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Approximate regularized expectation values of the field fluctuation
(¢? Yreg and the stress—energv tensor (T})req of the massless, conformally
invariant, scalar field in the Boulware vacuum state in Schwarzschild
spacetime are constructed by means of Hadamard regularization. It is
shown that reconstruction of the characteristics of the vacuum polariza-
tion from its asymptotic behaviour leads to formulas that satisfactorily
reproduce existing approximate expressions and closely follow exact nu-
merical calculations.

PACS numbers: 04.62. +v, 04.70. Dy

Despite of its inherent limitations quantum field theory in curved back-
ground has often been used as an useful tool for investigating problems
that arise in strong gravitational fields and which should be analysed in
the framework of still unknown quantum gravity. In the absence of the
well-defined particle concept construction of characteristics of vacuum po-
larization is of principal importance. The special interest that we have in
the regularized mean value of the field fluctuation (¢? )reg and the stress-
energy tensor (T} )reg evaluated in a suitable vacuum state follows from the
fact that both quantities reflect physical content of the theory formulated
in a spacetime describing black hole. Moreover, the stress-energy tensor
couples to the gravitational field, and may be treated as a source term, al-
lowing in principle, when a state of the quantized field is chosen properly,
to determine the back reaction of the quantum field upon the spacetime
geometry by means of the semi-classical Einstein field equations, whereas
the field fluctuation plays an essential role in the phase transitions in the
vicinity of the black hole.

Mathematical difficulties encountered in the attempts to construct and
study the vacuum polarization in a general spacetime are well known and,
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beside the fact that the mode functions corresponding to vacuum states can-
not be expressed in terms of known special functions, are connected mainly
with the divergent mode sums. These obstacles invalidate purely analyt-
ical treatment of the problem and suggest the way of its partial solution.
Indeed, thanks to the numerical investigations carried out by a number of
authors we have, at least in the static case, satisfactory knowledge and un-
derstanding of the vacuum polarization effects for both massive and massless
fields [1-4]. However, having in mind further applications the information
concerning functional dependence of the mean value of the stress-energy
tensor on wide class of background spacetimes as well as quantum states is
essential. Unfortunately (¢2)reg and (T,f‘)reg critically depend on the met-
ric tensor. It is natural therefore that much effort have been concentrated
on developing the approximate methods which allow qualitative treatment
of the problem. Such a programme have been successfully undertaken by
Page [5], Brown and Ottewill [6], Zannias [7], Page, Brown and Ottewill [8],
Frolov and Zel’nikov [9], Hiscock [10], Vaz [11], Nugaev [12], Anderson [13],
and Anderson, Hiscock and Samuel [14, 15].

Among presently available methods of regularization the Hadamard reg-
ularization scheme seems to be most fruitful [16-18]. In the Hadamard
formalism one assumes that the covariant scalar field equation in four di-
mensions has the solution with the following structure of singularities:
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where 20(z,2') is the square of the geodetic length between z and z' [19],
and A the Van Vleck-Morette determinant is given by
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Biscalars v(z,2') and w(z, 2') are both smooth symmetric functions which
expanded in symmetric covariant Taylor series

v(z,2') = o' 4oV ot 40D, oko” + ..., (3)

and
w(z,2') = w(® +w(1)ua“ + w(z),wa“a" + (4)
in terms of o* = o’#, and inserted into the field equation are to be deter-
mined from the recursive relations and boundary conditions.
In terms of w(®) and wu)',: the stress-energy tensor and the vacuum
fluctuation in the case the massless conformally invariant scalar field are
generally given by

1 1 1
87"2<T;w>reg = g(w(o);pu - ZQ;WDW(U)) —wyuy + gg;wa% (5)
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and
() reg = %ﬁw(m’ (6)
where 1
a2 = 755 (OR = Ruy R + Ry pg R*77), (7)

wyy is a traceless part of wff,,), and all symbols in (7) have their usual mean-

ing. It seems that especially appealing feature of the method, when adopted
in the spherically symmetric and static background, is the possibility of con-
struction of the three omega functions which are simultaneous solutions to
the constraint equations

o et 1 1
w(O);u«a ‘W(Z)iea = ‘_ﬂRF‘aw(O):a - EGZ;‘“ (8)
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with appropriate boundary conditions. Since the constraint equation in-
volves three unknown functions it has infinitely many solutions. To select
the interesting one, it is necessary, beside the knowledge of the boundary
conditions, to adopt some plausible hypotheses.

The idea of reconstructing (T}')reg from its asymptotic behaviour is
not new, and may be traced back to the celebrated Christensen and Fulling
paper [20]. It is based on a safe anticipation that in the static and spherically
symmetric case it is relatively easy to find the asymptotic characteristics
of the vacuum polarization effects. In this note, which is motivated by the
works of Tadaki [17], Bernard [18], and Vaz [11] we shall follow this approach
and evaluate the approximate expectation value of the stress-energy tensor
and the field fluctuation of the conformally invariant massless scalar field
in the Boulware vacuum in the Schwarzschild spacetime. We assume that
w0 W and wg may be represented by the functions of the type

k!
> (1=2)" W(e), k. k' >0, (9)

m=—k

where # = 2M/r and W,,(z), for each value of m, is a polynomial in z,
and show that it is possible to construct solutions, which lead to the field
fluctuation and stress-energy tensor which reflect principal features of the
exact (¢2>reg and (T,f‘)reg with a reasonable success. We remark here that
assuming very general conditions which the expected thermal stress tensor
should satisfy, Tadaki [17] by means of the Hadamard regularization was
able to construct the approximate expressions describing vacuum fluctuation
and the stress-energy tensor in what he called the perturbed Israel-Hartle-
Hawking state. In Ref. [21, 22] Hadamard regularization has been used to
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generalize Page’s formulas describing the stress energy tensor and the field
fluctuation of the massless scalar field in the Schwarzschild spacetime in the
Israel~Hartle-Hawking vacuum.

For the Schwarzschild line element the stress-energy tensor has the form

1 2M\ d*
ST TP reg= — — (1 - 7—) ——w(Odiag[1, -3.1,1],

24 dr
1 (6M 2\ d M?
22 B L0y 1 1) = o SH.
+ 51 (,‘2 r) Y diag[1,1, -1, -1] —wt + 307800
(10)

In the latter, as a working hypothesis, we shall adopt the following: all the
omega functions, i.e. w(o),w,'?,andwg, are responsible for the asymptotic
behaviour of the traceless part of the regularized mean value of the stress-
energy tensor in the Boulware vacuum state. Moreover, we shall assume
that the polynomials W,,, are chosen in such a way that their contributions
to the constraint equation is at most of the same order as the contribution of
the last term in the rhs in Eq. (8). The latter condition results in necessary
truncations and together with the simplicity demand allows us to construct
general expressions of (¢?)reg and (T} )reg-

From general arguments Christensen and Fulling [20] have shown that
near the event horizon the radial and tangential component of the traceless
stress-energy tensor should diverge as —(1 — 2_71}_/1_)~2, whereas at large radii
this components should fall .off as —r~°. Since the Boulware vacuum is ex-
pected to properly describe physical situation outside spherically symmetric
star such a behaviour should not be treated as too worrisome [10]. Indeed,
even in the ideal case of perfect fluid sphere, if the adiabatic sound speed
is real, the minimal radius is 9M/4, whereas assumption that the adiabatic
sound speed does not exceed the speed of light yields even larger result,
2.8M [23. 24].

For the traceless radial and tangential components of the stress—energy
tensor {10) near the event horizon one has

E 2 E R -2
g(1-2M\ 4~ oy, (SM _2 iw(O)__wr_N_(_wL_gM) . (11)
r d7‘2 7,2 r r

and

IM\ &> 5, (6M 2\ d () 4 2M\ 72
(1YL o (22 e (1-22) (2
(1 r )dr‘lw (r2 r) ar” T == (12)

Similarly as r - oo
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2M\ d* 6M 2\ d 1
— (1 - —r—) mw(o) - (?- - ;) E;w(O) — wg ~og (14)

It is useful to investigate the role played by each omega function sep-
arately. At first, let us consider the function w!®). Inspection of equations
(11) and (12) shows that first group of the Christensen—Fulling conditions
are satisfied up to a sign if we choose w(®) ~ (1 — %)_1, whereas in order
to satisfy the conditions (13) and (14) the appropriate guess is w(®) ~ r—%.
Therefore we put

and

-1
LU (l - —2M) rt 4+ Ty, (15)
r

where T and T4 are arbitrary constants. Note that because of the adopted
hypotheses the above form is unique.

Now, the constraint equation reduces to the following form:
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Studying the influence of the various choices of w. and wg on the asymptotic
form of the stress-energy tensor, one concludes that correct asymptotics may
be obtained assuming:
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and
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where the coefficients A;, a;, T, and T} are to be determined.

Since the Boulware vacuum is defined by the mode functions which are
of positive frequences with respect to the timelike Killing vector % one
expects that at large radii the Boulware Green function reduces to

i
4722’

G(t,r.0,¢;0,r,0,0) ~ (19)

Moreover, simple calculations indicate that along the geodesic which joins
these points [25]

1 1 M?

% #7120 (20)
and consequently one has T = —~1/3M?, and T; = 0. It should be noted that
such choice of the parameters yields the result obtained earlier by Frolov
and Zel’nikov (see e.g. [26]).

Substituting equations (15), (17), and (18) into Eq. (16), collecting the
terms with the like powers of r, one obtains four equations which allow to
express four constants, say, ay,ag, Az, and Az in terms of remaining ones:

Ay Ay Ay 21

alz—ao—ag—?——_—[_? 0’ (21)
as =M (2@0 — %ag - 251a4 - —,5-8% §40+ A1—§-244 295) ,(22)
Ay =M (16a3 + Ia4 + A;Z —-4A 244—A5 -4 (23)
Az = M? ( 28a3 — %a(; - ]\;’ 1 +7> . (24)

Our choice, which is to a great extent arbitrary and limited only by tractabil-
ity of the system of equations, was motivated by the fact that in such a
parametrization the asymptotics of the stress-energy tensor are exclusively
described by coefficients of one type. Indeed, equations (21)-(24) lead to
the following asymptotic behaviour as r — oo

MZ
7‘6<Ttt>reg = 16 P} (1 + AO + Al + A4) (25)
2

72072
2

M
P (T req = 602 (19+ 1540 + 1541 + 1544) (27)

P (T ) reg = (19 + 1549 + 15A1 + 15A4) (26)
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whereas as r — 2M one has

(1 - %)2 (T )reg =

r
1

90(8M )42

(24(13 + i

12 6 A :
—ay + \12 O) dlag[—3, 1 17 1]llj . (28)

In the latter we shall assume that the limit (27) is nonzero. Inspection
of (10) shows that the resulting stress-energy tensor is independent of the
coefficients ag, and As. To specify the (Tﬁ‘),eg further one should know at
least approximate values of remaining parameters.

Integrating the conservation equation, for sufficiently large r one has

- 1 , Q? .
<1r>reg: ;3(1'1(7')‘{‘6("))‘*' W» (29)
where
H(r) = -;- / (F' = 2M)(TH) e . (30)
2M
r ! /] 1 A ' B
G(r) =2 /(,. ~ 3M)(Tf)reg = (Tt reg)dr” (31)
2M

and (Q is a state—dependent constant. By the Christensen-Fulling conditions
it is oxpected that in the Boulware vacuum the terms w thh are propormonal
to r~% should cancel. Since at spatial infinity (T’ 9>,eg (T Yreg ~ —a/rS,
a > 0, equations (7), (29), and (30) give:

(T )reg 1

lim ———= = ——. (32)
r—oo <Tg>reg 2

The above condition is satisfied by our tensors, and, therefore, yields no
more information.

Since we expect that at most two coeflicients may be determined from
asymptotic analyses and since we are looking for a simplest solution of the
problem in the latter we shall equate to zero coefficients a4, as, Ag, and Ay.
It should be emphasized that the final result is independent of the concrete
choice of the pair (a;, A;) of the retained parameters.

The first condition is provided by the Christensen-Fulling formula:

(T )reg — (T2 - (- ~2diag[—3 1,1,1], (33)
v/ireg v/reg 90”2(8Af[)4 r y 49y !
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where superscript v refers to the Israel-Hartle-Hawking vacuum. Originally
it was supposed to hold everywhere, however only recently it was showed by
Jensen, Ottewill and MacLaughlin [4] that (33) is valid only asymptotically,
being generally incorrect. What we need is the behaviour of the difference
(Tﬁ‘);’egv(Tf)reg, as r — 2M, and hence our conclusions will not be affected.
Since the stress enegy tensor in the Israel-Hartle-Hawking vacuum state is
expected to be regular on the event horizon one has

: +2
(1-2) " (Thus = gomprdinel-s L1 G
and consequently a3 = 49/240. By virtue of asvmptotic conditions (12),
(13) one has

44 35

30 <71 T30
The latter constraint may be made even more stringent if we assume that
at large radii <T09>reg ~ —r7% It yields the double inequality

(35)

22 19
—— < A} < ——. 36
15 71 T8 (36)
Defining a new parameter 6 = A; + % the one-parameter family of approxi-
mate stress-energy tensor in the Boulware vacuum state may compactly be
written as

A’[‘z (2 - 3‘—':—1')2 .
(T#>reg = 14407216 { (1- M 2dla’g[3’ -1,-1,-1])
+ 6diag[3, 1,0, O]ﬁ} + AL (37)

where A} is given by

b 2M\ 2 , .
t 2.2 < 3 74
= [(1-2Z —90M?2r? + 348M3r — 336 M%) , (38
Bt = 13207278 (1 r ) (=00M%" 43 ' ) (38)
P 2M\ 2
é v 2.2 BY 3 ¢ 4
=—|1- M2p2 — 240037 + 240M%) . (39
AY = TTI0nTE (1 r) (60M 7y r+ ). (39)
by M\ 2 5
r—__ 2 (122 —30M2r2 4+ 132M3r — 144M*) , (40
A 14407727"8( r ) (=30M"r" + ' ). 10
and 4 should satisfy
2 1 ,
_2 << — (41)

15 15
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AT )reg

r/M

Fig. 1. MTI7)reg (A = 907*(8M)*) as a function of r, displayed for § = —2/15
{dotted line), 6 = —1/15 (dashed—dotted line), § = 0 (solid line}, and § = 1/15
(dashed line).

Note that with § = 0, Eq. (37) reduces to the approximate stress-energy
tensor obtained by Brown and Ottewil [6] who analysed conformal trans-
formations of the one—loop effective action and by Frolov and Zel’nikov (see
e.g. Ref. [26]).

Although we are unable to determine the parameter § further, definite
conclusions regarding the overall character of the stress energy tensor may
be obtained studying the effects of the various choices of § from the interval
(41) on (T} )reg. From (37) one concludes that the maximum of (T7)reg
increases and is shifted towards smaller values of r as § decreases. (Fig.1).
A sample of these results is displayed in Fig. 1, where we show the radial
component as a function of r for § equal —2/15,—1/15,0, and 1/15. It
should be noted that such a tendency, although desirable, is not sufficient
to reconstruct acurately the radial component of the stress-energy tensor
near r = 3M.

The finer structure of the rescaled components of the stres—energy ten-
sor is displayed in Figs.2-4. Inspection of Fig. 2 shows that the energy
density increases with 6. Comparison of the numerical results of Jensen,
MacLaughlin, and Ottewill [4] and the results presented in this note shows
that the negative values of 4 are more favourable. In general it is possible
to improve the accuracy of the Brown-Ottewill approximation suitably ad-
justing 4. For example, the choice § = —1/15 gives a good agreement of the
energy density and tangential pressure of thus obtained (T} Jreg With the
exact numerical results. However, because of vanishing of A7 for r = 2.4M,
we have some unwanted features of the radial component of the stress en-
ergyv tensor in the interval 2M < r < 2.4M, for —2/15 < & < 0. Analyses
carried out in Ref. [4] indicate that the exact radial component of the stress—
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(L= 2MJTE A (T Y req

r/M

Fig. 2. —A(1 — 2M/r)*(T})reg as a function of r, displayed for § = —2/15 (dotted
line), d = —1/15 (dashed-dotted line), § = 0 (solid line), and é = 1/15 {dashed
line).

(1= 2M/r) AT ) g

r/M

Fig. 3. A(1 — 2M/r)*(T7 )eg as a function of r, displayed for § = —2/15 (dotted
line), § = —1/15 (dashed—dotted line), § = 0 (solid line), and § = 1/15 (dashed
line).

energy tensor everywhere exceeds the radial component evaluated within the
Brown-Ottewill approximation. On the other hand Fig. 3 shows that re-
gardless of the value of the parameter the for r < 2.4M, the approximation
is slightly spoiled. It should be emphasized however, that since it is ex-
pected that the Boulware vacuum in the vicinity of the event horizon does
not describe real physical situation and that genuine spherical objects do
have radii considerably exceeding 2M such unwanted behaviour is of lesser
importance.
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(1= 2 /A T,

2.5 3 3.5 4 4.5 5

r/M

Fig. 4. A(1 = 2M/r)*(T§}eeg as a function of r, displayed for § = —2/15 (dotted
line), 6 = —1/15 (dashed—dotted line), § = 0 (solid line), and 6 = 1/15 (dashed
line).

Construction of the vacuum polarization near the spherical and static
star model yields another problem: the stress—energy tensor for r > rgpar
may be written as the sum of its local and nonlocal parts. It is expected
that the local part should be the same in the black hole case as in the stellar
case, whereas the nonlocal contribution depends on the specific boundary
conditions. The second component, usually not included, may lead to the
differences of the vacuum polarization characteristics. On the other hand
absence of such a term may invalidate analyses near the surface of highly
compact objects.

Although to reproduce the exact form of the field fluctuation and the
stress—energy tensor better the more sophisticated models are to be con-
structed that exploit more detailed informations it should be noted that
such a simple model satisfies all consistency conditions and satisfactorily
reproduces the overall character of the stress—energy tensor.

The help of Albin Czubla is gratefully acknowledged.
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