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Coupled channel formalismn for unequal masses of interacting mesons
has been developed using the separable interactions. The scattering am-
plitudes and the corresponding channel integrals have been calculated.
A practical method to determine the potential parameters from the posi-
tions of resonances in the complex energy plane has been formulated. The
two-channel formalism has been extended to three interacting channels.
A useful parametrization of the 3 x 3 S-matrix in terms of phase shifts
and inelasticity parameters has been written.
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1. Introduction

Separable potentials can be successfully used to solve many questions
encountered in meson spectroscopy. Treatment of the intermeson interac-
tions in a framework of the coupled channel formalism has already been
applied to the description of the scalar meson properties [1]. Spectroscopy
of scalar mesons is, however, full of open problems [2]. A nonet of scalar
mesons is not well defined in contrast to much better known nonets of pseu-
doscalar, vector or tensor mesons. Since many scalar mesons fo decay to
pairs of pseudoscalar mesons [3] we have to understand the interactions of
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these mesons. Despite of many years of effort our knowledge of pion-pion,
kaon-antikaon, not speaking about n — 7 or p — p interactions is very lim-
ited. If the interaction in the K system is attractive then a kind of the
KK molecule can be formed [4, 5]. In this case the intermeson physics can
be similar to the well known nuclear physics. We know for example that
the proton-neutron interaction and a formation of the deuteron can be well
described using the separable potentials (see for example [6]). The pion-
nucleon interactions have also been studied using separable potentials [7].

The separable interactions have a relatively simple analytical form which
can be very helpful in solving the coupled-channel problems [8]. Unitarity
constraints, which are extremely important in understanding the underlying
meson dynamics, can be imposed in a consistent way. A fact that hadrons,
including mesons which we wish to study, have an internal structure leads
to nonlocal effects which are taken into account in the formalism of sepa-
rable interactions. Scattering amplitudes calculated in the coupled-channel
framework with the separable potentials have the desired factorization prop-
erties if the interaction energy is close to the energies corresponding to the
quasibound or resonant states. Therefore one can easily incorporate some
phenomenological information about the masses and widths of the Breit-
Wigner resonances. One should remember, however, that the parameters
of the scalar resonances should be obtained and confirmed by experimental
analyses of many different channels. Only then we can address very interest-
ing questions about an internal structure of scalar mesons [1] and a possible
existence of scalar glueballs [9].

6[1 we have studied properties of the 77 and KK interactions in the
IG(JFPC) = ot (0F 1) states in the energy range from the 77 threshold up to
1. 4 GeV. Three resonances have been found in this energy region: fu(500),
fo(975) and f4(1400). The fo(500) state can be associated with often pos-
tulated very broad scalar resonance under the KK threshold (sometimes
called o or € meson). The ¢ meson plays an important role in understanding
the nucleon- nucleon interactions and in the Bonn meson exchange model
its mass has been fixed at 550 MeV [10]. Existence of a broad o meson
has been recently confirmed by T6rnqvist and Roos [11]. The fo(975) state
can be interpreted as a KK bound state or a I{ K molecule. Nature of
scalar resonances near 1500 MeV is being extensively studied [12, 13]. The
scalar-isoscalar resonances have the QCD vacuum quantum numbers and
can be mixed with the scalar glueballs which are predicted by the lattice
calculations (see Ref. [14]).

Parameters of the separable potentials can be fixed by comparison of the
calculated physical quantities like the total and differential cross-sections,
phase shifts, inelasticity parameters, masses, widths and branching ratios of
different resonances with the corresponding quantities obtained in the ex-
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perimental analyses [1]. One can also study different threshold parameters
like the scattering lengths and the effective ranges [15]. In those studies
the analytical structure of the scattering amplitudes and a possibility of the
analytical continuation of the physical amplitudes to the complex energy
plane played an important role. Some simplifications of the complex am-
plitudes were possible since the interacting particles in the initial or final
states had equal masses (systems of two pions or two kaons). We have been
able to perform analytically the calculations of the S-matrix elements (see
appendices of [1]).

In Section 2 we study a case when two mesons have unequal masses.
The formulae which are derived can be applied to study the production and
decay properties of the isovector scalar meson «¢(980). Its mass is very
close to the mass of the fy(975) isoscalar meson. The ag(980) can decay
not only into a pair of kaons but also into a system of = and 7 mesons. In
the latter case two mesons have very different masses and the corresponding
amplitudes have a more complicated structure. Integrals appearing in the
scattering amplitudes are evaluated in Section 3. Section 4 deals with a
problem of an extraction of the separable potential parameters from a very
limited set of data. In Section 5 we discuss the amplitudes corresponding
to a system of three interacting channels. This is a characteristic situation
at higher energies when a number of coupled channels increases. Separable
potentials offer a useful tool to treat those complex interactions preserving
unitarity of the full S-matrix.

2. Coupled-channel formalism for unequal
masses of interacting particles

Let us describe two-channel s-wave interactions. We assume that in the
first channel (label 1) masses of two interacting mesons are different and in
the second channel (label 2) they are equal. In view of a future application
of this approach to the description of the ag(980) meson we can denote by
mx and m, the pion and 7 masses in the first channel and by mg the
kaon mass in the second channel. For simplicity we use rank-one separable
potentials in the momentum space

| Vij | @) = Xijgi(p)gilg) ., (,7=1,2). (1)

In this equation A;; are the coupling constants and g; are the form
factors which are functions of the relative momenta ¢ (in the initial channel)
or p (in the final channel). Vj; is the elastic interaction in the channel 7 and
Vi,2 or V31 are the transition potentials satisfying the following symmetry
relation:
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(Pl Viz| @) =(q| Va1 |p) (2)
in addition to Ajz = Agg.
The scattering amplitude T satisfies the Lippmann-Schwinger equation:

@|T|q)=(@|V|q)
33
(;iT)g<pIV1s><sIGis><s|qu>, 3)

where V, G, T are 2x2 matrices, V is the interaction matrix defined in (1)
and G is the diagonal matrix of propagators written in the center of mass
system:

(s1Gij|s)y=Gi(s)di; (4,5=1,2), (4)
In Eq. (4)

G{Ys) = E—Ex(s) = Eq+ic, €—0(+), (5)

s is the relative momentum, F is the total energy,

Ex(s) = /s* +mZ, (6)
Ey(s) = /82 +m3. (7)

The average pion mass m,=137.27 MeV and the n mass is m,=>547.45 MeV.
Similarly we write:

and

G;Y(s) = E - 2Ek(s) + ic, (8)

where Eg(s) = 4/s? +m§{ is the relativistic kaon energy , mg=495.69

MeV is the average of the charged and neutral kaon masses.
The form factors have the Yamaguchi form [16]:

2 1
gi(p) = \/Ema (9)

where m; are the reduced masses: my = my my/(Mx + my), M2 = mg /2
and (3; are the range parameters. The potential matrix has altogether five
parameters which can be fixed by comparison of the scattering amplitudes
T;; with experiment. We postulate the following form of the scattering
matrix elements:

(p1Ti5 | q) = gip) tij 95(q) » (10)
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where ¢t;; are the energy dependent reduced amplitudes. In (10) 77; and
Ty are the my and KK elastic scattering amplitudes and T2; and Tj2 are
the transition KK — nn and 7 — KK amplitudes. The system (3) of the
coupled integral equations satisfied by the T;; elements can be replaced by
a set of algebraic equations for the reduced amplitudes ¢;; written in the
2 X 2 matrix form:

t=A+A1t. (11)
Here X is the symmetric 2 X 2 matrix of the coupling constants
A1l /\12)
A= 12
(/\12 A2z /' (12)

and 7 is the diagonal 2 x 2 matrix consisting of the integrals

39
I = / (;’ﬁgi(s)c:xs)gi(s). (13)

The matrix equation (11) is easily solved:
t=(1-AN"1x. (14)

Substituting the elements of (14) to (10) we obtain a formal solution of the
scattering problem.

If the energy E is higher than the KK threshold mass we can write
the on-shell scattering matrix elements T;;(k1, k2) in terms of the S-matrix

elements .
i
Sij = 6i5 — é;\/kiaikjaj Tij(ki, kj), (15)

where the 77 channel and KK channel momenta k; and ky are defined by
the energy conservation condition:

E=Ex+E,=2Ex, (16)
E.E,
o] = ——— 17
R (17)
and )
g = :‘Z'EK. (18)

In (16) the pion on-shell energy Ex = 4/k? 4+ m2, the 1 meson energy
E, = ,/kf +m3, and the kaon energy Fx = \/kg +m§{. The inverse

relations for the center-of-mass momenta are:
_ 1
T 2F

k1 [Ez - (mn + mw)z][E2 - (mn - m?r)z]v (19)
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and
E2

All the functions ¢;; in (11) are inversely proportional to the Jost function
D(FE) =det(1 - AI). (21)

Explicit form of the Jost function, which can be written as a function of
two momenta ky and k2, is

D(k1,k2) = Dy1(k1)D2(k2) — F(k1,k2), (22)

where
Di(ki) =1 - Ay Ju(ks), (1,5 =1,2), (23)
and
F(ky, k) = Ay J1a(k1)J22(k2) - (24)

The function F(ki1,k2) describes the interchannel coupling. In (23), (24),
we use the dimensionless coupling constants defined as

Aij
A = J __ 25
Y 2(8:85)% 2
and the redefined integrals
Ji =283 I; . (26)

All the S-matrix elements can be expressed by the Jost function ratios
as follows:

D(—ki, k2)
Sy = PR 27)
"= Dl ka) (
D(ky, —k2)
Sa2 = ) 28
22 = Dk ) (28)
D(—ky, -k
512 = 511522 E?(Ici Icz)z) (29)

Above the KK threshold the S-matrix can be parametrized in terms of the
inelasticity parameter i and the phase shifts éxy and dpg:

S= ( ne?ibrn i\/l_—?e"(s""jwﬁ)) . (30)

iﬂei“"’"{’afﬁ) neZiﬁK'f{'
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Some formulae presented in this chapter can be generalized or derived
from the appropriate formulae in [1] but they have been written in this
chapter for a completeness and a further use.

3. Evaluation of channel integrals

Calculation of the channel integrals Jy; and Jp2 defined in (13) and
(26) is an important step in solving the meson scattering problem. Let us
start from the expression for Jig:

3 F 2
J11 = IB /ds 5 (31)
Tmy (s2 + B1?) E‘-I-z{:‘—\/sz-km,r V8% +my z

After a simple algebra this integral can be rewritten in the following equiv-
alent form:

3 3
Ji1 = ———(c1+ e+ ¢z +ca), (32)
FErmq
where
T S (EpEy+ k2 — s?) n
c1= | ds — 5T (33,
(5% + B1%)2(k? +ic — s?)
c2 = EyY (k1, mx, B1) , (34)
= ExY (k1,my, 1), (35)
2. /2 4+ m-2./52 2
Cq4 = /(ISS \/b +2m1r 2\/S.+7n7] ’ (36)
(82 + P17)2 (k1 + ie — &7
and -
2 2 2
Y (k,m, B) = / ds——o v FM (37)
(82 + B2)%(k? + ie — s%)
0
The integral c; is elementary:
T ExEy 1 ]
=—|1- . 38
7 45 [ B2 (11— iky/B1)? (38)

The integral Y (k,m, 3)) can be done analytically as explained in the Ap-
pendix A of [1]. It reads:

1

Y (k,m,B) = BT a)R

[%(H—az)(l—bzd)+azr2(d—H)] ;v (39)
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where a = k/B,b=m/B, r = Vk2 + m2/k, H = F(r?) and d = F(1 — b?).
The integral F(z?) is defined by

1
2) —
0

If z2 is real then

1 z+1 o,
— —— if 22>1
2mln<x—1) 9z 7 > 5
Fz?) = { & (Hz) if 0<a?<1, (41)
1 if z2=0,
arctan(|z])/|z| if 22<0.

The integral ¢4 cannot be expressed by elementary functions. Using
(36) it can be calculated numerically for real values of k; or in the complex
k1? plane for positive values of Im ky2. For negative values of Im k12
must be, however, analytically continued from an upper half-plane of k1 .
In order to calculate it properly in the whole k1? plane we first use the
following integral representation

1

1
1 _ 1/ dz
Vs + mp2\/s% + my? R J Vel —z)s2+amZ 4+ (1-2)m2

obtaining the ¢4 in the form:

(42)

(e o]

; ds s (s? + mZ)(s? + m2)
/ Ve(l—z) / (52 + B2)2(k2 + ic — s2)[s? + am2 + (1 — 2)m3]
0 0

(43)

=|IH

The integral over s can be done and finally we get

dz [ A +£) 1 _i 1 _ 1
Ve(l—gz) 28 B1'Z-p} B(Z2-p63)2 VZ
A B C C 1
+ - - + o ],

VZ(Z -2 VZ(Z-8}) VI(kE+Z) kiki+Z
(44)
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where
Z=zmi+(1-z)m?, (45)
tH
5] = ) 5] - ). (o)
B:__fﬁ(mvr‘*'m%—?ﬂ%) kz(ﬂl —m )(ﬁl—m?))’ (47)
kg + 63 (k2 + )2
_ Kk} 4+ md) (k] + m})
¢= (k2 + 32)2 (48)

If m2 < 3% < m2 then to avoid zeroes in the integrand denominators

7
for Z = % at ¢ = (m3 — 32)/(m2 — m2) the value of the integrand function
in the parenthesis [...] of Eq. (44) should be replaced by

3A 1 C iC

(49)

The formula (44) completes the sum of integrals needed to evaluate Jy; in
(32).

The integral Ja2 for the K'K channel has been calculated in {1] and can
be expressed as

E 2,62 y
imr(1— ik/B)? T 7

Jaz = — (k2, mg, B2) - (50)

4. Determination of potential parameters

Determination of the separable potential parameters is fairly easy if we
have to our disposal a set of many scattering data describing the meson-
meson interaction amplitudes. But even in a case when we know only posi-
tions and widths of resonances appearing in different reaction channels we
are able to fix some of the unknown potential parameters. Let us discuss a
special case when two resonances at the complex energies E™ and ET exist.
Then the S-matrix has poles at these energies and the corresponding Jost
function vanishes (Egs. (27)-(29),(22)). So two complex equations:

D(ki,k3) =0, (51)

and
Dk ERy =0 (52)
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have to be satisfied for the pairs of complex momenta &, k5 and kft, k!

related to E™ and ER. Substituting (23) and (24) into (22) we get the
following two equations equivalent to (51):

1 — Ay1 ReJ11(kT) — A22 Re ng(k;)
+ (A11422 — A3;) Re[J11(k]) J22(k3)] = 0, (53)
—Au Im Jll(k;.) - /122 Im ng(k‘;)
+ (A114g2 — A}) Im[J11 (k) J22(k5)] = 0. (54)
Similar two equations can be written changing the set of variables k7, &3
into the set kf, k%z. In this way we obtain a system of four equations which

can be used to fix four parameters. Thus solving this system of algebraic
equations we can eliminate three coupling constants:

a Im Jo2 (k) + ¢ Im[J11 (kf) Im Ja2 (k3)]

Ay = ,
1 ((L — d) Im[Jll(kf) Im ng(k’éz)] —Im J]](k?fz) —b1Im Jzz(k%z)
(55)
Asg =a+bAygy, (56)
Al =bA +d A +ec. (57)

In (55), (56) and (57) we define the following constants:

a = [Re oz (k5) — r Im Joo(K3)] 71, (58)
_ Re[J11(k])J22(k3)] (59)
(60)
(61)

" W ()T ()]
b=-a [Re Ju(k;) — r Im Jll(k‘;)] s
_ g 1m Ty (k3)
Im[J11 (k])J22(k3)]
b Im Jag (k) + Im Jua (K])
Im[Jy1(k])J22(k3)]

The fourth constant 81 or 82 can be obtained from the equation:

d=

1 - A]] R,eJ;u(kft) fd A22 Rerz(kg)
+ (A11A22 — A3y) Re[J11 (kF) 22 (kF)] =0, (63)

in which the integrals Jy1 and Ja2 depend also on the range parameters
B1 and 2, respectively (see Section 3). The last equation has to be solved
numerically.

In a possible application of the method outline above to the description
of the scalar I = 1 mesons we should mention the Crystal Barrel paper
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([17]) in which a resonance of a mass M = 1450 MeV and a width 270 MeV
has been observed. This may be a partner of ag(980), so in principle one
can try to fix four potential parameters in the KK and 77 channels.

5. Three channels

If the total energy grows up more and more channels are open and we
have to extend the model to include new channels. So after a discussion of
the two-channel model let us pass to a formalism of three coupled channels.
It is not always the case that we have two-body interaction in each of the
three channels but from a practical point of view it happens quite often
that mesons are grouped into resonances decaying into pairs of particles.
Examples of such channels are 77, oo or pp. If the energy is higher than
a sum of the meson masses in the third channel then we are dealing with
a system of three dynamically open channels. There are, however, effects
which can be observed even at energies below the third channel threshold.
We have discussed such a case in [18] introducing a third closed channel in
addition to the 77 and KK channels and investigating the properties of
the fo(975) meson. In [19] an attempt has been made to treat S-wave 77,
KK and pp(ww) interactions using a generalization of a simple nonrela-
tivistic two-channel model developed in [20].

In this chapter we first extend the t-matrix formulae obtained in Section
2 for the two-channel case. The generalization is very easy if the separable
interactions are rank-one potentials as in (1). Then the A matrix is the sym-
metric 3 X 3 matrix of coupling constants (compare (12)) and we introduce
the additional channel integral I33 as in (13). In this integral we define the
third propagator G3(s) which has a structure similar to (5) or (8) depending
on the masses of particles in the third channel. Below we give a formula for
the corresponding Jost function (compare (22),(23)):

D(ki1, ka2, k3) = D1(k1)D2(k2)D3(k3) — F(k1, k2, k3), (64)
where

F(ky, k2, k3) = A%; J11(k1)J2z(k2) + A%5 Ja1(k1) T35 (k3)

+ A23 Jaz(k2)J33(k3) + 2A12A13 A2z Ja1 (k1) J22 (k2) J33 (k3) . (65)

This formula can be further extended to a case of more complicated inter-
actions like the rank-two potentials discussed in [1].

We have already seen in Section 2 that the S-matrix elements can be
expressed in terms of the Jost functions (compare (27)-(29)). Similar for-
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mulae are valid in the three channel case. For example:

D(—ky, kg, ks)
Sy = =152 83) 66
T "D(ky, k2, k3) (66)
D(kl,ka_k:i)
S33 = =B 7MY 67
* 7 D(k1, k2 ks) 0
D("klkaa_k3)
S2, = S13533 — 68
13 1333 D(k1, k2, k3) (68)

Other S-matrix elements can be obtained from the above formulae by a
proper permutation of indices. A generalization of the convenient 2 x 2 §-
matrix parametrization (30) in terms of the phase shifts and the inelasticity
coefficient is not obvious. Remembering, however, that the S-matrix must
satisfy the unitarity condition S st = 1, we can parametrize the diagonal
elements in terms of three phase shifts é; (¢ = 1,2, 3) and three inelasticity
coefficients n;: '

Sii = n; 2% . (69)

The total number of independent parameters is six. The inelasticity param-
eters have to satisfy the following boundary conditions:

0<n <1, (70)
and
| 1=y —me IS <1—|nj—m|; 4,5,k=1,2,3;i#j#k. (71)

The nondiagonal elements have more complicated form than those elements
in (30):

Sij=1tvij i i£j=1,2,3, (72)
=30+t -nf-nd): kEik#Gi#], (73)
¢ij = 0i +6; + asj (74)
Q5 = arcsin (75)
VikTik . .
uij = —22, vi; #0, k#F i k#7], (76)
Vij
Wij =05 —1Nj, (77)
vij = N+ 75 - (78)

The S-matrix is‘ symmetric: S;; = Sj;.
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Let us notice that in the case where one of the three channels (for
example ¢ = 1) is not coupled to another channel ( for example j = 2) then
not only the corresponding matrix element Syj2 = 0 but also S13 = 0 or
S23 = 0. In the former case the channel 1 is completely decoupled from the
channels 2 and 3 or if S33 = 0 then the channel 2 is decoupled from 1 and
3. This is a result of the unitarity of the full S-matrix.

It is a pleasure to dedicate this article to Andrzej Bialas — my teacher
of mathematical methods of physics. 1 am grateful to J.-P. Dedonder for
very helpful discussions and a fruitful collaboration within the French-Polish
Convention.
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