Until the idea does not receive a firm experimental
confirmation it will continue having the status of a smart speculation. How-
ever, this speculation has led people to think more about non-equilibrium
processes in high-energy nuclear collisions and this is certainly a very posi-
tive development. Whatever will be the future of this idea, we have already
learned quite a lot on the theory side. What is amusing, is that the discov-
ery of Centauro events has been met with widespread scepticism: how can
one seriously claim that it is possible to produce a multipion state with so
small a fraction of neutrals? Now, as we have a plausible mechanism for the
effect, experimenters should be prepared to hear the opposite blame: the
phenomenon is so natural, how can it be that you do not see it?
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