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A relativistic two-particle theory is used for the calculation of the
lowest order correction to the electromagnetic binding and scattering of
a pion by an atom. The binding energy is found to be equal to the re-
sult obtained with the Klein-Gordon equation. The relativistic correction
to the differential cross section, however, differs from the corresponding
Klein-Gordon result.
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1. Introduction

Many years ago the relativistic fine-structure splitting in pionic Ti and
Fe atoms was measured by Delker et al. [1] and by Wang et al. [2] The
observed splitting agreed with the predictions of the Klein-Gordon equation,
but also with those of the relativistic Schrodinger equation

{\/p2—+—m7— g] v =Ep. (1.1)

In both cases the spectrum up to terms of order atis given by Fn; = men

[3], with
a? o 1 3
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The Klein-Gordon equation was also used by Kang and Brown [4] to cal-
culate the differential cross section for scattering of a pion by an atom. To
order o they found

do  o?(¢* + m?) KG

d—é—m[l_*_R (q!0)+"'], (1-3)
with

Tagsin %9

In the same way as for the spectrum of bound states [5], it can be shown
that also for the differential cross section the relativistic Schrédinger equa-
tion gives the same result (1.4). Therefore, when it comes to the question as
to which is the best one-particle equation to describe pionic atoms, the an-
swer is not clear. In addition to the experimental difficulty of distinguishing
between several theories, there is on the theoretical side the uncomfortable
property of the eigenfunctions of the Klein-Gordon equation not being or-
thogonal. In 1926 Pauli [6] therefore wrote in a letter to Schrodinger that he
did ”... not believe that the relativistic equation of 2. order with the many
fathers corresponds to reality.” For a critical discussion of the work that has
since been done on the particle interpretation of the Klein-Gordon equation,
the article by Rizov, Sazdjian and Todorov [7] should be consulted.

In the present paper the Coulomb binding and scattering of a negatively
charged pion by an atom will again be calculated, but now in the frame
work of a relativistic invariant two-particle theory, which was put forward
in 1975 [8] and further developed and applied in later years. See [9] for
references. The next section contains a concise exposition of this theory.
In Sections 3 and 4 it will then be applied to the calculation of €,; and of
do/dS2 respectively. The result will be that to order o the binding energy
will again coincide with (1.2), obtained from the Klein—Gordon equation.
The correction to the differential cross section for pion-atom scattering will,
however, differ from Eq. (1.4).

R¥%(q,0) = (1.4)

2. The ingredients of the theory

For low energies the scattering of two particles with an interaction po-
tential V,g is usually described by the Lippmann-Schwinger equation [10]

VayMyp(2) o =

Map(2) = Vg — / 5(Py - Pg) for Pa=Ps (2.1)

¥ 87_2

The notation «, 3, is used for the two momenta of the particles in the
final, initial and intermediate state. The integration element is f,y =
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de]dEg .-+, while f’a = f’ﬁ = 1_5., stand for the total kinetic momentum
of the two particles, which is not changed during the interaction. The total
kinetic energy of the intermediate state v is written as £.. The scattering
amplitude Myg(z) for 2 = €5 is used in the standard way for the calcula-
tion of the differential cross section, whereas the energies of possible bound
states are given by the poles of the partial wave components of M,g(z).
Many authors have taken this Lippmann-Schwinger equation as starting
point for the construction of a Lorentz invariant theory. The first two of
these so called “quasipotential theories”, were formulated by Logunov and
Tavkhelidze [11] and by Blankenbecler and Sugar [12]. They always have
the form of a Lippmann—Schwinger equation, with an integration over the
three-momenta of the particles, such that the total three-momentum is con-
served. No matter whether the quasipotential theory is obtained by a certain
reduction technique from the Bethe-Salpeter equation, or rather postulated
as a phenomenological theory, there is always some freedom in the way the
particle masses are allowed to go off shell and how the propagator (4 —2) ™!
is changed. The theories of Todorov [13] and of Gross [14] are examples of
this kind. In order to get an impression of the vast literature on the subject,
the reader should consult the bibliography compiled by Pyykké [15], with
its 6577 references to papers on relativistic theory of atoms and molecules,
published between 1916 and 1992. The theory that will be presented here
is again of the phenomenological quasipotential type. It avoids, however,
the arbitrariness of which particle to put on the mass shell: they are all on
mass shell. The theory will also be more symmetric in that in intermediate
states not only the total kinetic energy of the particles goes off shell, but
also their total kinetic momentum. The idea is that if the mediating field
carries energy, it should in a relativistic theory also carry three-momentum.
Still there should be some conserved three-vector, so as to get back the
Lippmann—-Schwinger equation in the nonrelativistic limit. The possibility
to do all this without violating any sacred principle, is related to the as-
sumption that in intermediate states not the total momentum is conserved,
but rather the centre of mass velocity, which for N particles is defined as

py+ Byt +Bn P
Y451 D2 PN _ ﬁ_ﬁ_’ (22)

7= =
P+ P+ P

with the free particle relation

pg =+,/|ﬁi|2+mf forall ¢:=1,...,N (2.3)

between the momentum components and the rest mass m;. In a classical
two-particle system it is almost obvious, at least it was to Mgller [16], that
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this total particle velocity is constant. It must be stressed, however, that
this is not a mathematical identity, but rather a physical hypothesis. For
two particles it amounts to assuming action = reaction and therefore has
a certain degree of plausibility. One could even think of an experimental
verification of the constancy of 4, but a classical system with two relativistic
particles, for which @ is a measurable quantity, will be hard to find.? Perhaps
the binary pulsars, a number of which have now been discovered [17, 18],
could be used to test the hypothesis.

After these preliminaries the new quasipotential theory for relativistic
transition amplitudes is now defined by the following generalisation of the
Lippmann-Schwinger equation

Meag(s) = Vg — / VayLly(B.5)Mya(s) for Ga=3s=3. (24)
Y

The integration element for the intermediate state v = (p1,* -+, pn) 18

/---::/dpl...dp H p —m (p]) (2.5)
e j=1

and the velocities ¥, and vg are defined by (2.2). The propagator on the
upper rim of the unitarity cut is taken as

o

S'

5. 50+ - =Po), 2.6

Ly(%.s0 +i0) = / _30”06 1(Py = —Po). (2.6)
0

in which the four-momenta Py and Py are equal to

Sy = 5o ~
- | _ e e (1, D) . 2.7
P, T |137'2(1,1;.,) and Py T |5|2( v) (2.7)

The unitarity of the S-matrix is guaranteed by the hermiticity of Vg and
by the equation

lim Im Ly(9,s) = 7d4(Py — Po) . (2.8)

s—30+1:0

The form (2.6) of the propagator furthermore ensures the equality of the
total velocities in the initial and intermediate state © = ¥.. The invariance
under proper Lorentz transformations is manifest once an invariant potential

1 Dr P. Hoyng suggested the following possibility.
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Vap has been chosen. Also invariance under the full Poincaré group has been
proved. The situation is like in Dirac’s so-called “point form” of classical
relativistic mechanics [19]. The generators for rotations and boosts are not
changed by the presence of interaction, while the generators for the total
momentum can be written as

Pff’t =P, +Wu,, (2.9)

in which P, is the total kinetic four-momentum of the particles, W is a
scalar proportional to the interaction and

1
Uy = ————
B /1= o2

is the {conserved) four-velocity. The proof that these ten generators really
satisfy the commutation relations of the Poincaré group is too lengthy to
be given here. The relative simplicity of the present method as compared
to other attempts to construct these generators [20], is due to the use of
the velocity instead of the kinetic momentum as conserved three-vector.
The one-photon exchange diagram of Figure 1 is assumed to define the
interaction between two charged particles.

(1,%) (2.10)

ry,m p1,my

a

B

Ph, My p2, M

Fig. 1. One-photon exchange diagram. The mass of the exchanged particle is
p=0.

®

The corresponding potential is taken as
Vog= —i*D,, ¥ (2.11)
a8 — (27:)311 uvl]2 s .
where the current for a spin-0 or spin-1/2 particle is given by

=0 P or = an () rhua(p). (2.12)

The photon propagator D, is expressed in terms of the momentum gain
in the upper vertex ¢; = pj — p1 and the momentum loss gz = pz — p5 in
the lower vertex

4 91 p92v ;
Dy = — |gu — (1 = 3) 22 2.13
S [g“ ( A)fn ‘{12] (2.13)
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in which 3 is the gauge fixing parameter.

Because the particles are always on mass shell, unlike in other quasipo-
tential theories, the currents defined in (2.12) are conserved in the sense
that j#g, = 0. For this reason the term proportional to (1 — 8) in (2.13)
gives no contribution to the potential and the basic equation (2.4) becomes
manifestly gauge invariant. The variable ¢, which was not defined yet, re-
places the Mandelstam variable ¢, which in the upper vertex has the value
t1 = (p} — p1)® = ¢? and in the lower vertex t; = (p2 — ph)% = ¢2. In the
usual theories the conservation of four-momentum p) +p}, = p1 + p2 implies
that ¢; and g2 are equal and therefore ty = t; = t. In the present theory this
equality is replaced by the conservation of velocity, which can be expressed
as

Pit+py _ Prtpe
Vst Vs

Defining the variable t by f = ¢; - g2 it is seen that on shell, i.e., when
s' = s, the new and old variables are equal, ¢ = t. Therefore Eq. (2.11)
corresponds on shell to the standard Coulomb potential in the momentum
representation. The same equation defines the off shell continuation of the
potential, which is not identical to the continuation used in other quasipo-
tential theories.

It can be shown that the eigenvalue problem for the masses My of the
bound states is

with s=(p1+p2)® and s = (py+p3)° (2.19)

Vi( ¢
2rmyima / (&, )Pl ) Lds' = (Mg — v/5)®n(s) (2.15)
[s'sA(s")A(s)]1/4
with
A(s,m2,m2) = s* + m} + m§ — 2sm? — 2sm3 — 2m2m}
= (s—s4) (5= s2),
with
sp = (my+mg)? and s_=(my— ma)?, (2.16)
and
n_ oT(s,s) afs + s' — 2(m3 + mj)] .
— 810 — : 2.17
W(sv s ) 8712m1 Mo lo 87r2m1 Mo QI(ZO) ( )
/
The argument of the Legendre function of the second kind is 29 = 't'rOT(:Ts'))

with ¢¢ and 7 defined by writing the dependence of ¢ on the c.m.s. azimuthal
angle 9* between p and p' as t = tg + 7 cos6*.
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3. Coulomb bound states

In this section the spectrum is calculated of two charged spinless parti-
cles, which are bound by a one-photon exchange potential. For the Klein—
Gordon equation this photon exchange is described by the “minimal cou-
pling”, i.e., by making the replacement p, — p, — £A4,. Only the static
limit will be considered, in which my — oco. In this limit the exact expres-
sion for the reduced mass mye,; of the bound particle, can be found [3].
For small coupling it reduces to Eq. (1.2). If the exchanged particle were
scalar (spin 0), the two massive particles could only be coupled through
the (mass)2-term of the Klein-Gordon equation [3]. This, however, leads
to a spectrum of energy levels, which does not depend on the relative sign
of the charge of the two particles. This may not be a great disadvantage,
because scalar massless bosons do not exist anyway, but it is an indication
that the Klein—Gordon equation cannot be considered as the static limit
of a quasipotential theory. In contrast to the Klein-Gordon equation, the
present theory does allow a coupling to the mass itself and with the correct
static limit. In this limit it is found that the reduced mass mje,; of the
bound particle, is given by

a? o? 1 1
_1_ _ Bl QR I 1
m =1 2n? [1 n {21+1+4n}+ ] (3-1)

Now consider the more realistic case of the exchange of a massless vector
boson. The exact solution of the Klein-Gordon equation gives for the energy
levels the expression

2
_ o -1/2
Enl_[1+{n—l—1/2+ Vi+ 1/2)2—0/2}2] ’ (3.2)

which for small « reduces to (1.2). When in Eq. (3.2) I+ 1/2 is replaced by
[ + 1, the fine structure formula of Sommerfeld [21] is obtained, while the
replacement [4+1/2 — j+1/2 gives the spectrum of the Dirac equation. No
deep reason for this coincidence is known. In the framework of the present
theory Eq. (2.15), must be solved. Only the static limit will be considered.
Replacing m; by m and mz by M, this means that m/M — 0. In this limit
the term in (2.17), that is effective for s—states only, can be neglected with
respect to the other part of the potential. This shows that it is a pure recoil
term, which does not exist for other than s—states. Define new variables y
and y' by

Vi=M+my1+y? and Vs =M+ my/1+y2. (3.3)



1876 TH.W. RUIIGROK
The eigenvalue M,,; of (2.15), is written as

My =M+ msfc (k=0,1,2,--labels the eigenvalues) (3.4)
and the function F}c(y) is defined by

1/4
24(6) = = T2 ), .5)

It can then be shown after some simple algebra, that in the static limit the

eigenvalue equation (2.15) becomes
1442 1/4 N 14y 1/4
1+ y' 1+y?

(VIt? —eb)Fl(y) = 2 /

27
x Qu(z0) Fi(y") dy/', (3.6)
with zp = -;-(—yl, + %’) The normalisation reads

/F:if (¥) Fi(y) dy = Spo.- (3.7)
0

It has not been possible to find the exact solution of {3.6), so that it had
to be solved numerically. The results of this numerical calculation will be
presented at the end of this section. For small a standard perturbation
theory is applied by writing y = az and y' = az' and expanding in powers
of a?. Substituting

Fli(y) = G(z) + a? Di(z) + - -

and
1
si =1- %az:vg 4 gﬁof‘xﬁ 4. (3.8)
gives the equations
1 1 !
L@+ )G (o) = / QGG+ N6k & (39)
and
1 l L 4 a1 1 T 1(z 2 L") da!
2(37 +a3) Dy (2 2) =5 (@ +pzo)Gy(2) =~ [l g\ Z+ 7 Di(z') dz'.
0
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In order to solve these equations again new variables » and v and new
functions c§c+l(v) and di‘“(v) are defined by

T =2z tang and z' =z tan—g— (3.11)
and
Gl(z) = cos o 0 I"H(v) and Dh(z)= cosg -df:rl(v). (3.12)

The equations (3.9) and (3.10) now take the following forms

I ci+1 /Q (1 —-‘cosv:cosu> ci“(u) du (3.13)

sSinv-sinu

and

1
:codi“"l(v) — 2% (tan -+ B) cos2 Y. H'l (v) =
”

%/Q (1"“’“ C"g") dH () du. (3.14)
0

sin v - sin u

The first of these equations is equivalent to the nonrelativistic Schrédinger
equation. It was solved by Eriksen [22], who showed that

1
0= — with n=k+I0+1, k£=0,1,2,--- (3.15)
and that c}(u) is related to the Gegenbauer polynomial C} (cosu) by

(k + v)k!

1/2
cp(u) =2"I'(v) {2#[’(/{: n 21/)] (sinu)”C§ (cosu) . (3.16)

This wave function in momentum space was first obtained by Podolski and
Pauling [23]. The solution of (3.14) is not unique, because any multiple of
cfj'l(v) can be added to dH'l( ), to give another solution. This fact is used

to choose dij’l( ) such that it is orthogonal to cH'l(v), i.e.,

/dH-l u)cH'l u)ydu=20. (3.17)
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Using (3.13), together with the normalisation
7|'
/cgjl(u)ci"'l(u) du = by, , (3.18)
0

it then follows from (3.14) that 3 is given by

"

T 410712
= 2V U a1 0,02 gy — leg (V)
,6'-—2/cos §-tan4§-|ck (v)| dv_3—4/m (3.19)
0 0
The second integral can be found in [24], resulting in
B=3 in with n=Fk+1+4+1 (3.20)
N [+1/2 B ) )

When this 8 is substituted into the expression for £} of (3.8), the same
formula (1.2) as derived from the Klein—-Gordon equation is obtained. For
larger values of the coupling constant Eq. (3.6) was solved numerically.
For the integration through the logarithmic singularity of Q;(z9) in y' =y
the algorithm of Wheeler was used. For a description see [25]. For the
three lowest s- and p-states the energy levels are shown in figures 2 and 3
respectively.

s-state levels for Coutomb potential

08

0.6

E/m

04

02}

o s . s N
o] 0.3 0.6 0.9 1.2 1.5
alpha

Fig. 2. The tree lowest s—state masses as functions of a. The dashed curves show
the Klein—Gordon masses of (3.2).
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p-state levels for Coulomb potential

08+

06

0.4
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[}
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alpha

Fig. 3. The three lowest p-state masses as functions of a. The dashed curves show
the Klein-Gordon masses of (3.2).

Comparison with the results of the Klein-Gordon equation (3.2) for those
values of & for wich the solution is defined, i.e., for [ +1/2 > «, shows only
small deviations. The almost perfect agreement between the experimentally
determined energy levels of the pionic atoms of Ti(Z = 22) and Fe(Z = 26)
[1, 2] and (1.2), can therefore not be considered as support for the Klein—
Gordon equation, because it is identical to the perturbation result of the
present theory as well as of the relativistic Schrodinger equation [26]. In
order to discriminate between these theories the spectrum of pionic atoms
with larger Z—-values should be measured.

Two more differences with the Klein—-Gordon equation should be pointed
out. They are both related to the fact that in the present theory no negative
energy states occur. For the binding of a 7~ -meson to a nucleus of charge
Z, the Klein-Gordon equation gives a critical charge Z. = 137(l + 1/2),
which is the same for all states with the same angular momentum. With the
new theory the Klein—-Gordon curves extend into the region of coupling con-
stants in which the Klein—-Gordon equation has no solution. This results in
larger values of the critical charge. These values are still not very realistic in
the case of heavy pionic atoms, because the effects of the finite nuclear size
should also be considered. It is clear, however, that the parameters which
are always used to take this effect into account, shall have to be changed.

A second important difference with the Klein—-Gordon equation lies in
the fact that, while for the Klein—-Gordon equation a dissolution into the
negative energy continuum takes place, this so called Brown-Ravenhall dis-
ease [27] does not exist here.
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4. Coulomb scattering

When trying to give a correct theory for Rutherford scattering, it is not
easy to avoid all pitfalls. It is known that the exact scattering amplitude, as
calculated from the Schrédinger equation, differs from the Born amplitude
by a mere phase factor, so that lowest order perturbation theory already
gives the exact expression for the differential cross section. However, the
calculation of this phase factor, using an expansion in partial waves, leads
to a divergent series. The history of the efforts to overcome or to ignore this
difficulty was written by Marquez [28].

Another way to obtain the correct expression for the cross section, is
to treat the Coulomb potential as the limit of a Yukawa potential with
infinite range. This method was first used by Dalitz [29], who showed for
the Dirac equation that divergences in the perturbation series arise from
the expansion of a phase factor, with a phase which approaches infinity
with the range of the potential. Therefore this infinity is harmless. For
the Klein—-Gordon equation the same was shown by Kang and Brown [4].
For the nonrelativistic case Kacser [30] found that the absolute value of the
scattering amplitude did not acquire contributions of second and third order
in the fine structure constant «. For the Dirac- and for the Klein—Gordon
equation such contributions do exist.

The method of Dalitz [29] will now be applied to the new theory and
it will be shown that again the divergences, which arise in perturbation
theory, can be hidden in a phase factor. The next order contribution to
the differential cross section will also be calculated. Coulomb scattering for
larger values of « has been studied in [31] and [32].

The starting point is (2.4) for the two—particle scattering amplitude in
the c.m.s. In this system the variables , /S5 and /5y can be written as

V38 = \/])2 +m? + \/p2 +m2 and /sy= \/kz +m? + \/kZ + m3.
(4.1)
With these expressions substituted into the energy denominator of (2.4) one
finds

1 _ 2R(k,p)

= 4.2
Vi — BB —i0  kZ-p?-i0’ (4.2)
with R(k, p) defined by
1 1 1
- + . (4.3)
2R(k7p) \/k2+7n§+\/p2+m§ \/k2+7n§+\/p2+m%

For k& = p = 0 this function is equal to the reduced mass, because then

1 1 1
= — 4+ —. 4.4
R(0,0) mia + me ( )
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For £ much larger than each of the masses, however, this reduced mass
function behaves as R(k, p) ~ %. Equation (2.4) can now be written as

/ .7) V(‘;’ k)];“k?p) k. (4.5)
\/k2+m k2+m2) k2 —p? — 10

Once the scattering amplitude has been solved from this equation, the dif-
ferential cross section is obtained by putting |p| = |g| = ¢ and by calculating

M(q,p) =

do rd
10 = —;—lM(q,0)|2, (4.6)

with

3=(\/q2+m%+\/q2+m%)2 and P-4 =q%cosh. (4.7)

The variable ¢, which occurs in the potential of Eq. (4.5), can also be written
in terms of the c.m.s. momenta. It then takes the form

t=—|g— k> - p?(q,k). (4.8)

In this formula

2(q. k) = {\/q2 +m2 — \/;cz + m'f}{\/qz + m2 - \/kz +mi} >0 (4.9)

represents an off-shell screening of the Coulomb potential. For k = ¢ it
disappears, however. Also in the static limit ms — oo, which will be
assumed from now on, this u? (g, k) goes to zero for all ¢ and k. In order to
prevent the occurrence of divergent integrals, however, u? will be replaced
by a constant A2. Only at the end of the calculations, i.e., in the expression
for the differential cross section, will it be possible to let this cut—off mass
go to zero, without the recurrence of infinities. If the potential (2.11) for
the Coulomb interaction between two spinless particles, is written as

V(G k)= -"2V(G.k) andalso M(G E):-—M( B),  (4.10)

the static limit of (4.5) becomes

2+ m? +Vk? + m2} V(G k)M(k,p)

VT P N B YL »
= — dk
M(§,p) =V (4,p)+ 87r2/ m k2 — g2 — 40
(4.11)
with m; = m and |p|? = |§|%. The static limit of this potential is
L Z V2 v m2
V(g k) = QYO+ m? +VE 4wt (4.12)

G — k2 + A2
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The formula for the cross section now becomes

d _
== = |M(q,0) . (4.13)
dsf2

In the Born approximation this is equal to

do’B _ 02(q2+m2)
d?  dqtsintle’

(4.14)

which is equal to the lowest order result obtained from the Klein—Gordon
equation [4], and which for nonrelativistic energies reduces to the Rutherford
formula. The second order contribution to the scattering amplitude is equal
to

v o [{VEZ+m?+\/¢®+m?}®
MZ(qve) = 2
8 Vk? + m?
« dk
(1 = G2+ A?) - (1& — BI> + 22) - (k% — g2 — i0)

(4.15)

By separating this function into its real and imaginary part the total am-
plitude becomes

M(q,8) = V(q,0) + MF(q,0) + iM;(q,0) + O(ca®), (4.16)

which to this order in a can also be written as
_ ~ R Jvel
M(0,0) = (V(9,0) + Wf (0, 0) exp (152 ) (4.17)

The imaginary part of the amplitude is equal to the pole—contribution to
the integral in (4.15). It can be expressed in terms of elementary functions
and for small values of X it takes the form

- a?(q% + m?) 4¢%sin 16
Mj(q,8) ~ lo 2. 4.18

In the limit A — 0 it goes to infinity, but this is harmless, because it
only makes the phase of the amplitude indeterminate. The differential cross
section (4.13) now becomes

97 = 2(q.0) + 2V (q.0)N1f(q.6) + O(a*) (4.19)
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in which Mf(q,&) is given by the principal part of the integral in (4.15).
After analytically performing the integration over the directions of k, an
integral over its magnitude remains, which cannot be expressed in terms
of elementary functions. It has been shown, however, that the limit A —
0 does exist, so that %’7 is finite. With proper care for the logarithmic
singularity at K = ¢ in the remaining integral, this could be calculated
numerically. The quantity of interest is the relative change in the cross
section as compared to the Born approximation. To first order in « this is
given by
B -
Rq.6) = 48 47 _ 2M3(4.9)

doB - ”
do Vg, 9)

+ O(a?). (4.20)

For the Klein—Gordon equation the same quantity was calculated by Kang
and Brown [4]. They found

g sin %0
\ /q2 + m2 ’

The ratio R(q,8)/R¥®(q, ) is plotted in figure 4 as a function of § and for

two extreme values of the velocity v = —=1—.
" \ /q2+m2

R¥C(q.0) = (4.21)

0.5

04+

0.3
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0.1

0

0 30 60 % 120 150 180
Fig. 4. The ratio R(g,8)/R¥%(q, ) for two velocities

For intermediate velocities the curves do not differ much from the two
which are shown. Two features in this figure should be noticed. The first is
that for small scattering angles and for all energies the relative correction to
the Born approximation in the present theory is much smaller than in the
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Klein—-Gordon theory. This is closer to the Schrodinger theory, in which the
second order term is exactly equal to zero. The second feature is that the
difference between relativistic- and nonrelativistic scattering can be seen
only for larger scattering angles. Also there the correction to the Born
approximation is still smaller (by a factor of more than two) than in the
case of the Klein-Gordon equation. Finally it should be remarked that
the second order effects which have been considered here, have a different
origin in the two theories. In the Klein-Gordon equation the real part of
the amplitude gets no contribution from the two-photon exchange, and is
completely determined by the |A|2~term in the Lagrangian. In contrast, for

the present theory the |A]?~term does not exist at all and the two-photon
exchange amplitude has a finite real part.

The main conclusion of this paper can be formulated by comparing it
with an investigation of Rawitscher in 1964 [33]. He observes that

... the limit v/c — 0, where v is the velocity of the incident particle,

and ¢ that of light, is not equivalent to the limit ¢ — oo in the case

of Coulomb scattering and therefore the question arises whether the

Schrédinger equation should be used at all in the Coulomb case. This

is illustrated by the Coulomb phase shifts obtained in the Klein-Gordon

equation .. ..

The conclusion of the present work is rather that, since the Klein—
Gordon equation has a number of undesirable features and differs from the
Schrédinger equation in the nonrelativistic limit, it should not be used for
the description of Coulomb scattering.
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