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The equation of motion of a point-like test body is derived from the
field equations of Projective Unified Field Theory. We studied this equa-
tion of motion with respect to a potential violation of the equivalence
principle. The Newtonian and the post-Newtonian approximations of the
field equations and of the equation of motion of a test body are studied in
detail. In analyzing some experimental data we performed some numeric
estimates of the ratio of the inertial mass to the scalaric mass of matter.

PACS numbers: 04.20. Qr

1. Introduction

Recently considerable interest was raised by experiments aiming at the
verification of the equivalence principle, in context of searching for new
effects in the gravitational field. Particularly a possible experimental dis-
covery of a deviation from the Newtonian gravity has been widely discussed
with respect to the fifth force hypothesis of Fischbach et al. [1].
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Let us mention that Jordan [2] tried to generalize Einstein’s theory
of gravitation by taking into account a scalar field occurring in the 5-
dimensional projective relativity theory which was developed after the well-
known 5-dimensional concept of Kaluza and Klein.

In the present paper we take the last version of the Projective Unified
Field Theory (PUFT) of Schmutzer [3] as a basis of our investigations. This
concept introduced a hypothetical new attribute of matter — the so-called
scalarism (with scalaric as the related adjective). Schmutzer’s PUFT has
been developed in three stages. The version I of PUFT led to a possible
violation of the equivalence principle which has been tested experimentally
to a precision of 107!2 [4]. Two decades later this situation was one of
the reasons for him to elaborate a second version of PUFT with a slightly
changed projectian formalism using a “conformal factor” (version II). Re-
cently he proposed new 5-dimensional field equations and returned to the
projection formalism of version I (version III).

In the paper presented here we do not discuss the differences of these two
versions which mathematically differ only insignificantly from each other.
We rather treat both versions mentioned simultaneously, drawing our at-
tention to the fulfillment of the equivalence principle.

Further we study the equation of motion of a test body and the post-
Newtonian approximation of the theory. Our results allow to compare the
predictions of PUFT and Einstein’s theory with the experimental data.

2. Equation of motion of a point-like test body

The 4-dimensional field equations of PUFT (Gauss system of units)
have the following form (Latin indices run from 1 to 4, Greek indices from
1 to 3; signature of the metric (+,+, +, —); comma and semicolon denote
partial and covariant derivatives, respectively) [3]:

GENERALIZED GRAVITATIONAL FIELD EQUATIONS
Rpn — %gmnR‘f“AG_zagmn = KO(Emn+Sm"v+6m'”)’ (1)

where kg = 8myxn/ ¢! is Einstein’s gravitational constant,

1 1 ;
Emn = =Bk H" n + 7 0mnBjiH'") (2)

is the energy tensor of the electromagnetic field,

, A 1
Smn = _T"(U,mol,n - ,—gan,kU’k) (3)
Ko 2
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is the energy tensor of the scalaric field, @, is the energy tensor of the non-
geometrized matter (substrate), A is a free constant, which can be chosen [3]
as A = —2, Ais a free constant, which is an analog to Einstein’s cosmological
constant (A = Ag/SZ, A = Koko, where Ag, Ko and Sy were used in [3]).

GENERALIZED ELECTROMAGNETIC FIELD EQUATIONS

47 .
a) H™" n = -c_]m, b) B(mn,k) =0, c) Hpn = 620an ) (4)

where Hp,, and By,, are the field strength tensor and the induction ten-
sor of the electromagnetic field, respectively, j* is the electric four-current
density (( ) means cycle).

SCALARIC FIELD EQUATION

k Ko 1 ki 24 —20
W= —={ 04+ —DBy;HY — , 5
o7k 3 ( + g7 Dk )+ 3¢ (5)
where 9 is the scalaric substrate density.

The above field equations lead directly to the following conservation
law:

1 :
emn = _ZBm kjk + 9™, (6)

Let us mention that the field equations of version II of PUFT [3] can
be obtained from the present field equations (1) to (5) by the choice: A =
3, A=0; 0 = %an, ¥ = 24911, where the index “II” denotes quantities
which occur in version II.

It is well-known that the equation of motion in PUFT (as in the Ein-
stein theory) can be derived from the field equations. Of course its explicit
form requires concrete assumption for the energy tensor ©™", electric four-
current density j* and scalaric substrate density 9.

As it is well-known, in the Einstein theory for incoherent matter @™" =
—pu™u™ and j™ = pou™ (p mass density, pg electric charge density). This
means for the case of a point-like test body (material point) with the inertial
mass M, scalaric mass M and charge e that the following formulas are valid:

mn M) (z — &(1))u™u™
"t = dr, 7
/ GEG) ©
im = e 5(4)(3: - g(T))’U,m dr 8
R BN/t ! ®
9= C3 M5(4) (T - 5(7‘)) dr, 9
/ g(&(r)) ©)
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where the integrals in the equations (7) to (9) must be taken along the world

line (determined by x* = £*(7)) of the test body; u™ = idg;_" is the 4-velocity
of the test body and g = —det(g;;). It should be taken into account that
the integral structure of 9 follows directly from the expressions (7) and (8)
using the equations (6). The multiplier ¢® in the expression (9) guarantees
that the scalaric mass M has the same physical dimension as the inertial
mass M. Therefore the quantity D = Mc? was called “scalaric substrate
energy” [3].
By substituting (7) to (9) into equations (6) we obtain

D(Mut)

- = SBi vuf — Mot (10)

Multiplying (10) with u; and keeping in mind that u'u; = —c? instead of
(10) we find the following equations which describe the motion of a point-like
test body in a gravitational, electromagnetic and scalaric field:

Du? . . 4

M DQ; - SBl guf — EMR ol | (11)
dM do
I = Ma’kuk = ME—;, (12)

where hi]- = gij + Zlguiu]- is the projection tensor.

We mention that the equation (11) and (12) coincide with the corre-
sponding ones found by Schmutzer by performing a transition from the
equation of motion of a perfect fluid [3]. From the equation (12) follows
that there exists a dependence of the inertial mass on special features of
the test body in PUFT. Further one realizes that in the restricted case of
a vanishing scalaric field (e.g. at infinity, far from matter) PUFT goes over
into the Einstein theory [3], in which M = Mj = const. Therefore as a
consequence of (12) it is quite natural to suppose that the variability of
the inertial mass is exclusively caused by the scalaric field, i.e. M = M(0o),
where the function M (o) satisfies the condition M(0) = My. Hence follows
that the scalaric mass is determined, in correspondence with equation (12),

_ dM(o)
by M = =%,

In the case of an electrically neutral particle (e = 0) or in the absence
of an external electromagnetic field (B,,, = 0) equation (11) reads:

Du’
Dr

| :
= —c?n(o) (cr” + ;z—a’kuku’> , (13)

where (o) = —ﬁ/[i The equation (13) contains an arbitrary function n(o)
which according to the concept of Schmutzer [3].
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Let as mention that from (13) one immediately learns that the equiv-
alence principle is fulfilled if n(o) is a universal function for all matter. In
the following we treat for the sake of simplicity the case n = const. Then
the dependence of the inertial mass of the o-field, acquires the specific form:

M(o) = Mpe"?, M(o) = (nMp)e"?. (14)

The equation (13) affirms the non-geodesic motion of electrically neutral test
bodies in a gravitational and scalaric field. Some experimental consequences
of such a non-geodesic motion will be studied in following sections in more
detail.

3. Newtonian approximation

In the case of a vanishing electromagnetic field and for A = 0 the
equations (1) and (5) lead to the Newtonian approximation [3]:
Ko
1) 15
/\ ? ( )

where ¢ is the Newtonian gravitational potential, which is connected with
the metric: gqq4 = —1 — %‘f}

a) A¢=dnynpu, b) Ao =

Although (15) were obtained for the case of absence of an external elec-
tromagnetic field, we should not ignore the fact that the internal region of
electrically neutral matter might contain local electromagnetic fields of ap-
preciable strength, which could give birth to local scalaric fields. According
to (5) these local scalaric fields o,  could give a considerable contribution to
the global o-field appearing in (15b). Therefore this problem will be studied
oW,

Let [ be the characteristic size of the region of internal nonzero mi-
croscopic electromagnetic field. Now we study an isolated system of matter
with the characteristic size L. Then from (5) the estimate of the microscopic
scalaric field created by this microscopic electromagnetic field results:

ag - .
55~ o (Big H'Y Y 1oe ~ Ko By (16)

where Ej,. is the strength of the microscopic electric field. In a similar way

one can estimate the value of macroscopic scalaric field from (15b):
a lard
FNI{QﬁNHo?]/.L. (17)

Comparison of (16) with (17

2 2
g n \ L po

) leads to the relation
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The contribution of microscopic fields has no significance if the inequalities

2 2
9, [ Eloc
—2£ 1, ) - — 19
p < or > (L) P (19)

are fulfilled, which under normal physical conditions is valid. Therefore we
can neglect the scalaric field created by microscopic electromagnetic fields.

The equation of motion of a test body (13) in the Newtonian approxi-
mation takes the following form:

dv

1 + gradé = —ncgrado . (20)

As a consequence of the assumed constant ratio of the scalaric mass to the
inertial mass and under the assumption no < 1 we get

a) = poe" = po(l+ no), b) 9 =ncu~ntuo(l+no), (21)

where po = p(c = 0). By means of the relations (21) the two equations
(15) can be rewritten in the form:

A¢ = 4mynpo (1 + o), (22)
8w
Ao = /\zgnuo(l +na). (23)

Comparing the equations (22) and (23) one finds

2n .
szc—ﬂ?-i-f’ (24)

where f is an arbitrary function satisfying Laplace’s equation Af = 0.
The case of f # 0 takes into account sources of gravitational and scalaric
fields outside the isolated system. Excluding such situations we can without
any restrictions choose f = 0. From (20) and (24) one finds the final
form of the equation of motion of a point-like test body in the Newtonian
approximation:
dv
dt
As it is well-known, the measurement of the frequency red shift in a
gravitational field (experiments of Pound and Rebka [5] and Pound and
Snider [6]) shows that the free motion of bodies corresponds to geodesics up
to the precision of 10~%. Looking at (25) one immediately recognizes that in
the first nonzero (Newtonian) approximation the deviation of free fall from

2 ,
~(1+ $nP)grade. (25)
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geodesic motion has the order n?. Consequently we have the restriction:
n <1073,

Finally we note that the effective Newtonian gravitational potential
reads: ¢, = (1 + %772) o.

4. Post-Newtonian approximation
4.1. Solution of the field equations

Let us consider a system of slowly moving bodies bounded by gravita-
tional interaction (planetary system). In order to describe the gravitational
field of this system at large distances from its center, in the Einstein theory
one can use the so-called post-Newtonian approximation (see for instance
[7, 8]). In this paper we will show that the field equations of PUFT also
allow an analogous approximation. Similarly to the procedure in the Ein-
stein theory it is convenient to take the ratio § = v/c as a small expansion
parameter of the exact field equations, where v is the characteristic velocity
of the motion of the bodies, which is related to the gravitational potential
¢ as follows:

12
c_2 ~ if) ~ 3% (in solar system 3 ~ 107* to 1073 ). {(26)
c c?
As an intermediate step we rewrite the field equations of PUFT (1) and (5)
in the form:

Rpmn = Ko (an - %gmn@k k) - /\U,ma,n , (27)
ok = l/{ 9 (28)
Y Y ov.

Taking into account the experience in the Einstein theory and in our anal-
ysis of exact solutions of PUFT field equations ([3. 9]). we suppose that
there exists a coordinate system in which in zeroth order approximation the
metric tensor equals the Minkowski tensor 7;; = diag(1,1,1,—1). Then the
following power series approximation is possible:

] 2 .
9a3 = 0ag +9ap + 0(134) ) (29)
3 5
God =904 +O(37) . (30)
2 4 "
gaa = — 1+ Gag + 944 + O(3°) , (31)
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N , )
where the symbols ¢,; mean the terms of the order 3%V. Using the solution
of the field equations in the Newtonian approximation we claim that the
expansion of the o-field starts with a term of the order n¢ ~ n3*:

2 4
c=0+0+0(8%. (32)
Therefore in (27) the o-field can only appear in the combinations
(0,4)2 ~ 772/369 040 o ™~ 7)2/35‘, T a0 3~ ]?2.»84 . (33)

Since 7 < 1073, the terms containing the o-field can be omitted in (27).
Substituting (29) and (32) into the field equations (27) and (28) one finds
that indeed in harmonic coordinates (i.e. coordinates in which I'* j,¢?™ =
0) the field equations are in agreement with the expansions being used. We
obtain the following results:

2 Sr~yn 0
ANGyy = 73’01644 s (34)
2 8T 0 ar
Dy = =630 (35)
3 167 1
ANGoy = *-—z’y—NOM- (36)
C
4 2 2 2 2 9 Smyn .2 2 0 2 .
DGyg— 94449~ 9ap944.05+(Va4) = CZN (O** 294460 **+0°%). (37)
2 Smwyn 0
NO = —-9, (38
Ac? v )
4 2 2 2 12 2 2 8myn 2
U,aa - 0 44 — (g ada‘a) + .—0‘10 <gm~:,a - -(/44,01) = )\’ZN{) . (39)
B 2 c

One should realize that the equations (34) to (37) do not exhibit the con-
stant A\. Therefore the post-Newtonian solution for the metric does not
depend on A. Though the equations (34) to (37) formally do not differ
from the corresponding equations in the Einstein theory, their solutions can
be different because of the influence of scalaric o-field on the equation of
motion of matter.
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Taking into account the additional condition (21a), for a perfect fluid

(O = —putul — p(cl—Quiuj + ¢%7)) the set of equations (34) to (39) can be
integrated. The solutions read:

D gap = s (1- 22 ) 405,

1.
b) Jad = Egéa + 0(55) )

O gu=-[1+ 2+ 5@ 40| o) (40)
_ [¢+ L w20, 4+ 3@)] +o(sh, (41)
where ,
bl t) = —yy [ FZ0) g (42)
@ — |
Gale ) =t [ 222 LLCEU NN (43)
|z~ |
2
wt)_———/d atQ lm—lm/l(l3m/_2¢l_2(1_73\_2)@2.-3@4.
(44)
B (2.1) = 7x / o (z ,t)vzfa: ’t)dsa:', (45)
|z — x|
By (@, 1) = —Yn / po(@ A1) 3, (46)
Im — x|
l — | (47)

As we expected, the solution found differs from the corresponding solution
in the Einstein theory only in the order 3% (see (44)). Concluding this
section we present the equation of motion for a point-like test body in post-
Newtonian approximation:

i’t’ (1+~n) (¢4 56"+ - 2 0) (1—2772)§V¢
: vdp 190( v 4v
+ ( —X772)—2E—c—25+—2><(VXC)+—2‘(”V)¢

2
32 2V (281 + 304) . (48)
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4.2. Perihelion motion of Mercury

In this section we investigate the motion of a test body (e.g. Mercury)
around a central body (e.g. sun) which for simplicity will be considered
as non-rotating and spherically symmetric. As before we suggest that the
condition n < 1 is fulfilled. Under these assumptions the integration of the
field equations (34) to (37) leads to

2’}’N A/[C
R

a) dag = 5&13(1 + ) + O(:Bé) b

b) ga4:01
2ynM: 293 M

e - S 10, (49)

c) gag = -1+

where M, is a constant coinciding with the inertial mass of the central body
if the scalaric field vanishes. Therefore in this approximation the metric has
the same form as the metric in the Einstein theory.

The equation of motion of the test body reads:

d2R _d'v ’)/NA/IC 2 2 47NA/IC
@ e B R (HX")(“ 2R
2, v? 4yny M, 4
-z i 3*) . 50

In the Newtonian approximation the equation (50) goes over into the equa-
tion of motion

d?R dv v M, 2772)
dt? dt R3 ( 3 (51)

Integration leads to the following set of equations:

do 5 N\ 12
299 _ Zn? 52
R [7NMC(1+/\77)1)] : (52)
1/2
Mc(1+ 39° :
v = d_R — [7]\’ C( + )\',7 )} [—CISin(P‘f'ey(g'*‘COSAP)} . (53}
dt P
where

a) R = R(e;cosyp+eysinyp), b) R=p(l+ccosp)™t. (54)
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As it is well-known, this solution describes the motion of the test body in a
plane (spanned by the basis vectors e, and ey) orthogonal to the angular
momentum. We remind that R and ¢ are polar coordinates in the plane of
motion, p and £ (eccentricity) are the parameters of the ellipse.

Applying the method of successive approximation we find the following
post-Newtonian solution:

/2
Mc(1+ 392
= | C(I)+ - )} [—ersinp+ey(c +cosp)] + dv, (55)
; 5 7172 )
R = (Rxv). = [«rNMc(l + ;772)1)] (1+6h),  (56)
where dvw M
Sh=— '“; Secosyp (57)
c'p
and

. Mc(14 292) [y M 2
6’02\/7}\/ c( + ) ) (‘)]\? Ic) {e;z: [sinap ((3 __&_2) + _??2(1_*_52))
P c2p A

2,0 1 2, .
—EB - ym)e+ 5l 4 5m )Sm2so}
2 2 9y, € 2 2 .
—eylcosp(l+%)(3+ 37 )+-2— 1+X7) cos2¢p| /. (58)

Using the identity

-1
d41__ (H2d_"’) (&) , (59)
d¢ R dt R

we get from (58) for the trajectory of the test body:

‘M1 2 . 2 . .
% =1+4+ecosp+ 7—1;2—;)—C [Eacoscp(? - -/\—772) +e(3 - X'rlz)cpsm 90] . (60)
The calculation of the perihelion motion leads to the result
6ryn M, 2
b ——|1- — 61

for one revolution. This formula (61) is identical with the relation found by
Schmutzer [3] using the exact spherically symmetric solution. If n = 0 (61)
coincides with the corresponding result in the Einstein theory.
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Let us finally mention that the deviation of the astronomical obser-
vations of the perihelion motion of Mercury from the predicted values in
Einstein’s theory is 0.1” to 0.01"” (see [8]) and agrees with the equation (61)
in PUFT if < 1073,

5. Conclusion

In the present paper we investigated the equation of motion of a point-
like test body in PUFT and the possibility of functional dependence of the
inertial mass of an external scalaric field. Although the idea of variability
of inertial mass is not new itself ( see e.g. [10]), in PUFT it appears quite
natural.

Let us remind that in PUFT the gravitational central mass M, ap-
pears in the exact spherically symmetric solution. At the same time the
acceleration of test bodies in an external gravitational field (see (50)) is
characterized by another quantity M, (1 -+ %772) . Naturally the latter must
be identified as the mass of the Sun in experiments in the solar system, i.e.
Mg = M. (1+ %772) since the mass of the Sun has to be determined by
its gravitational interaction. Hence follows that the perihelion motion of

Mercury reads

GFW'J\YA“I@ 8 2 .
The FEinstein effects, as light deflection and photon frequency shift, are
determined exclusively by the space-time geometry. Therefore the results
in PUFT coincide with the corresponding ones in the Einstein theory if
M. is used [3]. Expressing the mass M, by the experimentally determined
value of the solar mass Mg, we obtain the following formulas for the light

deflection: A 5
TN 2 9
Ay = Motl—— 63
X R(')C2 © < /\77 ) ( )
and for the photon frequency shift
' N 2
oo+ X (1 - —772) , (64)
Woo rce A

where R, is the radius of the Sun. Of course (63) and (64) can be applied
for calculation of post-Newtonian effects only if corrections connected with
n? are greater than the post-post-Newtonian ones.
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