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Relation between the Dirac problem and the Weyl-Wigner—-Moyal for-
malism is considered. The Moyal *(,)-product and the generalized Moyal
bracket are defined and analysed. It is shown that the first heavenly equa-
tion appears to be the i — 0 limit of the SDYM equations for the Moyal
algebra.
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1. Introduction

This paper is the second part of the work devoted to the Weyl-Wigner-
Moyal formalism. In the first part [1] we have shown how some simple and
natural assumptions lead to the generalized Weyl application W,. Here we
review those assumptions in the light of the famous Dirac problem (Sections
2 and 3) and then we analyse the mapping inverse to W, i.e. the generalized
Weyl correspondence W; 1 (Section 4).

In Sections 3 and 4 the generalized Stratonovich-Weyl quantizer is de-
fined and some of its properties are found. Section 5 is devoted to the Moyal

*(g) -Product and to the generalized Moyal bracket {-, -}g\fl). It is shown that
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all algebras (P, x(4y), where P is the set of all complex polynomials on the
phase space I, = R! x R, are isomorphic to (P, *) and also all Lie alge-
bras (P, {-, ~}g\g4)) are isomorphic to the Moyal algebra on P, (P, {-, -} m). At
the end of Section 5 some comments on the problem of an extension of W,
and *(,) on some class of distributions are given. Finally, in Section 6 we
show some interesting application of the Weyl-Wigner—-Moyal formalism in
self-dual gravity. Namely, with the use of this formalism we prove that
the first heavenly equation can be considered to be the /i — 0 limit of the
SDYM equations in the Moyal algebra. Recently a revival of an interest in
the Weyl-Wigner—Moyal formalism is observed. It has been quickly recog-
nized that this formalism is not only a powerful tool in quantum mechanics
[2-9] but also is a beautiful mathematical formalism in self-dual gravity and
integrable systems [10-21]. We suppose that the Weyl-Wigner—-Moyal for-
malism offers the most natural method of quantization in curved spaces
(7.9, 22-24].

We are going to consider this question in next parts of our work.

[Remark: In this paper we deal with the phase space I = R! x R! but
the results can be easily generalized to the case of I, = R™ x R" for any
n > 1].

2. The Dirac problem

Let H be a Hilbert space and let £{H) denote the set of linear operators
acting on H. Moreover, let P denotes the set of all complex polynomials
on the phase-space I'; = R' x R'. For any A, B € P we define the Poisson

bracket to be ,

04 0B 0A9B
dq Op dp 0q’
where (¢, p) stands for the coordinates on I>. The symplectic form w on I
reads

(A, B}p := (2.1)

w=dgAdp. (2.2)

It is well known that (P, {.,.} p) constitutes a complex Lie algebra.
Definition 2.1. [25, 26]

A Dirac map is a linear map L : P — L(H) such that
(i) L(1) = 1 (the identity operator)
(ii) L({A, B}p) = [L(4),L(B)],
for every A, B € P:h is some real constant (Planck’s constant) and [., .]

denotes the commutator.
Then the Dirac problem consists in finding a Dirac map.



The Weyl- Wigner-Moyal Formalism. 1I. The Moyal Bracket 1963

We also need an associative algebra over C generated by finite linear
combinations and finite powers of the operators §,p,1 € L£(H) satisfying
the commutation relation

[4,p] = ihl. (2.3)

This algebra will be denoted by P. P is, of course, the enveloping algebra
of the Heisenberg-Weyl algebra generated by ¢, p and 1 [27].

According to Joseph [26] we denote by P™, m = 2,3, ..., the associative
algebra over C generated by m mutually commuting independent sets of
operators fulfilling (2.3).

First, we prove a theorem due to Groenewald [28] and Chernoff [29, 30].
Theorem 2.1 (Groenewald, Chernoff).

There exists no Dirac map L : P — L(H) satisfying the following
conditions

L(¢*) = (L(g))*> and L(p%) = (L(p))*. (2.4)

Proof.

From the equalities {¢3.¢}p =0 and {¢% p}p = 3¢*, and from (i)
it follows that L(¢®) = ¢* + &. where § = L(q) and & is a linear operator
such that [&,§] =0 and [a.p] =0, (p= L(p)).

Then, as {¢?,p*} p = 4¢p, from (ii) and (2.4) one gets

Llgp) = 35 L0, LD = 506,57 = 56+ p4)

Consider the equality {¢3, gp}p = 3¢3.

By (i1) we have [L(¢®), L(qp)] = 3L(¢%) i.c., using the preceding
results, [¢% + &, 2(¢p + pg)] = 3¢® + 34. But as & commutes with § and
p one finally obtam% & = 0. Therefore. L{q®) = ¢>.

Analogously we can show that L(p?) = p® and, by induction, one
quickly finds the general formulas

L((]m) — qm and L(pm) — ﬁm, m € Z+ s (25)

and

1 . ) o R R
L(qmp)=§(q"‘p+pq’") and L(gp™) = z(qp +p™g) me Z4. (2.6)
Consider now the relations

1 A
¢*p? = §{q3,p3}P and ¢’p’ =

3 6 6{{q e A el (2.7)
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Employing (i) and (2.5) we get

1 .4 . 1, 4. D D
L(¢’p®) = —[¢*,9°] = < (9%¢* + pd*p + ¢*H%)
9:h 3
L(g*p®) =

e spld L

1 5. T
= 3(8°¢ + pp + 5" + 1%).

Thus, as h # 0 the last two equalities lead to a contradiction and the proof
is complete. B

From Theorem 2.1 one concludes that if L : P — L(H) is a Dirac map
then L(¢%) # ¢* or L(p?) # p*. Therefore, the natural question is to find
the general form of L(¢™) and L(p"),n=2,3...

This question is solved by the lemma given in an excellent paper by
Joseph [26].

Lemma 2.1 (Joseph)

Given a Dirac map L : P - L(H), then

n—2
@)=+ Y (F)an-ritin=23,., 2.9
k=0
n—2 2\ -
L(p™)=p"+ (k) ba—kp* n=12,3, .., (2.9)
k=0

where § = L(q),p = L(p) and the linear operators ay, by € L(H), k=
2,3, ..., commute with both § and p.

Proof: (By induction)
For n = 2 we put
L") = ¢ +42, 72 € L(H). (2.10)

Then the equalities {¢%,¢}p = 0 and {¢?,p}p = 2¢, and the condition (i)
yield
[¥2,4] = 0 and [¥2,p] = 0. (2.11)

Comparing (2.10) and (2.11) with (2.8) one concludes that for n = 2 the
equality (2.8) holds. Analogously we show that also (2.9) holds for n = 2.
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In the next step we assume that (2.8) is satisfied for some n > 2.
Put

L") = " + Ant1, Fntr € L(H). (2.12)
From the relation {¢g"*!,¢}p = 0 and (ii) it follows that

[Yn+1,4=0. (2.13)
Then, from (i5), (2.8) and (2.12) one gets
1 n=2 ) )
h[’rn+1, (n+1) z_: ( ) -G~ . (2.14)

Eq. (2.14) can be written in another form, namely

[3

- 1 .

Fnt1— ) (Zjl)an k" =0. (2.15)
k=0

From (2.12), (2.13) and (2.15) we get

1 R ~
L") ="t + Z (ZL) dn-rd* ! + 5, (2.16)
where
. n—2 n+1 .
Bi=qns1— Y, (k+1)dn kG
k=0

commutes with ¢ and p.
Finally, it is easy to show that (2.16) can be rewritten in the following

form
(n+1)—2

L(qn+1) — ~n+l+ E ( )dn+l—kdk7

fl,n+1 = [3 . (217)

This is exactly (2.8) with n —» n 4 1.

Similar considerations can be done for L(p"*1), n > 2.

Thus the proof of the lemma is completed. B

It is well known that Physics imposes some restricition on the Dirac
map.

Thus, in fact, from the physical point of view one is rectricted to the
proper Dirac map which is defined as follows:
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Denifiton 2.2.

A Dirac map L : P — L(H) is called the proper Dirac map if for each
real polynomial A € P the operator L({A) is self-adjoint.

Now we are going to prove the Chernoff-Joseph theorem [26, 29, 30]
which shows that the original Dirac quantization program [25] cannot be
realized.

Let L?(R™;H4) denotes the Hilbert space of L? functions from R" to
a d-dimensional (d < oco) Hilbert space Hy.

Then the following theorem holds

Theorem 2.2 (Chernoff, Joseph)

There exists no proper Dirac map L : P — L(L?(R':H4)) such that
g = L(g) = the multiplication by ¢, and p= L(p) = —iha%.

Proof:
From Lemma 2.1 and the condition (i) one quickly infers that

L) = @ + a0, L(p*) =p* +bo.
Lo, :
Ligp) = 5(ap + $4) + ¢o., (2.18)
where dg, by and ¢ are self-adjoint operators acting on L%(R';Hy), com-
muting with both ¢ and p, and satisfying the following commutation rela-
tions

[@0.bo] = dihég, [ao,é0) = 2ihag. [bo.éo) = —2ihbg . (2.19)
As ég. by and & commute with ¢ and p they can be written in the form
ag = iq (54 /10. 130 = iq & BO and ¢ép = iq ®CQ, (220)

where iq stands for the indentity operator on L*(R!) and Ag. By and Cj
are some hermitian d x d constant matrices satisfying, mutatis mutandi, the
commutation relations (2.19). Substituting

) 1

1 .
Ay 1= —— ¥ 2.21
07 4in (2.21)

i — By). Bl = 2 (Ag+ By), €' = 1

one gets, by (2.19), the commutation relations for Aj, By and C{ to be

[40, Bol = Co. [By, Col = Ap, [Co, Ag) = ~By - (2.22)
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Therefore the d x d anti-hermitian matrices A/, B(’) and C) generate the
finite-dimensional representation of the Lie algebra sl(2;R) into the Lie
algebra of d x d anti-hermitian matrices. As d < oo this representation
must be trivial. Hence, .[10 =0, Bo =0 and G) = 0. and consequently

ap=0 by =0 and é;=0. (2.23)
But then, comparing (2.23) and (2.18), we conclude that
L(¢®) =¢* and L(p?) =p". (2.24)

Therefore by Theorem 2.1 we arrive at the contradiction. This com-
pletes the proof. B

(It is evident that the similar theorem can be proved for the case of
L?(R™;H4) with any n > 1).

Now, to avoid the difficulties with the (proper) Dirac map we are going
to weaken the conditon (iz). As it has been shown in [1] this procedure leads
in a natural way to the generalized Weyl application.

In the next section we recall some results of [1] in the light of the
considerations of the present section, and also several new results will be
given.

(It is well known that another solution of the Dirac problem is proposed
by the geometric quantization [31, 32]. However, in the present paper we
don’t touch this formalism).

3. The generalized Weyl application

From the proof of the Groenewald-Chernoff theorem one quickly con-
cludes that the difficulties with the condition (#) begin when the third order
polynomials are considered. Therefore, first we can modify (i) in such a
manner that this condition is satisfied for {¢, A} p and {p, A} p for every
A € P.

As it has been shown in [1] (see also references cited in [1]) this modi-
fication can be really done.

Thus one gets the following theorem:

Theorem 3.1

There exists a linear map Wy : P — P satisfying the conditions:
(i) Wy(1) =1

min(m,n)

Wo(p"q") = D glm.n s)h*pmogn

=0

mneN m+n#£0,9(mn,s)el,g(mn0)=1.
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(Z’l’) Wy({qvA}P) = Tlﬁ[Qng(A)]ng({pv A}P) = z_lﬁ [ﬁv Wg(A)]v for
every A€ P.

(1’1’i’) For every real polynomial A € P the operator Wy (A) is self-adjoint.
Proof: See [1]. R
(Recall that P denotes the enveloping algebra of the Heisenberg - Weyl
algebra generated by ¢,p and 1;¢ = Wy(g) and p = Wy(p)).
In [1} we have shown that any linear map Wy : P — P satisfying the
conditions (i’) and (i’%’) is definded by the sequence of complex numbers

{9(s,8,8)}senr, 9(0,0,0) = 1; then the numbers g(m,n,s),m > sand n > s,
are defined by g(s, s, s) as follows

g(m,n,s)= (’:) (Z) 9(s,5,5) . (3.1)

Finally, the condition (i'i”’) imposes the restrictions on g(s, s, s)

I - (™) g 3.2
m{g(m, m, m)] ——2-2 s).(s) g(s,s,s), (3.2)

where the bar stands for the complex conjugation.
Definition 3.1

A linear map Wy : P — P satisfying the conditions (i’), (i%’) and
(i’171°) is called a generalized Weyl application.

We now intend to express the generalized Weyl applicaton W in the
integral form. This form appears to be crucial when the extension of W,
on non-polynomial functions is considered.

We prove the following:

Theorem 3.2.

Let Wy : P — P be a generalized Weyl application and let A € P be
any polynomial.
Then

1
(@r)?

Wold) = sy [ A S (5A0) expliXp) explind)dde, (33

R2

where A = A(\, u) is the Fourier transform of A = A(p, q)

A=A(p) = / A(p. q) expl—i(Ap+ pq)ldpda, (3.4)

o
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and f = f(hAp) denotes the formal series
o0
hip)®
= 1) = Y (-1 T ats.5,9). (3.5)

$=0

Proof:

It is sufficient to prove the theorem for the monomials p™¢", m,n € N.
Denote Ap, », := p™¢™. Then the Fourier transform of A, n, according
to (3.4) reads

Amn = Am (A p) = /p'"q" exp[—i(Ap + uq)ldpdq
R?
= (2m)2imHnatm) (p)6(M) (g) . (3.6)

Inserting (3.6) into (3.3) one gets

am+n

Wg(Am,n) = (_i)m+n{m{

f(RAp) exp(zAp) eXP(i#é)}} :
A=0,4=0
(3.7)
Straightforward computation shows that (3.7) is equivalent to (i’) with (3.1).
Thus the proof is complete. l

(Compare the formula (3.3) with Refs. [27, 33-35] ). Using the Baker-
Campbell-Hausdorff formula one can write (3.3) in other equivalent forms.
Namely,

Wg(A)=(2—fr? [ A wabrn) exp i+ nd)ldrdy,
R2

o = alhip) := f(hAp) exp (%h)\u) (3.8)

or

Wold) = G [ A B () expind) explixp)drdu,
R2

B = B(hAp) = f(RhAp)exp(ihdp). (3.9)

Note that @ and 3 are also considered to be formal series.

In particular, the formula (3.8) is very often used in literature [2, 3, 27,
29, 33-35] and it justifies the name of the generalized Weyl application for
W,. Indeed if
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a=1 (3.10)

one gets the original Weyl application [36].
Definition 3.2

A generalized Weyl application Wy := P — P for which a = 1 is called
the Weyl application and is denoted by W. Then one can easily show that
the operator W, (A) is self-adjoint for every real A € P if and only if the
formal series a = a(hAy) is real. Moreover, from the formulas (3.5) and
(3.8) it follows that ¢(0,0,0) = 1 if and only if a(0) = 1.

Gathering all that we arrive at the following important.

Theorem 3.3

Let
>
a(hAp) = Z h)\u , ap € R (3.11)
be a real formal series such that
ag=1. (3.12)

Then the linear map W, : P — P defined by

P> A= Alp,q)— W,(4) e P,

Wy(A) = @ / fi()\‘u) (hAp) expli(Ap + pg)ldAdp . (3.13)
R2

is a generalized Weyl application.

Conversly, each generalized Weyl application is defined in such a man-
ner. M

From (3.5), (3.8), (3.11) and (3.12) one easily finds the relations between
the coefficients oy and ¢(s, s, s) to be

sse_stz ( )3 k(';)k!-ak. (3.14)

In particular, for the Weyl application which is defined by (3.10) one
gets
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g(s.s,8) = (—) sl, s e N. (3.15)

(Compare with [1]).
The natural question arises if the condition (7%’) in Theorem 3.1 can
be generalized to read

(17i7) We({B, A}p) = [Wy(B),W,4(A)] for every B € 7P of the order
< 2 and for every A € P.

The answer to this question is the following theorem:
Theorem 3.4.
A generalized Weyl application W, : P — P satisfies the condition
(171”) iff it is the Weyl application.
Proof:
As {¢?. p™q"}p = 2mp™ 1"t m.n € N, we have by (ii) and (3.1)

Wy({¢*.p™q"}pP)
min{m—1,n+1)

=2m Z (m,: l) (n-;- 1) g(s, s, s)hopmi=sgnti-s,

s=0
(3.16)

Then

8=0

" (n:) <n> g(s,s, )R TG

min(m,n)

+ th Z (m—s)(m—s—1)

s=0

X (’:) (’:) g(s, s, )R P27 (3.17)

Comparing (3.16) and (3.17) one quickly finds that W, ({¢*, p™¢"}p) =
zh[q W, (1)'" ™)] for every m,n € N iff the condition ('3 15) holds i.e., iff
the map H is the Weyl apphcamon W.
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Then, analogously we prove that

We({p% p™ ¢"}p) = %[p2 Wo(p™q™)]

for every m,n € N iff W, is the Weyl application W.
Finally, as for the Weyl application

W (pa) = $(53+ ), one gets W({pg, p™q") p) = = [W (40), W (5"

for every m,n € N.

Concluding, by linearity of Wy, Wy({B, A}p) = %[W,(B), Wy(A)] for
every B € P of the order 2 and for every A € P iff W, is the Weyl
application W. Thus the theorem holds. W

We end this section rewriting the generalized Weyl application in the
form which has been used by some authors [5, 7, 9, 37-39] and appears to
be crucial when the quantization for any symplectic manifold is considered.
From (3.3) and (3.4) one gets

W, (4) = / A(p, q){(—z;lr? / f(RA) expl=i(Ap+ )]
R2

R2

x exp(iAp) exp(iug)dAdp } dpdq

5 dpdq
= / AP, O%g(P 95 (3.18)
R2
where &, = ég (p, q) is the formal series of the operator-valued distributions

¢ =
defined by

- - 2rh
¢g :459 (P, q) = f(h’\ﬁ‘)
Wz/z
x exp[—i(Ap + pq)] exp(iAp) exp(ipg)dAdp

92 T
=f ( - ha_pﬁli) (—Z—;% / exp[iA(p — p)] explip(d — q)]dAdp
R?

o2
=2nhf (~ by )86~ p)6(a~q)

_ — g(sa S, S) s asa(ﬁ_p) 885(4_ q)
_27rh§) EILR* PO (3.19)
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Using (3.8) we can write 439 in the following form

. R 0? h 92 . .
D, =Pg(p,q) = 21rha(-—h—é—}38—q) exp (+2—2- M)(S(p—p)é(q—q) . (3.20)

The operator ég is self-adjoint

¢ =, (3.21)

in a sense that the operator Wy(A) is self-adjoint for every real A € P.

Definition 3.3.

The object sig = qﬁg (p, q) is called the generalized Stratonovich-Weyl
quantizer, or the generalized G'rossmann—Royer operator.

&, defined by (3.19) or, equivalently, by {3.20) generalizes in an obvious
way the Stratonovich~Weyl quantizer or the Grossman-Royer operator [5,
7,9, 37-39], which we denote here by é.

From (3.20) with (3.12) we obtain

Tr[®y(p, ¢)] = 1. (3.22)

(Remark: In Section 4 we rewrite (ﬁg in a compact form (4.14) from which
both (3.21) and (3.22) follow immediately).

Finally note that if f = f(hAu) or, equivalently, & = a(hAu) appear
to be (suitable) analytic functions then one can extend Wy on a wide class
5! (R?) of distributions on the phase-space I'y = R! x R!.

4. The generalized Weyl correspondence

The aim of this section is to find the map inverse to the generalized Weyl
application. From now on we assume that the Hilbert space # = L?(R!).

First we rewrite the unitary operator exp [¢(Ap + £§)] in some useful
form {2]. By the Baker~Campbell-Hausdorff formula one gets (see (3.3) and
(3.8)).

exp[i(Ap + pg)] = exp ( - %ﬁ,\,u) exp(iAp) exp(ipg) . (4.1)
Then
-+ o0
expli(Ap + pg)] = / exp [i(Ap + pg)llg)de(ql - (4.2)

OO
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Inserting (4.1) into (4.2) and employing the relation
exp (iAp)lg) = |g — hA) (4.3)

one obtains the final result

+ o0
e . AA
exp[i(Ap + pg)] = / exp [w(q - —2—)] lg — hA)dq(q]
e A A
= / exp(ing')|q — —2—>dq’<q’ + —2—'~ (4.4)

Now, let Wy : P — P be a generalized Weyl application (3.13) defined
by some real formal series of the form (3.11) with (3.12). Consider the

matrix element (g — §|Wg(A)lq + %), A € P. From (3.13), employing also
(3.4) and (4.4), by straightforward calculations one finds

(o= e = st -165)
+oo

X / A(p, q) exp ( - ifhp )dp' . (4.5)

-0

Hence, multiplying both sides of (4.5) by exp (z—%ﬁ) and integrating over d¢
we quickly find

+oo .
[ (o= Smatate+ §)exo (B2)de = a - i) 40 (40

Then, as o = a(hAp) is a real formal series (3.11) satisfying (3.12) there
exists a real formal series a~! = a1 (hAp) inverse to « i.e.,

oo =a Ta=1. (4.7)
Therefore, finally one gets from (4.6)

oo .
o (=ns) [ o= S+ §)exo (L)a = apa) (19

— 0
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for an arbitrary polynomial A = A(p,¢) € P.
The formula (4.8) suggests us to consider the following linear map

“l.p,p

P +o0 .
P35 Am W HA) =a™! (—-hé%;;) / <q—§|fi[q+g> exp (%)dé € P.

—_ 00
(4.9)
By (4.8) the mapping W’g“l is onto P and moreover, it is an easy matter to
show that for any operators A, B € P, A # B, one has Wg'“1 (A) # Wg_1 (B).

Consequently, the maps Wg“’1 . P > P and Wy, : P = P are mutually
inverse t.e. ) )
Wy (W, (A) = A and W, (W,(A))=A (4.10)

for arbitrary A € P and A € P. Thus we get
Theorem 4.1.

For each generalized Weyl application Wy : P — P there exists the
inverse mapping Wg“1 : P — P defined by (4.9). B

Definition 4.1.

The map VVg“l : P —» P inverse to the generalized Weyl application
Wg:P— P is called the generalized Weyl correspondence . Analogously,
the Weyl correspondence W~1:P — Pis the inverse mapping to the Weyl
application W : P — P.

We now give some useful forms of the generalized Weyl correspondence.
W, 1. P - P First, employing the relation analogous to (4.3)

exp(ipg)lp) = |p+ hp)
we get (compare with (4.4))

4o
explithi i = [ expliv)lo + )y (0 - | @

—0o0
Then, similar considerations to the ones which lead to (4.9) give

Wl A) = o1 2T inq .
s (A)=a (——hapaq) / <p—-—‘A‘p+ >exp(——h—)dn, (4.12)

— o0




1976 J.F. PLEBANSKI, M. PrzanowskI, J. TOSIEK

Another form of Wg_1 can be quickly found to be

. 32 i Ny
W,_1 - _r
R4

,))] (¢'|Alpy dp'dg’ dN'dy’
(¢'lp'y 2=xh 2rh
(4.13)

;
X exp [g(x\'(p -p)+ (g~

Finally, we write the generalized Wey! correspondence in terms of the gen-
eralized Stratonovich—Weyl quantizer.

To this end we rewrite this object in a simple and useful form. Namely,
from (3.19) with (3.8), (4.2) and (4.4) one gets

2

b +w .
ég(p’Q):“(‘hazaq)/e"p(%p)' §'>df< f!' (4.14)

hagie &)

Then, for any A € P we have
2

Tr[®, (p, 4) A] :a( - h(?i@q) /exp (%) (q"q + .g.>

R2
<q - ~‘A|q Ydgdq'
52 +oo h f
=a( - h@p@q)_/ (o~ g‘AIqJ’ %> exp (37 de.
(4.15)
Comparing (4.15) with (4.9) one obtains
W, (A) = a_z( - hég%)Tr[i?g (p,q)A]. (4.16)

(Compare with Refs. [5, 7, 9]).
It is evident that the formula (4.13) can be equivalently written as
follows

CRCEIERCORIEEES

R4

) ](q’lfiw dp'dg' dN'dy’
) (¢'lp') 27k 2xh
(4.17)

x exp [TV (0~ ') + 4 (g -
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(Analogously one can also rewrite (4.9) and (4.12).)

Consequently, if o is an (appropriate) analytic function such that —(1;
exists almost everywhere and posesses suitable integrable properties then
W, can be extended on a wide class of distributions S} (R?), giving a one
to one mapping W, : S, (R?) — S! . where S!, C L(H).

It is of some interest to have a general formula for Tr[@g (p, q)@g (. q")]-
Employing (4.14) one can easily find that

- b [ 82
Tr[®y(p, )Py (p',¢')] = Qﬂﬁa( - ﬁapaq)
2

xcy(—hé-;,a?)é(q—q')é(p—p'). (4.18)

For o = 1 we get the result of Refs. [5,7,8]. [To obtain (4.18) from (3.20)

one uses an equality
__(ih 97 ih i o
(2 ) (50 o -0 -
= 2whé(p - p')é(g - ¢')]- (4.19)

62

Finally, we make an important remark that the formulas of sections 3
and 4 can be rewritten in terms of the Weyl application W and the Weyl
correspondence W1,

Indeed, consider the mapping ¢ : P — P defined by

52

P> A=A q) s g(A) = a( oo

)A(p, q)EP. (4.20)

In what follows we will use the notation
Ag=g(A), B, =g(B), - etc. A,B, -+, €P. (4.21)
Then one quickly finds the fundamental relations
Wy=Wog and Wyl=g"loW™, (4.22)
or, in other words

)4) and Wy () = 0™t (= hole )W ()
(4.23)

82

W, (A) :W(a(—»hm

for any A € P and 4 € P.
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We have also evidently

~ ( 2 ~
by(0,0) = o~ ) d(00). (4.2

Now we are prepared to consider the Moyal (,y-product and the generalized
Moyal bracket.

5. The Moyal *(g)-product and the generalized Moyal bracket

In the previous sections we have found and analyzed the C-linear iso-

morphisms Wy : P — P and VVg_l : P — P which, evidently, are not
the algebra isomorphisms between the algebras (P,-) and (P, -), where the
dot “” denotes the usual product of polynomials in P or of operators in P
respectively.

Here we intend to define a new multiplication in P, which will be de-

noted by x4, so that W, and W'g“l define the algebra isomorphisms between
the algebras (P, *(,4)) and (P,).

To this end consider any two operators A,B € P. Then from (4.16)
with (3.18) one gets (as usually we omit the dot *-”)

- GE . - 1 . 9?
-1 _ =2 _ —2( _
W, (AB) = « ( h@p@q> Tr [®4(p, ¢) AB] (27rh)2a ( h(?p(?q>

X /ngl(fi)(p',q')Tr[@g(p, Q)@ (0, )Py (p", ¢"]

x Wyl (B) (0", q")dp'dg'dp" dg"" . (5.1)

(Compare (5.1) with [5, 7, 9]).
Then, using (4.14), we can quickly find the following formula
- - - 9?2
_ I oy o2 |
Te[@y (P, )Py (p', ¢ )Py (P",4")] =2 a( ﬁ'—_ap6q>

9* 0
X“(—ﬁaﬁgﬁa<—ﬁaﬁaﬁ)
X exp {i—:[(q ) p-p") = (a-q")p- p')]} :

" (5.2)

Substituting (5.2) into (5.1) one gets

WY (AB)(p,q) = 2 a—l(_h 0 )/W-l(/i)(p+ Nog+p)
g U= 2nn)? Apdq g ’
R4
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82 d2 Zl I\ 1IN}
X {a( - h————-(,)/\,aﬂl)a( - h—-———-—a/\"au”) exp }:-i(lt AT = )”
x W (B) (p+ X' g+ 1)dNdp'd\"dp" . (5.3)

Employing (4.23) we can rewrite (5.3) in an another, equivalent, form.
Indeed

B . 82 2 . 82
W, (AB)(p.g) = 07" (- hz)-l-)a—q)W*(AB)(p,q) 52—h)— l(“hﬁg;};)

X/{a( a,\?:) )Wg.l('”i)“’“‘lq“‘)}e‘p{f( N )|

9? R 5
x {a( - hW)W’g BY(p+ N g+ ) pdN dp'dX"dp" (54)

The equivalent formulas (5.3) and (5.4) lead to the following new mul-
tiplication in . Namely we define the mapping *(4) : P X P — P to be
(see also (4.20) and (4.21))

92 82
*(g): (A B) > Ax(y) B=(Axy B)(p.q) = (27”5)2&'1 ( - h’apaq)
X / Aglp+ A, g+u')exp %;—([L’)\" - p,")\')]
R4
X Bg(p+ X' q+ @/ YdXNdp' d\"dy" (5.5)

for any A = A(p.q) and B = B(p, ¢) from P.

Definiton 5.1

The mapping 4y : P x P — P defined by (5.5) is called the Moyal
*(gy-product on P.
Thus we have

THA) # ) Wy (B). (5.6)
Consequently, as (AB)C = A(BC) the Moyal *(g)-Product is associative.

Finally, one arrives at the associative but noncommutative algebra
(P. *(g)), and the following theorem holds
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Theorem 5.1

The generalized Weyl application W, : P — P is an algebra isomor-
phism of (P, *(g) onto (P,-). B

In the case of o = 1 we write “+” instead of “¥,)” and we say about
the Moyal *-productin P [2, 3, 4, 5,7, 9, 40, 42]. Now we intend to rewrite
the Moyal *(4)-product in a compact and transparent form. To this end we
express Ag(p+ X, q+ p') and By(p+ A, g+ p"') as follows

3y

1 [ on1 gn2

' N
Ag(p-f-A,q"}-/.L)— Z apnl aqﬂz

ny,ng

Ag(p, @) (V)™ ()2

nl'ng

— =

1 gmane Ay nn
Z m‘A g(p, Q)d " aqﬂQ( ) (u')"?
ny,ng

" "y _ 1 g 8n3 ans
Byp+ X" q+u") = 3 s (WP g 5

ngmy ng.ng.

Bg (pﬂ Q)

n3 § "4

1 d
)\H)ng Hyng -
ng;M n3!n4!( () Jdp™s Oq™4

By (pq).

(5.7)

Inserting (5.7) into (5.5) one obtains

— —
ng

Axgy B=(A* B)(p,q)

0? o™ 9
- ("‘m){ 2 A5 e

n1,n2,n3,14
5113 5'n4
8])"3 dq"4

X o (n}vn2’ ng,n 4) g(Py Q) 3 (58)

where

o-(n — 22 1 ,\/ ny yny
1, P2, N3, Ng) = (A" (u')

(2mh)2 nylnglnging!
4

X exp A" IIAI)] (/\H)n3 (,ull)n.;d/\ldﬂldAlld'u’H

h(

2 hyni/h
=(‘2ih)2 nl!n2!1n3!n4!( B Z) 1 (Z) "
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2t
% / (Hl)n2(ﬂu)n4 altnnl aﬂln3 exp [h (H’)‘" _ MII/\I)} d)\’d/l’d)\"d/.l,”
R4

1 h n1 ng
e — — (n3) 77,1) "
711!n2!n3!n4! ( 2'1,) / d N )6 ( )(/1' )
R2

1 thy ik n2
myna g, dy! = ( _ _) (__) snigne
X (w7 g dp n1!ng! 2 2 n47n3

Finally, substituting (5.9) into (5.8) we get

Axgy B =(A*g, B)(p.q)= (—762)2;
*(g) —( *(9) (pg) =~ lapaq s ny'ng!

01)"1 dq’ng 82)712 0qn1

_ 92 1 ik 92 9 ™
=a7! ( - hm) {Ag(z)’ 9 [ ZO ng! (5) oq™ Bp”]

(- %)m@)nuy(m)gm o 2" d - Bg(m)}

no=
= 1 thy™ Enlgm
X [Zon_l'(—?) 0])"1 W}Bg(pvq)}
ny=
2 PPN
=™ (=g [Aslr.a) exp (5 7 ) Bytr q)] ,

where o

p_09 090

dqdp Opdq’
In particular, for the Moyal *-product the formula (5.10) leads
th =
A*B:Aexp(; P)B.

thus o2

_ -1 _

Axgy B(p,g) =« ( Opdq )(A * Bg)(p, q) -

From (5.12), (5.13) and (3.12) one finds

lim (A +(g) B) = AB

for every A, B, € P such that %— = 0 and %% =0.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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Therefore, the noncommutative, associative algebra (P, *(,)) appears
to be a deformation of the algebra (P, -).

Consider now the C-linear isomorphism ¢ : P — P defined by (4.20).
Then, by (5.13) we have

9(A %y B) = [9(A)] * [9(B)]. (5.15)
Consequently, the following theorem holds.

Theorem 5.2

The mapping g : P — P defined by (4.20) is an algebra isomorphism of
(P,*(g)) onto (P, ). B

This means that all algebras (P, x(,y) are mutually isomorphic and they
all are isomorphic to the algebra (P, *). From (5.10) with (5.11) one inmedi-
ately infers that the following relation holds

2

g(p,q) exp ( - % P )Ag(p,q)
(5.16)

d
(A *(g) B)(p,(]):(l/ (_h()p()q>

Definition 5.2

The generalized Moyal bracket is a mapping {-, }Evg[) : PxP — P defined
by

{A. B} := — (A x(y) B= By A) (5.17)

h(
for any A, B € P.
Employing (5.16) we get

{A, B}(Ivgl) =a” (— h()]d)i)q) {A (p, q)? sin (% P )Bg (p. q)} . (5.18)

The generalized Moyal bracket for o = 1 will be denoted by {-, -} and
it is called the Moyal bracket. By (5.6) one has

1
zh[
This formula corresponds to the Dirac quantization rule (). It is evi-

dent that the pair (P, {-, -}E&)) constitutes the complex Lie algebra . More-
over, as

Wo({A, BY§) = = [W,(4), W,(B)]. (5.19)

lim ({4, B}\) ={4,B}p (5.20)
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for every A, B,€ P such that g—’;} 0 and %—g— = 0 each Lie algebra

(P, {, }(g)) appears to be a deformation of the Lie algebra (P, {-, -} p) [35].
Then it is easy to see that by Theorem 5.2 the mapping g : P — P de-

fined by (4.20) is a Lie algeba isomorphism of (P, {-, }(g) onto (P,{-,-}m)-
Definition 5.3

The Lie algebra (P. {-, -}s) is called the Moyal algebra on P.

Thus we can say that all Lie algebras (P, {, }(g) ) are isomorphic to the
Moyal algebra on P.
From (5.18) with a = 1 one gets

2 . (k= ‘
{A,Bya = Az sin (5 P )B, (5.21)
or, explicitly
oC 2s8+1 ,
_ (1) hy2s jf2s+1
{A, B} m _;—(23+1)!(5) ;(—1) j
x (07°F1719) A) (930 I BY, (5.22)

where J, = ;% and 0, = 3%.

We end the present section with some remarks on the problem of ex-
tension of Wy and *(,y on non-polynomial functions or distributions. In the
case of & = 1 this problem has been considered by Bondia and Vdrilly in
their distinguished paper [4]. The results obtained can be summarized as
follows (see also [7, 9]). The Weyl application W ((3.13) with o = 1) can
be extended on the space of tempered distributions S’(R?).

Consequently, if H = L2(R?!), then W is a linear continuous mapping
from S'(R?) onto L(S(R'),S'(R')). where £L(S(R').S'(R')) denotes the
space of all linear continuous mappings from the Schwartz space S(R!) into
the space of tempered distributions on R', S’(R').

Much more subtle is the problem of the extension of the Moyal *-
product. As it has been shown in [4] this product (defined analogously
to (5.5) with a = 1) is well defined on the space

M(Rz) = M(RH) N Mpg(R?), (5.23)
where

Mp(R?) :={T e S'"(R*) : T+ F € S(R?), forallF € S(R?)},
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MEg(R*) = {V € S'"(RY): F+xV € S(R?), forallF € S(R®)}. (5.24)
Here T'x F and F x V are defined by

(T+xF,G) :=(T,F+G)and (FxV.G):=(V,G* F) (5.25)
for every G € S(R?).
We have
S(R%* c L*(R?*) c M(R% c S'(R?), (5.26)
and also '
&'(R*) c M(R?);P C M(RY), (5.27)

where £'(R?) denotes the space of distributions of compact support on R?.
Moreover, M(R?) is invariant under the Fourier transformation.

It is evident that, in contrary to the case of polynomials, the Moyal *-
product cannot be equivalently defined as

FxG = Fexp (%5)6’ (5.28)

for every F,G € M(R?). However, it has been shown in [4] that the formula
(5.28) really holds for every F,G € £'(R?), where £'(R?) stands for the
Fourier image of &'(R?).

What concerns the general case when o = a(hAy) # 1, the problem is
much more involved and it will be analyzed in a separate paper. Here we
only observe that this general problem can be brought to the case o = 1
if the Fourier transform F = F(\ p) is modified by F(\, p)a(hp) (see
(3.13)).

Finally, we make an important remark which appears to be a crucial
point when some applications of the Weyl-Wigner—-Moyal formalism in self-
dual gravity are considered (see the next section and also Refs. [10-19]).
Namely, let F = F(p,q) and G = G(p, ¢) be any C*°(R?) formal series in
h.

If @ = a(hAu) is also considered to be a formal series in h, then accord-
ing to (5.13) one can define

v - 62
Fxg)G=(Fx G)p g =« 1( - h————)

X { [a( - haizq)F(p, q)jl exp (? 7_?) [a( aaa )G (p, q)} }

F *(g) ( is the formal series in k.
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Thus denoting the linear space of the C°°(R?) formal series in A by
II(h;C*°(R?)), one gets the noncommutative associative algebras
(II (h; C*(R?)), *(g)) which are mutually isomorphic and isomorphic to the
algebra (II(h; C'°(R?)). ).

Then one defines the Lie algebras (II(k;C*(R?)), {-, }(g) which are
also mutually isomorphic and isomorphic to (11 (h: C"O(R2 ) {-s -} ag)-

Definition 5.4

The algebra (IT(h; C°(R?)),{-, -} a) is called the Moyal algebra.

According to the Gelfand Do1fman Fletcher theorem [42], all 2-index
infinite Lie algebras correspond to the Moyal algebra in some basis (On the
Moyal algebra see also [12, 14]).

6. The Weyl-Wigner—Moyal formalism
and the first heavenly equation

In this section we present some example of application of the Weyl-
Wigner-Moyal fromalism. The example, rather unexpectedly, does not
concern quantum mechanics but general relativity, or more precisely, the
self-dual gravity. We deal with a 4-dimensional real differential manifold X
endowed with a self-dual vacuum metric ds? of the signature (++ ——). It
is well known that in this case the space-time (X, ds?) appears to be hyper-
kihlerian and the metric ds? can be locally brought to the form

ds? = 2(2 pqdz @5 dg+ 2 4pdx Qs dp+ 2,y dy Dy dg+ 2,y pdy @ dp) , (6.1)
where “®,” denotes the symmetrized tensor product i.e., dz®sdg := %(dm@
dg+dg@dz) ..., etc., and 2 = 2(z,y,p, q) is a real function satisfying the
first heavenly equation [43].

22¢82yp = L22pRyq = 1. (6.2)

Here we use the obvious notation. 2, = 0,62, 2 44 = 0:0452, ... etc. It is
convenient to rewrite Eq. (6.2) in the form

{2.02yp=1, (6.3)

where {-,-}p stands, for the Poisson bracket with respect to (q,p). Then
the Moyal deformation of the first heavenly equation reads [10, 11, 17, 18].

{2:,2y}m=1. (6.4)
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Employing the Weyl application to (6.4) and using also (5.19) one gets
(22,82 4] = thl, (6.5)
where ) )
2=, y) =Wz, y,p.q)) - (6.6)

But Eq. (6.5) really means that there exists an unitary operator-valued
function R o o
U=U(z,y), OUT =00 =1 (6.7)

such that

Q,=U§0% and 2, =UpUT. (6.8)
Then, from (5.6) we obtain

Q’EZU*q*U,Q‘y:U*p*U,
UxU=UxU=1, (6.9)

where we have used also the relation which follows inmediately from (4.8),
i.e.

WY U =w-1(0). (6.10)

The function U = U(z,y,p,q) in (6.9) is defined by U = U(z,y,p,q) =
W1(U (=, y)).
Then one quickly finds

g+ U =ih{q,Utpr + U * ¢ = ihdpU + U % g,
pxU=ib{p, Uy +Uxp=—ihd, U+ Uxp. (6.11)

Finally, substituting (6.11) into (6.9) and employing the relation 2,4 —
2 yo = 0 we have

Ox(U*0,U0) +0,(Ux8,U)=0,UxU=UxU=1. (6.12)

Egs. (6.12) can be rewritten in equivalent form as follows. From the relation
Q,xy - Q,yx = 0 and (6.8) one quickly gets

[4,0%0,0] - [p,Ut8,U]=0. (6.13)
Then by the Weyl correspondence we obtain

04U % 0,U) + 0, (U x8,U) = 0,
UxU=U*+U=1. (6.14)
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Eqs. (6.12) or, equivalently. (6.14) are equivalent to the Moyal deformation
of the first heavenly equation (6.4).

To give an interpretation of the equations obtained we consider the self-
dual Yang-Mills (SDYM) equations on the flat 4-dimensional manifold R*

of the metric ds 2 of the signature (+ + ——)

ds? = 2(de @, di + dy @, di) . (6.15)

Let G be some Lie group and G its Lie algebra. Then the G-SDYM equations
read [44]

asz — 8y,41 + [AL, Ay] =0, (6.16a)
8%.45 - 034z + [A@A_@] =0, (6.16b)
0z Az — Oz Ar + 6,,A5, — 8,;.% -+ {AI,A}/] + [Ay, Ag] =0, (6.16¢)

where A; = Ai(z,y,% 4),i € {z,y,% §j}, are G-valued functions on R*.
From (6.16 a) and (6.16 b) it follows that there exist the G-valued functions
on R*, K = K(2,y,%,§) and K = K(z,y, %, §), such that

A; = K719;K for j € {z,y}, and Ay = K~'9,K for l € {&,9}. (6.17)

Define )
J=K -K'eGoC®RY). (6.18)

Substituting (6.17) into (6.16¢) and using the definiton (6.18) one finally
concludes that the G-SDYM equations (6.16a), (6.16b), (6.16¢) can be
brought to the following form [45]

0:(J 710, J) + 05(J 19y J) =0 (6.19)

or, equivalently

B(JOJ Y+ 9,(JO5T M) =0. (6.20)

Comparing (6.19) and (6.20) with (6.14) and (6.12), respectively, we con-
clude that the Moyal deformation of the first heavenly equation can be in-
terpreted to be the U.- SDYM equations, where U, is the Lie group defined
by

Ue:={U e I(hC®RY)):UxU=Ux*U=1}, (6.21)
(where, as before, the Moyal *-product is defined according to (5.12) with
(5.11).

It is evident that by the Weyl application we find that U, appears to be
isomorphic to the group U of unitary operators acting on the Hilbert space
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H. Then, the first heavenly equation can be considered to be the A — 0
limit of its Moyal deformation.

The relation between the first heavenly equation and the SDYM equa-
tions which has been presented in this section seems to be new with respect
to the previous analysis [16-18, 46, 47, 48], as in our interpretation no
symmetry reduction is needed. The main question is if this interpretation
enables us to apply all the mathematical machinery of the SDYM equations
to the first heavenly equation. This is obviously a very hard problem and
it lies behind the scope of the present paper.

We are indebted to H. Garcia-Compeén for useful discussions and to
Marek Kalinowski for pointing out the recent paper by Gadella [9]. One
of us (M.P.) is grateful to the staff of Departmento de Fisica at CINVES-
TAV, México, D.F., México, for a warm hospitality. The work is partially
supported by CINVESTAV and CONACYT, México.
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