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We present a method of construction of a family of solutions of the
Baxter equation arising in the Generalized Leading Logarithmic Approx-
imation (GLLA) of the QCD pomeron. The details are given for the ex-
change of N = 2 reggeons but everything can be generalized in a straight-
forward way to arbitrary N. A specific choice of solutions is shown to
reproduce the correct energy levels for half integral conformal weights. It
is shown that the Baxter’s equation must be supplemented by an addi-
tional condition on the solution.

PACS numbers: 12.38.Bx

1. Introduction

One of the longstanding problems of QCD is the behavior of the theory
in the Regge limit of high energies and fixed transferred momenta. In the
Leading Logarithmic Approximation the relevant amplitudes correspond to
the exchange of two reggeized gluons — the BFKL pomeron [1, 2]. Later
this was generalized in the framework of GLLA to the exchange of a higher
number of reggeons N > 2 (3, 4]. But in contrast to the BFKL case the
explicit values of the intercepts are still unknown.

Recently much progress has been made with the establishment in [6, 5,
8, 9] of a very surprising link with exactly solvable lattice models. Within
this framework variants of the Bethe ansatz have been tried ([7-10] and
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quasiclassical approximation [11}), all of which are based on attempts to
solve the Baxter equation.

In this paper we present a method of constructing solutions to the Bax-
ter equation, which allows for easy generalization to the still open odderon
problem (the exchange of N = 3 reggeons). The details are explicitly worked
out for the N = 2 case corresponding to the well known BFKL pomeron.

2. The QCD pomeron as Heisenberg XXX spin s = 0 chain

The Regge limit of QCD is defined as the kinematical region
s> —t~ M?, (1)

where M is the hadron mass scale, or as in the case of Deep Inelastic Scat-
tering, as the small z = Q2/s limit. The aim is to find the Regge behavior
of the amplitude A(s,t) ~ s@ot1,

It has been established that finding the Regge intercepts wyp is equiva-
lent, in the GLLA and large N¢ limit, to finding the energy levels of the
Hamiltonian for a N-site Heisenberg XXX s = 0 spin chain:

Z H(z, zig1) (2)

where N is the number of exchanged reggeons, z; are (complex) coordinates
of the i-th reggeon and the two-particle hamiltonian is given by:
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where

g 0
L3 = —2h, 92299 (4)
The Regge intercept is now given by
N _
wo = “—S(E+E), (5)

where E is the energy level of the corresponding antiholomorphic hamilto-
nian.

A method of finding the energy eigenvalues based on the Functional
Bethe Ansatz has been proposed in [8, 9]. One looks for holomorphic solu-
tions to the spin s = —1 Baxter equation:

AN+ AN 24 4 gn)Q(N) = A+ )NQO )+ (A= )NQ(A 1), (6)
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where ¢; are the conserved quantities of the Heisenberg XXX model. g2 is
related to the conformal weight h by the formula:

g2 = ~h(h - 1), (7)

where h is the conformal weight h = !;Em + iv with m integer and v real
parameters labeling the irreducible representations of SL(2,C). The energy
levels are given by [8, 9]

QA —1)
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It seems that there is no rigorous proof of this formula for the non-compact
spin chain, apart from the case when Q(A) is a polynomial (this can occur
only for integer values of h). Physically, the most interesting case is k = 1/
for which value it is expected that the largest eigenvalue occurs. This is the
reason why looking for non-polynomial solutions is interesting,.

In this paper we present a general method of constructing solutions to
the Baxter equation (6) which can reproduce the correct eigenvalues for
half-integral h. This agreement is only for a specific choice of the solutions,
showing that the Baxter equation must be supplemented by some addi-
tional condition. Unfortunately, the physical understanding of this choice
is apparently still lacking.

3. Solution of the Baxter equation

The difficulties associated with finding the solution to (6) for arbitrary
N are the following. One approach [9, 11] is to obtain solutions for integer
values of the conformal weight and then analytically continue to arbitrary h.
Unfortunately, no closed form of the solutions for N = 3 is known to date,
which makes the programme very difficult to carry out. Direct expansions
in power series are plagued by convergence problems which can be overcome
but then lead to non-physical solutions (i.e. giving infinite energy). Here we
give a construction of solutions to the Baxter equation, which can be easily
generalized to arbitrary N, and the energy eigenvalues can be numerically
calculated from equation (8). These solutions possess no singularities and
are holomorphic in the whole complex plane.

The starting point of the construction is the contour integral represen-
tation used in [8] and [9].

Q) = / L —ixm1(, _yir-ig(y). (9)
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This is a solution to the Baxter equation if the function Q(z) satisfies the
ordinary differential equation:

[(z(l - z)i)N + 2(1 - 2) Nz_ziN_kQN—k (Z(l - Z)'(;—lg) k} Q(z)=0

k=0
(10)
and the contour C' is such that one can integrate by parts. Assuming that
the contour C is closed on the Riemann surface associated to the kernel
K(z,A) = 272~ 1(z —1)**1 this last condition amounts to the requirement
that the solution Q(z) of (10) at the beginning of C should coincide with the
solution obtained by analytical continuation along C. The key point is, that
for non-integral h, this condition cannot be met for a single contour (one
can check this explicitly for h = 1/ and N = 2 using the known monodromy
properties of the hypergeometric function [12]).
W propose a construction which involves integration along two inde-
pendent contours of two different solutions of the differential equation.

QW = [ 35K G @)+ i)+ [ 5K N () + dua(),

271
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(11)
where the contours Cy and Cpy are depicted in figure 1. u; and ug are a
basis of solutions around z = 1/ such that ug(4) = 1, u}(}2) = 0 and

uz(*e) =0, uh(*r) = 1.

Fig. 1. The contours Cr and Cy; in the integral representation of a solution to
Baxter equation. The contours start and end at = = !/,. The shaded line is the cut
for the kernel function K{z, A)

The coefficients a, b, ¢ and d are determined by the ‘integration by
parts’ condition. Denoting the monodromy matrices of the contours Cr and
Crr by My and Mjy respectively, we obtain the equation:

w(D) (=) o
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Since we have two equations for four variables, a non-trivial solution always
exists. One parameter is spurious, responsible only for an irrelevant change
in the normalization, so we obtain a one parameter family of solutions.

A few remarks are in order. The contours do not meet any singularities,
therefore the solution is holomorphic in the whole complex plane. Using
the series expansion of the solutions to (10) the integrals can be carried out
numerically, likewise the monodromy matrices can also be found numerically
without resort to integral representation of the solutions of (10). It is this
feature which makes numerical generalization to higher NV possible.

Consider now explicitly the case N = 2. For real conformal weight A
(i.e. h =1%,1,3%,2,...) if Q()) is a solution to the Baxter equation then

so is Q(X). This suggests taking the solution of the form:

QN =QM+Q(). (13)
Now the energy is explicitly real and equal to
E=2mm 20 _4 (14)
Q()

Furthermore we pick the solution which is maximally symmetric with
respect to the symmetry z ¢<— 1 — z i.e. ¢ = 1 and d = 0. The numerical
results for a number of conformal weights are shown in Table I, in excellent
agreement with the known solutions. Note however, that the energy is dif-
ferent for different choices of d (the plot in figure 2 shows this dependence),
making it quite remarkable that the simple symmetric choice, independent
of h, gives the correct results.

TABLE I

Energy eigenvalues calculated numerically from the solutions to the Baxter
equation with 40 terms in the power series expansion of u;{z).

h Enum Eexact h’ Enum Eexact
0.5 5.54518 5.54518 6.5 —3.48051 —9.48051
1.5 —2.45482 —2.45482 8.5 —10.6292 -10.6292
2.5 —5.12149 —5.12149
4.5 —7.86435 —7.86435 16.5 -13.3999 ~13.3999

A fundamental theoretical problem which remains to be solved is the
physical understanding of this condition on the solution of the Baxter equa-
tion. Analytical proofs and the extension to N = 3 will be presented else-
where [13].
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Fig. 2. Dependence of the energy calculated for different solutions of the Baxter
equation for conformal weight h = 1/2. The correct value is obtained for the choice
d=0

4. Summary

In this paper we have presented a general procedure of coumstructing
solutions to the Baxter equation arising in the theory of the QCD pomeron,
for arbitrary values of the conformal weight. The correct energy eigenval-
ues for the N = 2 BFKL pomeron, are reproduced for a special choice of
solution, showing that the Baxter equation must be supplemented by an
additional condition.

I would like to express my thanks to Professor Andrzej Bialas, who
introduced me to research in physics and from whom I learned so much.

I am grateful to Dr. Jacek Wosiek for numerous discussions.
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