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We estimate the damping parameter characterizing the rate of loss
of coherence between the components of a state consisting of a coher-
ent superposition of masses. In a medium at temperature 7" the result is
D ~ T3(GAM)?, where AM is the mass spread and G the gravitational
constant. Since each mass produces a different metric this may be viewed
as a simple calculation of the decoherence rate between different met-
rics. In another application, we consider the loss of coherence of mixing
neutrinos arriving from the early universe.

PACS numbers: 04.60. -m, 98.80. Hw

1. Introduction

Coherent superpositions of states of different energy or mass are an es-
sential part of quantum mechanics. Without them wavepackets would not
move, spins would never rotate, and the world would be frozen in a strange
state of stationarity. For an isolated system like an atom or an elemen-
tary particle in its rest frame, if we do not have a stationary state, we have
an interfering superposition of masses. A particularly striking example of
this are the famous oscillations of the K system, where coherence between
different mass states leads to striking effects, but many, more pedestrian,
‘examples exist; a decaying atom in an excited state has a width and so is
in a superposition of different masses.

Although this coherence between different energies or masses is an es-
sential aspect of the world as we know it, it is not entirely obvious that it
must necessarily be produced or retained under all conditions. The study
of “quantum damping”, or “decoherence” as it now is often called, has
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taught us how to calculate the loss or maintenance of this coherence, a least
in simple cases. By the same token, it makes it possible to understand
why certain “directions” in the apparently orientation-free Hilbert space of
quantum mechanics may come to be preferred. With this understanding
comes the realization that what is “natural” under some conditions may
not be natural under others. To take the simple case of a single molecule,
under certain conditions of the environment it may be thought of as having
a more or less definite shape, under others as having a more or less definite
value of a conjugate quantity like the parity or angular momentum. By
varying the conditions of the environment, one can cause one or the other
to appear [1].

2. Energy and gravity

In the same way, concerning coherent superpositions of energy or mass
we can legitimately ask as to why or when coherence in mass or energy is
natural and whether it is always to be expected and maintained.

Here we would like to estimate the loss of mass coherence using the
methods we have previously applied to such things as optical isomers and
neutrino oscillations. It is perhaps interesting to see what the answer looks
like since these concepts come up in connection with the fundamentals of
gravity. Since mass or energy is the source of the metric, by calculating the
decoherence of different masses, we will be calculating something related to
the loss of coherence between metrics. )

We shall approach the question from the angle of asking why this co-
herence appears to be so stable and hard to break. Certainly it is not part
of our everyday experience that the coherence necessary for the ordinary
march of events breaks down easily. To begin to answer this, we must recall
one of the major lessons of our previous work [1], a point which is essential in
understanding how the above “directions” get selected. That is that “damp-
ing” or “decoherence” occurs between those states of a system to which the
environment responds differently. Mere interaction with the environment is
not enough, the medium must “feel” (“measure”, some might like to say)
the different components of the system differently. For example, in the case
of the molecule with two states of handedness it turns out {2] that despite
frequent collisions with an ambient gas most of the collisions (at low tem-
perature) will not break the coherence between the two handedness. This
is because the two states in question respond to the environment very much
equally at low collision energy.

Now, as far as our present problem of the coherence between different
energies or masses is concerned, what interaction is there that will distin-
guish between two states which are identical except for their mass or energy?
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Evidently, there is only gravity. Hence, since under most circumstances
gravity is very weak on the quantum level, practically no energy decoherence
[3] is to expected under ordinary conditions.

However, if we are willing to consider extraordinary conditions, like
energies near the planck mass, or lengths on cosmological scales, there may
be some effects to look at.

3. Model calculation

Let us therefore consider the following simple problem: A state repre-
senting a mass having two components with mass M and M’ scatters an
external probe gravitationally. (Think of a K%r neutrino mixture as a tar-
get in a beam which the probe). The probe will go into different states
according to the interaction with M or M'; this induces a degree of deco-
herence. We wish to estimate this.

We use the damping parameter D of earlier work, which has the inter-
pretation of the damping or decoherence rate; equivalently 1/D is a “deco-
herence time”. For a two state system , D is given by the “unitarity deficit”
for the S matrices for the two states (here, M, M') in question. This deficit
is [2] Im (1 — SITMSMI). S being the scattering matrix, and the imaginary
part arising because we are dealing with a kind of damping eor absorptive
effect. We shall assume here that the same applies for two mass states so
that in an impact parameter b representation

D = (flux) /27rbdb Im (1 — S}, (6)Sp (b)) . (1)

For orientation in understanding this formula, we recall our old re-
sult that when we have two components, like say two neutrino types, with
one scattering in some medium and the other not, this formula gives D =
1/2x (scattering rate), where “scattering rate” refers to the interacting com-
ponent. Thus, as might be expected, the decoherence rate is something like
the scattering rate.

For the present problem of gravitational scattering we can use stan-
dard methods, as for coulomb scattering, to find the scattering amplitudes
needed. Their M dependance will then determine the damping rate. Sup-
posing the probe to be represented by a beam of particles and hence a plane
wave, it is convenient to carry out the calculation in an impact parameter
b representation where S is given by a sum over b with S(b) = 276(b)

We use the well-known formula for the coulomb phase shift

lm ax

6(b):2/a dl
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where here o = GEM/v, M being M or M' and E the energy of the probe,
v the velocity. G is the gravitational constant. We also call

Aa =GE(AM)/v, (3)

where AM = M — M'. The path of integration through the potential is
along the straight path / at impact parameter b.

In this, as in all Coulomb-like problems, we shall have long distance
logarithmic divergences, and so we introduce a large distance cutoff lmax
which must be interpreted according to the physical conditions. Carrying
out the integral we find that for a given b

Sh(B)Sap(b) = e2etalinmax/) (4)

Performing the b integration introducing again a long distance cutoff, we
find

2 2 2 1—-tAa
X . (b (Zax/b%0ax)
/27rbdb (1 - SMSM’) = ”lmax (112!::: - maxl ..l_n;Za ’ (5)

This result may now be evaluated in various contexts. Typically we
anticipate Imax = bmax, 50 that

/ 2rbdb(1 — S}, Spp) = miZ (-1:_—’%;%) . (6)

Taking the absorptive part leads to a second order expression in G.
(The first order, real part, corresponds to an energy shift, which is not of
great interest to us here.) Expanding for the usual case of Ao very small,
gives finally for D

D = (flux) ey (Ac)?. ()

4. Thermal medium

As anticipated, the damping rate involves the difference of the masses
and is usually very small. If we assume the system is in a medium of
relativistic particles (and setting all purely numerical factors to one) at
temperature T so that E ~ T, (lux)x T3 and lmax is the distance between
particles, or I3, ~ density= T3, we obtain, finally for such an environment

Am 2
D~T¥GAM): =T3 (A_ﬁ—") . (8)
Planck
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For any usual temperature and masses this rate is exceedingly small. How-
ever, for energies around the Planck scale and beyond, Planck mass particles
will not evolve, or at least not in the usual way. Time, in some sense, stands
still.

5. Mixing primordial neutrinos

An oscillating neutrino mixture, starting out in the early universe, will
see a flux of mass perturbations coming at it, like galaxies and stars, and a
decoherence will be induced in the density matrix describing the mixture.
We can examine this question in the above spirit, with a “beam” of galaxies
of the present epoch with a density of about one per cubic megaparsec
(mpc).

Here, however, Aa is not small. With a mass for a galaxy of 101! solar
masses we have Aa ~x GMyAm =~ v102°Am/eV, where we normalize the
neutrino mass difference in eV and v is E/m for the neutrinos . We cannot
expect this to be small. Rather, Eq. (6) will give us simply {Z,,, the cross
section of the galaxy. In other words we have, as in the old result referred
to above, that the damping rate is simply given by the number of galaxies
encountered per unit time.

Taking the size of a galaxy Imax = 0.1 mpc we have

D ~1072/(mpc) . (9)

So in 100 megaparsecs, every neutrino will have encountered a galaxy,
and have lost any phase coherence between different mass states. Of course,
to have any oscillations for primordial neutrinos in the first place they would
have to have been released (“decoupled”) in the early universe in a time
short compared to their oscillation period. This doesn’t seem entirely im-
possible, especially since they are rather energetic at the time of decoupling.
However, it would seem that they have little chance of reaching us as a still-
oscillating mixture. ‘

6. Gravitational vs. Coulomb phase

At this point we should admit to a slight over-simplification which we
have committed in order not to distract from the main point. We should
really use not just the Coulomb phase but rather that arising from the
Schwarzschild metric, since we are dealing with gravity. The gravitational
phase factor [4] is %fh“,,p“dx,,, where h,, is the deviation of the metric
tensor from its flat (Minkowski) value. The hgg contribution will be the
same as in the Coulomb case. However, since we have been dealing with
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relativistic particles, where the momentum and energy are essentially equal,
we should also take into account the h,, part of the metric. This indeed
gives a contribution which is the same as hgq, up to a numerical factor.
Since it is just a numerical factor, however, the results for the purposes of
our qualitative discussion will be the same.

On the other hand, the fact that masses interfere — which is our whole
point here — but charges do not [4] is a very fundamental and significant
difference between electromagnetism and gravity.
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