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The diffusion of a particle in a linear array of N fluctuating barriers
was investigated. The barriers are characterized by two parameters: ag
- the probability to be closed, and A - frequency of fluctuations between
closed and open state. The rigorous analytical results for limit cases
A=0, ap = 0and A = 0, ag = 1 were obtained. The phenomenon
of stochastic resonance in the case of a particle moving with velocity v
and the process of switching between opposite velocities being a random
telegraph process was investigated by numerical simulations.

PACS numbers: 02.50.-r

1. Introduction

Diffusion in disordered media has been the subject of many works (see,
e.g., the reviews [1, 2]). In general, the disorder of the medium in which a
particle is moving is supposed to be quenched. and so, is completely static.
This is a very good approximation in normal physical situations, in particu-
lar in electronic conduction (from which the point model, Lorentz model, is
issued) and in any case where the time scale of the motion of the particle is
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much faster than the time scale of the fluctuation of the external disorder.
The opposite case, namely the case where the time scale of the fluctuation
of the external disorder is much faster than the time scale of the motion
of the particle, leads to the representation of diffusion by Markov processes
(like Brownian motion) and has been extensively studied. On the other
hand, there are also many situations where the time scales are of the same
order of magnitude and the conditions of both approximations break down.
This is the case, in particular, for diffusional approach of two nearby reac-
tants in dense solvents. In this case, the potential created by the solvent is
fluctuating in time. In [3, 4] we introduced a model potential fluctuating in
time under the form of barriers either open or closed and in [5, 6] we proved
stochastic resonance phenomena in the case of two barriers. Stochastic reso-
nance has also been studied by [7, 8] for more realistic fluctuating potentials
using a standard diffusion dynamics, but our results do not depend on the
details of the dynamics.

In this work, we extend our methods and results to the case of the
diffusion of a particle in a linear array of N fluctuating barriers. The barrier
is characterized by two numbers: the probability ag to find it closed and the
frequency X of fluctuations between the closed state and the open state. In
[3] we already studied the limit case of A = 400 and found the correction to
the markovian approximation. Here, we obtain rigorous analytical results
for the following limit cases: A = 0,9 = 0 and ap = 1. In each of these
cases, we give exact formulas which have the structure of the law of addition
of inverses, although the hypotheses to obtain this law are absolutely not
fulfilled.

Detailed proofs are rather complicated and will be given elsewhere.

2. Diffusion in a linear array of fluctuating barriers

We consider an interval of length N (/N is an integer). In each interval,
[j, 7 + 1], one has a certain stochastic process which is characterized by the
following quantities:

1. s;(t)dt is the probability that the particle entering the interval [j, j + 1]
at point j and at time 0, leaves the interval through point j+ 1 for the
first time between t and t + dt

2. rj(t)dt is the probability that the particle entering the interval [j, j + 1]
at point j at time 0 leaves the interval through j for the first time
hetween t and t + dt.

We assume that the stochastic process is symmetric with respect to the
exchange of j and j + 1.

Moreover, at each point j we place a barrier which can be in state ¢;
= 0 (open barrier) or 1 (closed barrier). The state of the barrier fluctuates
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in time according to a dichotomous Markov process, so that the conditional
probability for finding the barrier in state ¢ at time ¢, knowing that it is in
state ¢ at time 0 is given by

'“Ps,s’(t) =aoae + (55,5’ - a'S)e_,\t )

ag (resp. «j) are the stationary probabilities to find the barrier in state
¢ = 0 (resp. in state ¢ = 1) (Fig. 1).
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Fig. 1. Linear array of fluctuating barriers.
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Finally, each barrier fluctuates independently.

A particle moves in the array in the following way: in the interval
[7:7 + 1] it follows the corresponding stochastic motion. If the particle
reaches an extremity of the interval, for instance 7, and if at that time the
barrier at j is open (¢; = 0), the particle enters [j — 1, j] through j and
begins an independent stochastic motion in [j — 1, j] starting from j. If the
particle finds the barrier at j closed (g; = 1), it stays in the interval [j, j +1]
and starts again a motion in [j, j + 1] at point j.

The fluctuations of the barriers are independent of the stochastic motion
of the particle in each interval.

We are interested in the probability S[o,n) that the particle, entering
the interval [0, N] at point 0 at time 0 leaves the interval at point N. We
cannot, in general, obtain exact expressions for this quantity, but we shall
study its asymptotic for large N and various limiting situations A = 0 or
400, g = 0 or 1.

3. The two-barrier case

First of all we consider the case N = 1 where we can obtain exact
analytical results. In this section we denote S(t;a,{e} | o/, {e'})dt the
conditional probability that the particle leaves the interval [0,1] at point a
for the first time between ¢ and ¢ + dt, the states of the two barriers at that
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time being {¢}, knowing that it starts at time 0 from point a’, the states of
the barriers at time 0 being {&'} (here a and a’ can be 0 or 1). Note that
£a = 0 necessarily, because the barriers at the point @ must be open to let
the particle out. We introduce the Laplace transform

S(8;a,{} | d' {'}) = [ e7¥S(tia, {e} | ', {'})et,

and note S(a, {c}| ¢, {<'}) the value at § = 0. We also note

S(6;a|d {'}) = Z (0:a,{c}|d',{'}).
{e}
We have already studied this case in [5, 6] and pointed out that a

resonance phenomenon can occur for appropriate values of parameters. We
shall denote

AO) = [ e Ptr(t)dt,

30y = [ e s(t)dt.

/
/
R =#(0) S = 5(0) R+S=1.

Here we shall mainly give asymptotic resuits

1. Asymptotic results for ap tending to 0
1.1. 6> 0
In this case X
S(6:a|0,{cH=0if <=1

thus the probability of leaving [0,1] by a if at time 0O the barrier at « is
closed, is 0 at any finite time scale, which is quite natural since this barrier
has 0 probability to open in a finite time if o9 — 0.

On the other hand the other $(8;a | 0, {'}) are not 0 in general: when
«p — 0 we obtain for instance

S(6;1)0;eh =0,y =1)=7(A+8) +

(FA+8) — F(2A + 8))3(\ + 8)
1—#(A+6) )

S(6:110:¢) =0,¢ 3(A+6) +

H
I|
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1.2. =0

In this case we obtain
S(0]10;ep=1,e1=1)=85(1|0;ep =161 =1)=1

whereas the corresponding S vanish if @ > 0 or if ap = 0. This apparently
surprising result means that in an infinite time interval the particle finds its
way out of [0, 1] with probability 1, provided that the probability ag to find
always the barrier open is not exactly 0

Furthermore, we have for instance

1 1 3(A)
1!0,@0—1 51—0) E‘}'El_(f()\)’

1 X 25(N)? S3(A
1|0€0—0€1—1) El—r()\)——l_(ﬁ()/\)-i-l_fg(l)

2. Asymptotic results for A tending to 0. In this limit, the barriers are
frozen.

21.0>0
Again S(0;a|a';{e'}) =0 if ¢!, = 1; furthermore

S(6;1] 056l = 1,6 = 0) = 1i(20)
2.2.0=0
We obtain
S(1{0;e5=1,e1=0)=1,
S(1{lieg=1e1=1)=3,
S(1]0;e5=0,e1 =1)=0,
S(1]0;e5=0,67=0)=S5.

All these results can be easily understood, since in this limit the barriers
never change their state. However, the second result can be commented as
in Section 1.2: if both barriers are closed initially, although they have a very
low probability to change their states in a finite time, in an infinite time
interval the particle finds its way out with probability 1 provided A is not
exactly 0.
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4. Asymptotic results for ag tending to 0 and large N

We shall denote S(j + 1| jie; = 0.€;41 = 1) the probability in the
two-barrier system on the interval [j, j + 1] to leave the interval through
7+ 1, knowing that the particle enters the interval at point j at time 0, the
states of the barriers being <; = 0.4 = 1. In the limit ag — 0 we have
from the previous section

'25']‘(/\)2 S;8i(A)
- + ] )

. | 1
‘9(]%-11]351‘:0’5.1’*1:1):Q[l—rj(/\)_1 () 1=75()
J

Then we have the addition formula, still in the limit ag =0

1 Rl 1
- 1= — - - 1)
S[o.N] ;) (5(]+11J:€j=0‘,€j+1=1)

Here 5[0.;\!] is the total transmission probability for the particle to leave
interval [0, N] through N, knowing that it starts from 0 at time 0, the barrier
being in state j; = 0, and all the other barriers at point j > 1 being in state
5';‘ = 1 (namely they are in equilibrium in the limit ag = 0).

At first sight, this result may seem surprising, because the system is
highly non markovian and the inverse addition law holds essentially in
markovian case. On the other hand, the motion of the particle can be
viewed as follows. Suppose the particle enters the interval [, j + 1] for the
first time at j. This means that g; = 0 at that instant, due to some fluc-
tuation (although most of the time barriers are closed. but if one waits a
sufficiently long time they finally open). Then the particle is trapped be-
tween [j — 1, j + 1], but the barrier at j will close before one of the barriers
at j — 1 or j + 1 will open and so the particle is finally trapped either in
[/ — 1,7] (as it was before it entered [j,j + 1] or in [f, j+ 1]. So, in a sense,
and at least for the quantity S[g ,,|, everything will be equivalent to a parti-
cle moving in a linear array, such that the effective transmission probability
between j and j+1is S(j+1] j;c; = 0,e;41 = 1). The rigorous proof will
be given elsewhere.

We can, nevertheless, remark that one cannot use perturbation theory
by running only on a finite number of paths. We have really to sum over
the full set of paths and we can never truncate this set of paths. In fact, to
any finite order perturbation theory, the transmission probability vanishes.
The non vanishing result we obtain here is due to the fact that we resum
an infinite number of trajectories. To see the mathematical phenomenon
which appears here it is useful to consider the two-barriers case. together
with the ballistic motion of the particle between the barriers (see Fig. 1).
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In this case, the particle enters the interval [0, 1] at 0. If it finds the barrier
open at 1, it gets out. But it can make also a finite number of ballistic
motions between 0 and 1, finding each time the barriers closed, and finally
finding the barrier at 1 open. The probability to make 2n + 1 such ballistic
motions and finally leave [0,1] at 1 is

Py = a1910(27) (211(27)" " L01 (27) .

where 7 is the transition time between 0 and 1 in the ballistic motion and
Fy is just ag.

So

27 27
Z Py = ag 4 2t )990‘1( )
I — o1(27)

n=0
=g + ayp10{27) ~ 1 — e 2 for ag ~ 0.

But if we ounly take the first n terms of this perturbation expansion
they are all 0 when ag is 0. The cancellation is due to the summation of
the entire geometric series. Notice that in this case the average exit time
by 1 will be infinite when aq tends to 0.

On the other hand, for ay near zero and A tending to 0. the average
time of exit will stay finite. but the mean square of this time will diverge.

5. Asymptotic results for A tending to 0

In this case we denote S(j+ 1] j) the transmission probability in the
process on [j, j + 1] without barriers

o0
SG+117) :/]
0

Then, if the barriers are at equilibrium, except the one at 0 which is
open,

Sio,n1 = a8 Spo.n ({0} k>0)

where Sy n}({0}£>0) is the transmission probability knowing that all bar-
riers are open at time 0. Moreover we have an addition formula

1 R 1
= ~ 1= T T s 1) .
Sto,8)({0}>0) Z;; (b(J‘H Y

1

In this case also, the addition law holds, except for the factor a(‘)\r which
is exponentially decreasing, although in the limit A = 0 the system becomes
completely non markovian.
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Remark: in the limit A = oo the system is really markovian, the particle
seeing an independent environment at each time step.

6. Asymptotic results for ag = 1 and resonance

In this case it is obvious that Siy n] |a;=0 is the transmission probability
from 0 to IV in absence of any barrier and is given by a usual inverse addition
law and there is nothing surprising about that. What is more interesting is
that one can compute explicitly the first correction in «;. We again denote
S, N] the total transmission probability from o to N, the barrier at 0 being
open, and all other barriers being at equilibrium. A detailed computation
proves that

(95[0'1\/] < O
(9011 a;=0,A=0
95p0,N)
oy = S[o,N] |er=0(1 = (N + 1)S[g Cyl=0) :

a;=0,A=c0
and in particular it is positive provided that

1
N+4+1°

S70,N] lag=0 <

In particular, in this case, there must be a certain value A*(ay) of A such
that Spp, ;) will be an increasing function of ay for a; sufficiently small and
A > A*(ay). In other words, there will be a certain range A of A such that
when A is in this range, Sjo v has a maximum at a non trivial value of ;.

This is a stochastic resonance phenomenon, whereby one finds a max-
imum of the transmission probability Sjo n] with respect to ay, for a non
zero value of o (at least in certain frequency range).

We investigated the above phenomenon by numerical simulations. We
took a particle moving with velocity £v, the process of switching between
opposite velocities was a random telegraph process (RTP) with frequency
o. Such a process was already used by some of the present authors [9] in the
study of absorption dynamics. If the particle is moving in the 1-dimensional
array of independent barriers fluctuating with relaxation frequency A, then
for suitably chosen values of A and ¢ a maximum in the dependence of S
on a; is observed (Fig. 2).

This extends the case N = 1 (two barriers case) which was treated
exactly in [5, 6].
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Fig. 2. The dependence of S on ay for different values of .
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