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A new method for the experimental study of bin-bin correlations
is proposed. It is shown that this method is able to reveal important
additional information on bin-bin correlations, beyond that of factorial-
correlator measurements.

PACS numbers: 12.40. Ee

1. Introduction

In order to obtain a comprehensive knowledge of the dynamics of par-
ticle production in high-energy reactions, two aspects of multiplicity fluctu-
ations need to be studied:

1. the dependence of the multiplicity distribution (or its characteristics)
on the size of the phase-space interval;

2. the dynamical correlations between two or more bins where this depen-
dence is investigated.
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The first point corresponds to the measurement of the local fluctuations,
the second one to a simultaneous measurement of the local characteristics
in two (or more) different bins in order to reveal correlations between these
local fluctuations. If no correlations exist between fluctuations in different
bins, then complete information on an experimental sample can be obtained
from local fluctuation measurements.

Dynamical information on fluctuations in a system with an infinite num-
ber of particles per event can be obtained from the multivariate density
probability distribution P(pj, p2,..o0pM), Where p,, is the particle density
in bin m (m = 1,..., M). This distribution can be studied by construct-
ing the multivariate moments (p§'p3?.. .p%ﬁ}’). Due to the very complex
structure of this quantity, however, one usually resorts to the study of only

’
two moments: (p%,) and (p?np:’n,), which contain a small fraction of the
information on dynamical fluctuations in a system. The bivariate moment

7
(p?ﬁ”pfn,) contains the information on bin-bin correlations.

!

In practice, bin-bin correlations always exist, i.e., <p$np§;,) # (p})(pd ),
since final-state particles are not produced independently of each other. The
production of a particle at high energy usually enhances the probability of
producing other particles. The number of particles observed in a given
phase-space bin, therefore, is always affected by the number of particles
found in other bins. Moreover, there are more trivial (statistical) reasons
for the observation of correlations in a system of finite fixed final-state mul-
tiplicity: for such a system, finding a particle in a single bin is less probable
if another particle has already been counted in another bin. The latter case
has no dynamical reason, but can influence the correlations observed in such
a system.

In [1], Bialas and Peschanski have adapted the method of normalized
factorial moments to the measurement of dynamical bin-bin correlations
by means of factorial correlators. The use of these quantities, as well as
of the normalized factorial moments, has mainly been motivated by the
Poissonian-noise suppression [2], thereby opening the possibility of mod-
elling intermittency phenomena and bin-bin correlations by means of con-
tinuous densities.

In this paper we propose another experimental tool to measure bin-
bin correlations by means of the bunching-parameter approach [3~6]. In
the following, we shall discuss the experimental advantages of using such a
method (Section 2). As an illustration, the bin-bin correlation measurement
by the lowest-order bunching correlator is given in Section 3.
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2. Bunching correlators

One of the characteristic features of any local multiplicity fluctuations
in high-energy physics is the existence of bin-bin correlations. If we have two
non-overlapping bins, m and m of size 4, then the discrete two-dimensional

multiplicity distribution P (5) having n and n' particles in bins m and
m', respectively, cannot be factorlzed, having

P™™(5) # PP (6), (1)

n,n’/
due to the existence of a bin-bin correlation between the bins m and m' 1.
A procedure for investigating such bin-bin correlations is to measure
so-called factorial correlators [1, 7-9], (for a review see [10]). In terms of

/ & / . - .
P:;’:,n (8), P7*, and P}, the factorial correlators for two bins of equal size

6 can be written as

1 w P 7/n (8)nldl n!l9]
Fm,lm (5) — n,n -
o (Caz 1 Pm(‘s)"[q]) (ZZ‘LI P,’Z,"M)n'[q }>

g, g>1, (2

where 29 = n(n —1)...(n — g+ 1). The quantity in the numerator is
called the bivariate factorial moment. In contrast to the usual (univariate)
factorial moment (nl9) = Y P™(8)nld), which characterizes only the
local fluctuations in a single phase-space bin m, the bivariate factorial mo-
ment contains information on correlation between the local fluctuations in
the two bins, m and m'.

1
If no correlation exists between bins m and m', we get F;nq’,m (6) =1
3

due to factorization of the multiplicity distribution in the numerator of (2).

To increase the statistics. one can assume translational invariance and
average (2) over all bin combinations with the same bin-bin distance, D.
After symmetrization, one has

1 M-k mm+k mm—l—k
Fag (D)= 5= 2 (P @+ Fp7H @), @)
m=1

where M = A/4, A is a full phase-space interval, and k = D/4.
Correlators similar to (2) have also been proposed in [11]. In this ap-
proach, the bin of size ¢ is divided into two parts. If ny, and ng are the

! Strictly speaking, any statistical dependence between these bins can lead to
property (1).
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number of particles in the left part and the right part of the bin, respectively,
then one can define [11]

2 M Z <<77.LRR> (4)

nL)(nR)

As is the case for the usual univariate factorial moment, the multivariate
factorial moments presented above are sensitive to the “tail” of the multi-
variate multiplicity distribution obtained in an experiment. The limited
statistics of an experiment reduce fluctuations measured by means of the
high-order factorial moments because of the truncation of the multiplicity
distribution [12-14]. This can exert a negative influence on the behavior of
the factorial correlators.

We note another shortcoming of the factorial correlators. As the usual
factorial moments, the multivariate definition selects only “spikes”. Dynam-
ical information from “dips”, therefore, is completely lost. This means that
we lose important information on bin-bin correlations. As an example, cor-
relations should exist between different bins that contain no particles, i.e.,

PI™ (6) # B ()P (6). (5)

According to the definition, the factorial correlator is not able to measure
such correlations.

The complete information on bin-bin correlations can be obtained, with-
out the bias arising from restricted statistics of an experiment, if one formu-
lates the problem in terms of the bunching parameters [3—-6]. The univari-
ate bunching parameters for bin m are defined in terms of the probabilities
P (6) as

g Pg(O)P;(9)

LA ey O ©

Accordingly, it is possible to construct bivariate bunching parameters
in the same way as that done for bivariate factorial moments,

m,m’ m,m’
mo' 5= 98 Fag” OFG ¢-0)0®)

(g—1)(¢' - 1) (P('f;lll)’(ql_l)((g))z

The relation of BPs with usual moments have been found in [3-5]. For
bivariate BPs, such a kind of relation can be written as

vogd >1. (7)
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’ 2, /—2
nm,m'( ) ( 3nqm’><p3n,m;1 >
9,9 1,4/ —1

ot )2
due to the suppression of Poissonian noise in the limit of small é.
As is the case for multi-dimensional probabilities, these quantities can
be expressed as

, 6—0 (8)

N (8) = mg (8)ni g (8) = ml (8)ug (), )

where 7g*(6) is the usual univariate bunching parameter and n;'i‘}q (6) rep-

resents a conditional bunching parameter for bin m' constructed from con-
ditional probabilities, i.e., the probability to observe ¢' particles in bin m'
under the condition that ¢ particles have been found in another bin m.
Then, the conditional BPs have the form

¢ PO _2))(q-2)(9)

(q' - 1) m/ 2
(PE 1y 0oy ®)

If the two bins are statistically independent, then the bivariate bunching
parameters factorize:

Mg 1q(0) = , 9 >1. (10)

T (6) = TG (6) (11)

9,9

By analogy with the factorial correlators, the bunching correlators can,
therefore, be defined as

i (5) = ot (12)
e ng(8)n7' (6)

As is the case for (2), this definition grants unity if the cells m and m' are
statistically independent.

The bunching correlators, in general, are not symmetric in ¢ and ¢'. As
is performed in (3), we can symmetrize this definition:

G (8))s = 3OIT (6) + 5 (6)) (13)

Defining the distance D between two bins, the bunching correlators can
further be averaged over many pairs of equidistant bins. In analogy to
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(3), the problem of bin-bin correlations can be formulated in terms of the
bunching correlators

g (D) = M =5 Z i (@)l (14)

and their behavior in the limit D — 0.

According to the above definition of bunching correlators, the second-
order bunching correlator contains important extra information on empty
bin-bin correlation that cannot be extracted by means of factorial correla-
tors. Indeed, if such correlations exist, then, due to (5), one obtains

T () # 1 (15)

for any combination such as {2, 2}, {2, 3}, {3,2} etc. For the symmetrized
and averaged bunching correlators, this leads to

N,y (D) # 1, ¢g=2, ¢=23.... (16)

On the other hand, if only such (hypothetical) correlations exist, the facto-
rial correlators are equal to one for any higher rank.

3. The lowest-order bunching correlator and its behavior

The value of 73 2/(D) is affected by events having no particles in both
bins and, hence, it incorporates the empty bin-bin correlations that cannot
be measured by means of factorial correlators. In this section we shall
illustrate the dependence of this quantity on the distance D between the
two bins.

For our numerical calculations, we can rewrite the definition of 7, /(D)
as follows:

n2,2:(D) M 2 “;"27‘*'“ : (17)
(6
,7;":" (6) = _ZQ._Q._ (18)
? 3 (8)n (6)

To define bivariate and univariate BPs, we introduce the following expres-
sion as an indicator for the presence of a given spike configuration for a
given experimental event ¢:

. . ' . .
W, (m,m' t) = 1, if both.bms m and m' contain ¢ particles, (19)
0, otherwise.
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Then, we have

Wa(m, m)Wo(m, m)
W?(m. m)

’ W - m W '

iy (6) = 4 LA Tolmom ), (21)

’ Wi(m,m')

Nz (8) =2

: (20)

where Wq(m,m') is the average of Wy(m,m' t) over Ney experimental
events

Nev 137 !
Wo(m,m') = L=l W]\qf(m, m’, 1) . (22)
ev
An exact calculation of the statistical error (standard deviation) is al-
ways a complex task and requires special attention to any local measure-
ment. Below, we give a sketch of propagation of the standard deviation for
(17).
The square of the standard deviation for Wy (m,m') is given by

Nev
1 —=2
Smmy= —— E W2(m,m' t) — NeyW.(m,m")| . (23
q( ™) Ney(Ney — 1) t=1 q( . ) ¢ q( ) (23)

The square of the standard deviation for second-order BPs is given by

=52 252 =52
W AW, W w

Vim,m') = %4 2024 22 (24)
W W Wi

This expression gives us the square of the standard deviation for univariate
BPs if L
We=Wg(m,m), s2=452(m,m). (25)

The square of the standard deviation for bivariate BPs can be found from
(24) if L
Wo=Wg(m,m'), sg = 1()'S§(m, m'). (26)

The total statistical error for (17) can be found by combining the standard
deviations for the univariate and bivariate BPs and averaging the results
over all bin pairs.

In Fig. la, the behavior of 5, ,/(D) is shown for the case of purely
statistical phase-space fluctuations. For our numerical calculations, we sim-
ulate the phase-space distribution by a pseudo-random number generator
in the “phase space” 0 < < 1. The total number of events is 30,000. In
this figure we consider the cases in which a total number of particles N in
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Fig. 1. Value of 73 3/(D) as a function of distance D between bins. (a) — the
behavior in the case of purely statistical fluctuations for different distributions of
particles in full phase space. (b) — the behavior for the case of dynamical fluctu-
ations (phase-space distribution in azimuthal variable) simulated by the JETSET
7.4 PS model.

full phase space fluctuates according to full-phase-space fluctuations. We
considered the following cases:

1. N is fixed for all events (N=20);

2. N is distributed according to a Poissonian law with mean N = 20;

3. N is distributed according to the JETSET 7.4 PS model [15] simulating
ete~-annihilation at a c.m. energy of 91.2 GeV. Such a distribution is
similar to a negative binomial. For this case, we also consider different
values of bin size é.

As expected, the value of the bunching correlator is equal to 1 for the
Poisson distribution. We have verified that this result is independent of the
mean of the Poisson distribution and of the bin size 4.

For the sample with fixed multiplicity (N = 20), there is a negative
correlation, since 7, o/(D) < 1. This kind of correlation is due to the trivial
effect that the probability of finding a particle in a bin is always less if
another particle has already been found in another bin. In the case of no
dynamical phase-space correlations, such a negative (pseudo) correlation
leads to a D-independent bunching correlator of value smaller than unity.

If particles are distributed according to a distribution broader than
Poisson, one should expect a positive correlation. For the case of no phase-
space correlations, this again leads to a D-independent bunching correlator,
but with a value of 7, o (D) > 1.
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In Fig. 1b we present 7, o/(D) for a more realistic situation. Here, N
again fluctuates according to JETSET 7.4 PS, but the phase-space distri-
bution is defined in the azimuthal angle with respect to the e¥e™ collision
axis. To compare the results with the previous cases, this variable (with
full phase-space range 27) has been transformed to a new variable with
unit range. Due to the jet structure of single events, the phase-space dis-
tribution in this variable contains dynamical fluctuations. As can be seen
from Fig. 1b, such fluctuations lead to a bin-bin correlation. The correla-
tion increases for decreasing distance D, from 7, o/(D) < 1 for large D to
N2,2:(D) > 1 for small D. Moreover, in contrast to Fig. la, the value of
n2,2/(D) is affected by the value of the bin size 4.

4. Conclusions

In this paper, the bunching-parameter method has been extended to
measure bin-bin correlations. This application of the bunching-parameter
method has been achieved by considering bunching correlators in analogy to
factorial correlators. The method not only allows one to study fluctuations
inside a phase-space bin without experimental bias from finite statistics, but
also to study correlations between bins separated in phase-space.

One of the remarkable features of the bin-bin correlation study is that
the main properties of local fluctuations inside bins, and correlations be-
tween the bins can be formulated in a unified manner. Based on our analysis
of second-order bunching correlations and on [5], we conclude:

1. For purely statistical phase-space fluctuations, the values of the uni-
variate bunching parameters and those of the bunching correlators are
independent of bin size and bin-bin distance. These values are affected
by event-to-event multiplicity fluctuations, but are equal to unity for
Poisson-distributed particle multiplicity in full phase space;

2. For dynamical phase-space fluctuations, the values of univariate bunch-
ing parameters, and bunching correlators increase for decreasing bin
size é or distance D between two bins.

Such a similarity in the behavior of these quantities is the result of an
intrinsic relation between fluctuation and correlation properties of the local
fluctuations.

Finally, from our study, let us note that no universal scaling relation
between the local fluctuations and correlations is observed for the azimuthal-
angle distribution in JETSET 7.4 PS model, as it follows from the random-
cascade model [1, 2], for which the factorial correlators are é-independent.
The analysis of bin-bin correlations based on the bunching correlators clearly
shows that the behavior of the second-order correlator is affected by the bin
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size 6. In fact, this means that realistic intermittent fluctuations cannot
be fully described by the scaling indices of the univariate normalized mo-
ments as is the case for the random-cascade model. For this reason, the
experimental measurement of the correlators is an important complemen-
tary part of the fluctuation analysis, which, therefore, cannot be reduced to
the investigation of the scaling indices of the local quantities only.
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