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The continuous analogy to the spacing is introduced: the first deriva-
tive of energy with respect to its continuous labelling index and its dis-
tribution is calculated. As an example of application the Schrodinger
particle with a random effective mass is investigated. The notion of quan-
tum chaos and quantum integrability in continuous spectrum is widely
discussed.

PACS numbers: 05.45.+b, 02.50.-r, 24.60.Ky

1. Introduction

Very complicated interactions in solid states may lead to chaotic be-
haviour of quantum excitations. For systems with extended states, where
classical motion is unrestricted in space, the spectrum is not discrete. These
two properties of solid states create the following question: how to investi-
gate quantum chaos in an uncountable spectrum? Some problems concern-
ing this question have been investigated in recent papers. Geisel et al. [1]
investigate Cantor spectrum, i.e. an uncountable one. Silberbauer et al. [2]
report on inter-mini-band statistics, performed for the magnetic band struc-
ture [3]. In both papers the quantum chaos is detected by the distribution
of spacing, which is a suitable tool for investigation of the discrete spec-
trum. Therefore, the method discretizes the continuous spectrum by itself.
Another approach to the statistical properties of the continuous spectrum
is achieved by analysis of the quantum chaotic scattering [4, 5]. The chaotic
characteristics of the system manifest themselves obviously in the proper-
ties of the S-matrix [6]. Instead of investigating the S-matrix elements one
can consider the scattering system by the properties of the corresponding
phase shifts [7, 8]. In this paper instead of the distribution of spacing we
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introduce the distribution of the first derivative of energy with respect to
the continuous parameter. As an example of application we investigate one-
dimensional Schrodinger particle with randomized effective mass. Meaning
of quantum chaos in the continuous spectrum is discussed in the relation to
the quantum chaos in the discrete spectrum.

2. Statistical measure

In the discrete spectrum one can treat the i*! energy level E; as a value
of the discrete function f of its index ¢, namely f: I 3¢ — E; € ER, where
I is the discrete index set and Fg is the discrete energy set, and f(i) = E;.
Hence the i*! spacing s; is the asymmetrical two point first difference of the
adjacent energies E;, F;11 and it is also the first differential quotient of the
function f at the point 2
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The spacing distribution includes complete information about the interac-
tion between the energy levels for the two level system.

In the continuous spectrum limit the first differential quotient converges
to the first derivative of energy with respect to the continuous parameter
labelling allowed energies s(k) = dE(k)/dk. Therefore in the case of contin-
uous spectrum the statistics of the first derivative of the energy is a natural
tool for investigation of repulsion between the levels separated by the in-
finitesimal distance. This fact has a deeper explanation. The first derivative
can be approximated by the three adjacent points much better than by the
two points:

1
AE;= —— (-3FE; +4E;41 — Ei4+2), 2
a 2(i+1—l)( it i+1 +2) ( )

(compare [9]; we named AlE; the ith asymmetrical three point first finite
element. Shortly we call it asymmetrical element.) and

1
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(Eiye — E3), 3)

(compare [9]; we called ALE; 1 the ith symmetrical three point first finite
element or just symmetrical element). We have shown analytically [10] that
their distributions, for the GOE(3), GUE(3) and GSE(3) ensembles, as well
as for the ordered sequence of the three uncorrelated adjacent energy levels,
are universal and properly describe the level repulsion (GOE(3), GUE(3),
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and GSE(3) mean Gaussian Orthogonal Ensemble, Gaussian Unitary En-
semble, and Gaussian Symplectic Ensemble of dimensions 3, respectively).
This result shows that even in the case of discrete spectrum the idea of the
first derivative works.

3. Chaotic model

Let us assume a purely chaotic one dimensional quantum system and
derive the distribution of s(k). The system is described by the Schrédinger
equation with the random effective mass m*:

K% 42
_-'Zm*ia;z—

The energy of a particle in an energy band is given by the following
formula [11]

W =EV. (4)

h2k2
= S (%)

where E(k) is the energy, k is the wave vector. The energy F(k) is a
continuous function E of wave vector k

E(k)

E:Eg>k— E(k) € Eg,

where E'g is its continuous (non discrete) domain set, E'g is its continuous
range set. In order to delete the double degeneration of the energy E(k)
with respect to &k we restrict its domain Eg to the set of nonnegative real
numbers:

Eg={k:k>0}.

The random effective mass might assume negative values for its sample
points and the function F'(k) might not to be monotonously increasing.
Therefore energy levels E(k) will not be ordered increasingly and we could
not introduce the continuous analogue of spacing. We solve this problem
by computing the absolute value B(k) of E(k):
h?k?
B:Eg>k— Bk)=|Ek)==———¢€R. (6)
2| m* |
The function B is monotonously increasing and the absolute values of energy
levels B(k) are ordered into an ascending sequence. Now, we are ready to
introduce continuous analogue A(k) of the spacing. First, we compute the
first derivative of the function E with respect to k:
dE(k) Rk

Iw [ N
E'(k) = pp —

(7)
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Then, we derive the absolute value A(k) of first derivative £'(k), which is
also the first derivative of B:
dB(k)  h%k

E'(k)| = —= = ok (8)

Ak) =

If we assume, that the index i, which is the argument of the discrete function
f, can be interpreted as a discrete wave vector, then we can treat the energy
function FE as a limit of a sequence of discrete functions f,, namely

Iim f, =F. (9)

T e OO

and its domain E'g as a limit. of a sequence of discrete domains I, of func-
tions f,
lim I, = Epg, (10)

n—oc
where the limits describe the transition from discrete energy domains I, to
the continuous domain Fg and n is a natural number.
Let us assume that both f, and E are unknown and unknowable. Then
fn (i) are the random variables for every 7 € I and for every n. namely

fn(l) 12,3 Wi fn (1)(“3111) €ER.

where w,, ; is the sample point and 2, is the sample space. Also E(k) are
the random variables for every k € Fpg:

E(k): 23wy — E(k)(wi) € R.

where wy is the sample point and §2 is the sample space. Thence we can
introduce the random function (random process) E

E:Egx 253 (kw)— Eko)=F(k)w) € R,
where & is the sample point, and the map
2305 FEko)eR

is the random variable E(k) for every k € Eg. Let us assume that m™ is
My-centred Gaussian distributed, with the variance equal to o2,

m*: M >m-—m*(m) € R. (11)

where M is the sample space and m is the sample point. Its probability
density function f,,- is given by the following formula

(m — Mg)?

1
m*={m) = expl— ; . 12)
f7 ( ) \/:2—7‘__0_771 p( .ZU;)H ) (
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Its inverse X = T;—,. is a random variable

X:Xp3z— X(z)€R, (13)

where X'p is the sample space and x is the sample point. From the change
of the variable formula [12] one easily obtains that the inverse X has the
following distribution

(L — My)?

x

1 (
= exp(——%—
V2ro 202,
The function fy can be made continuous in the whole domain if we put

Jx(0) = lim fx(2)=0. (15)

fx(x) ) forz#0. (14)

It follows from (5), (12), (14), (15) and from the change of the variable
formula [12] that the distribution of the random variable E(k) is

2,2
(ﬁ k __]\/10)2

—TE.__ 2wy
TE() (Wi) = 2V2ron,w] exp(———57——) for wp #0, (16)
0 for wp =0,

for every k € Epg.
The absolute value of energy B(k) is the random variable

B(k):Q 3 qr — B(k)(q) € R,

for every k € Eg, where g, is the sample point and @ is the sample space.
We define the random function B

B:Epx Q3 (k.q) — B(k,q) = B(k)(9) = | E(k)(9)] € R.
where ¢ is the sample point, and the map
Q>¢—Bk.geR

is the random variable B(k) for every k € Fg. The distribution of B(k)
will be derived after the computation of the distribution of A(k). The first
derivative E'(k) is also the random variable

E'(k):0 3 o — E'(k)(ox) € R.

for every k € E'g, where oy is the sample point and O is the sample space.
Hence we define the random function E'

E':Epx 0> (k,0) — E(k,3) = E(k)(3) € R,
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where 0 is the sample point, and the map
O>56—E(k,6)€R

is the random variable E’(k) for every k € Eg. From (7), (12), (14), (15),
and from the change of the variable formula [12] one easily obtains that its
distribution is

(fxgk )2

a2k _ Vo 0
fer(iy(ok) = { VEmomo} (=) for ae#0, g
0 for o =0,

for every k € Eg. We must point out that in (17) the wave vector k is the
independent nonnegative variable from the domain E'g and the distribution
fEr(x) is a function of k, because the random variables E'(k) depend on
the choice of k. We present the plot of the probability density function of
E'(k) in Figure 1, putting My = 1,0,, = 1,k = 1 and & = 1. The derived
statistics (17) is governed by non-power law:

( fzb‘kk _ A/I())Q

202,

) (18)

FEr(ky(0k) ~ of * exp(—

which is completely new result.

.o
o8
0.6}
o.a}
0.2t
05—’/\61

O
Fig. 1. The probability density function of the first derivative of energy fe:(k)-
Finally, we compute the distribution of the absolute value (or the length)

A(k) of the first derivative E'(k) for every k € Eg. Let us define the random
variable A(k) as follows:

Ak) : P> pr — AR)(pr) € R, (19)
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where P is the sample space and py, is the sample point. Then we define
the random function A4

A:Epx P53 (k,p) - A(k,p) = A(k)(P) € R,
where p is the sample point, P is the sample space and the map
P>p— A(k,p) € R

is the random variable A(k) for every k € F'g. The map transforming E’(k)
to A(k) is the module map:

g:R>z—|z| € R,

which is not a homeomorphism of class C!(R). The map g is a homeomor-
phism of class C! on its sub-domains R4 and R\ R, where R is the set of
the nonnegative real numbers. We can restrict g to these two sub-domains
obtaining two homeomorphisms

g1:Ep>z—g(z) e R,
g2 R\Fg>z—g(z)eR (20)

and use twice the change of the variable formula [12] as follows:

fay(Pr) =
| jac g1 (pi) | fEr gy (97 (Pk))
+ljacgy  (vi)| ferky (95 (k) for g7 ' (pk) € Ry, (21)
0 for g5 (px) € R\R+,

where jacgl_1 is the Jacobian transformation of gl"1 and jacgz_1 is the

Jacobian transformation of g2_1. It follows from (20) and (21) that the
distribution of A(k) fulfils the following equation:

_ J feny(pe) + fEr(ky(—Pk) for pp >0, .
fam(pr) = {0 for pp <0, (22)
Therefore from (6) and (8) one easily obtains that
fay(pk) =
2 2
(BE—My)? (E2E — Mo)?

hlk _ Gy — Mo (G Mo
Veromp? (exp( —‘L‘—Q—ZUM ) + exp( —"—20’2” ) forpk>0,(23)

0 for p, <0,
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Fig. 2. The probability density function of the absolute value of the first derivative
of energy fa(k).

for every k € Eg. We present the plot of the distribution f4(x) in Figure
2, putting Mg = l,0,, = 1LLk=1and h = 1.

We derive the distribution of B(k). It follows from (6) and (8) that

B(k) = gA(k).

Thence, from the change of the variable formula [12] one easily obtains that

IBirylar) =
n2k2 2 A2k 2
h2 k2 o ( ‘.Bq! _‘MO) . _ ( *3(]! —i"IO)
2V2mwomq; (exp( 205, )+ expl 203, ) for g > 0’(24)
0 for qr <0,

for every k € Eg.

4. Integrable model

Let us assume a pure integrable one dimensional quantum system and
derive the distribution of s(k). The system is described by the Schrodinger
equation with the random effective mass m* (compare (4)). The energy
E(k) of a particle in an energy band is a continuous function E of wave
vector k
h2k?
2m*

E:Eg>k— E(k)= € Egr. (25)
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where [/ is its continuous (non discrete) domain set, Eg is its continuous
range set (compare (5)). In order to delete the double degeneration of
the energy E(k) with respect to k we restrict its domain Eg to the set of
nonnegative real numbers:

We assume that the random effective mass m* is always positive. Therefore
energy levels E'(k) will be ordered increasingly and we could introduce the
continuous analogue of spacing. The absolute value B(k) of E(k) is given
by:

B:Eg 3>k — B(k) =|E(k)| = E(k). (26)

The function B is monotonously increasing and the absolute values of energy
levels B(k) are ordered into an ascending sequence. Now, we are ready to
introduce the continuous analogue A(k) of spacing. We compute the first
derivative of the function E with respect to k:

dE(k)  h*k

= r (27)

I 23 —
E(k) = dk m*

Since the random effective mass is always positive, the absolute value A(k)
of first derivative E'(k) is equal to the first derivative of B and E(k):

Ak) = |5y = B0

Let us assume that m* is uniformly distributed in the interval [a, b], (where
0<a<b):

_ K%k

m*

= E'(k)

(28)

m*: M 3>m— m*(m) € R, (29)

where M is the sample space and m is the sample point. This uniform
distribution is an analogue to the quantum integrable system of discrete
energy levels. We have assumed domain of the random mass m™ to be
the interval [a, b], which corresponds to positive and finite effective masses,
where @ and b are model parameters. The model on the finite interval is
unique one with normalizable uniform distribution.

The probability density function g,,+ is given by the following formula

7= for mé€[a,b],

0 for m € R\[a.b].

Its inverse X = 1/m* is a random variable

X:Xp32->X(z)eR, (31)
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where X p is the sample space and z is the sample point. From the change
of the variable formula [12] one easily obtains that the inverse X has the
following distribution

1 f e[+, 1],
ox(a) = { G o melial, (32)
0 for me R\{E’ a] .

It follows from (25), (32). and from the change of the variable formula
[12] that the distribution of the random variable E(k) is

B2k n2k? nk
) 20—t for wi € P55 "] 33
Ik (Wi) = a2 (33)
, R2k2 A%k2
0 for wi € R\[*53—, S5, 1,

for every k € Fpg.
The absolute value of energy B(k) has the same distribution as E'(k)

9By (wr) = 9Ky (Wr)

for every k € Fpg.
The first derivative E’(k) is also the random variable

E’(lu) :0 30 — El(k)(()k) € R,

for every k € Eg, where oy is the sample point and O is the sample space.
Hence we define the random function E’

E':Epx 0> (k.6) = E(k,0) = E(k){(0) € R,
where 6 is the sample point, and the map
O>6— E(ko)eR
is the random variable E'(k) for every k € Eg. From (27), (32) and from the

change of the variable formula [12] one easily obtains that its distribution
is

‘7

IQ

82k
—Bk - for o €[ ky,
gE(kylok) = { (B=)% 2: ) (34)
0 for o € R\[ , -—] )

for every k € Eg. We must point out that in (34) the wave vector k is the
independent nonnegative variable from the domain F'p and the distribution
9 (k) is a function of k, because the random variables E’(k) depend on the
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Fig. 3. The probability density function of the first derivative of energy ggs(x)-

choice of k. We present the plot of the probability density function of E’(k)
in Figure 3, putting a =0.1,b=5,k=1and h = 1.

The absolute value (or the length) A(k) of the first derivative E'(k) has
the same distribution as E'(k):

gak)(or) = ger(xy(or) (35)

for every k € Ep.

5. Discussion

One can extend the Schrédinger equation (4) by adding potential energy
of the external forces. If this splits energy spectrum into continuous bands,
then the statistics of every band will lead to the results similar to the result
obtained already. For example, a spectrum of the three dimensional particle
in external homogeneous magnetic field H reads:

_ RER? L et

T 2m* 2m*c

En(k:) H(2n+1), (36)

where the quantum number n labels energy bands. For fixed n

dEn(k.) R’k
dk, ~— m*

(37)

This is identical to (7) and leads to the same results.
The first derivative E'(k) is the group velocity vy(k) of excitation.
Hence, the distribution of the group velocity corresponds to the derived
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results (17), (34). We encourage the experimentalists to measure its distri-
bution by the positron annihilation technique, which would be a confirma-
tion of existence of quantum chaos in solid states.

Now we interpret the obtained results. For the discrete quantum sys-
tems the following observations have been made: if the discrete system is
quantum integrable, then the Hamiltonian eigenvalues are randomly dis-
tributed and are uncorrelated {their distribution is uniform). In this case
the population of small spacings is dominant and the eigenvalues do not re-
pel each other. The distribution of the nearest neighbour spacings between
the eigenvalues is the Poisson one

1 s
pexp(—-p) for s>0

Pp(s) = { (38)
0 for s<0.

We present the plot of the Poisson probability density function Pp in Fig-
ure 4, putting D = 1. The spacing equal to zero is the most probable.

14 »

o...
[¢] 2 g [ 8

Fig. 4. The Poisson probability density function of the spacing Pp.

Wigner in his works [13-16] and also Landau and Smorodinsky [17] as-
sumed a statistical hypothesis for the many body Hamiltonian to explain
observed nuclear spectra. In an ascending sequence of energy levels of the
many level quantum chaotic system one can compute the nearest neigh-
bour spacing and obtain a shortage of small spacings. To explain this phe-
nomenon Wigner assumed the GOE(2) (the Gaussian Orthogonal Ensemble
of dimension 2) and thus the Hamiltonian matrix elements were indepen-
dent random variables. It led him to the conclusion that the distribution of
the nearest neighbour spacings between the eigenvalues of the Hamiltonian



Quantum Chaos in Continuous Spectrum 2039

matrix is

T8 exp(— ”32) for s>0

PW(S) — 2D? 4D? =7 (39)

0 for s<0,
where s is the spacing and D is the average spacing throughout the se-
quence. We present the plot of the Wigner probability density function Py,
in Figure 5, putting D = 1. Thus the effect of repulsion of the eigenvalues
was appropriately explained. The energy levels repel each other and they
are correlated. The population of small spacings equals nearly zero and the
maximum of the Wigner distribution is at positive s. The spacing equal to
zero is improbable.

Pw

0.6%

(] 2 4
x
Fig. 5. The Wigner probability density function of the spacing Py .

For the discrete quantum integrable system the Poisson distribution
predicts that the following six equivalent conditions are the most probable:

1. The discrete function f(i) = E; (compare section Introduction) is con-
stant for some discrete set of its indices ¢1,...,in : By = ... = Ejy
E, where the energy E is degenerated with respect to its index.

2. The inversion of the function f cannot be made for the energy F, the
inverse { = i(E) = f~}(F) is not a function at F (it is multivalued
function or relation).

3. The discrete density of states p(FE;) = ZAI%; = s% assumes infinite
values at E : |p(E)| = 4+oo (because A'E; = E;y; — F; = 0 for
t=11,...,IN—1)

4. The spacing is equal to zero at (N — 1) points: s;; =...=s8;,_, = 0.

5. The cumulative distribution function n = n(E;) = ZE<E 1 has a

positive jump greater than one at E : An(E) = n(E+) — n(E-) > 1.
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6. The energies tend to “cluster” in the domain of indices.

The Poisson distribution means that the fulfillment of above six condi-
tions is the most probable.

For the discrete quantum chaotic system the Wigner distribution pre-
dicts, on the contrary, the improbability of the fulfillment of the above six
conditions. Therefore their contraries hold:

1. The discrete function f(i) = E; is not constant for any discrete set of
its indices and the energy F; is not degenerate with respect to its index.

2. The inversion of the function f can be made for every energy.

3. The discrete density of states p(F;) assumes finite values at every en-
ergy.

4. The spacing is not equal to zero.

5. The cumulative distribution function » = n(FE;) has no jumps greater
than one.

6. The energies tend to repel each other.

For the continuous quantum system the two models have been presented
(compare Section 3 and Section 4). The distribution fg/(xy (17) is a contin-
uous analogue to the Wigner distribution Py (39) (compare Figures 2 and
5), while the distribution g/ (k) (34) is a continuous analogue to the Poisson
distribution Pp (38) (compare Figures 3 and 4). Both distributions fgr(x)
and gpy(x) deal with the continuous analogy of spacing: the first derivative
s(k) = E'(k).

Let us study the continuous quantum integrable system. The distri-
bution of E'(k) assumes its maximum value at the origin of its domain
(compare (34) and Figure 3). Also the Poisson distribution assumes its
maximum value at the origin of its domain (compare (38) and Figure 4). If
we assume that the upper band b of the possible values of random effective
mass m* tends to infinity: b — 400, then the zero value of E'(k) is the most
probable (see (34)). This fact is analogous to the above description of the
discrete quantum integrable system. The distribution gg(x) (34) predicts
that the fulfillment of the following six equivalent conditions is the most
probable:

1. The continuous function E(k) = Ej (compare the Introduction) is con-
stant for some compact set of its continuous indices ky < &k < ke ¢
E(ky) =...= E(k)= ... = E(k;) = E, where the energy E is degen-
erate with respect to its continuous index k.

2. The inversion of the function E cannot be made for the energy E, the
inverse k = k(E) is not a function at E (it is multivalued function or
relation).
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3. The continuous density of states

assumes infinite values at E : |p(E)| = +oo (because E’'(k) = 0).

4. The first derivative is equal to zero at the continuous set of k: E'(ky) =
..=FE'k)y=...=F'(k¢) = 0.

5. The cumulative distribution function n = n(E(k)) = fE’<E(k) dk has a
positive jump at E : An(E) = n(E+) — n(E-) > 0.

6. The energies tend to "cluster” in the domain of k.

The distribution gy fulfils the above six conditions like the Poisson
distribution fulfils its six ones.

Let us study the continuous quantum chaotic system. The zero value
of E'(k) is improbable (see (17)). This fact is analogous to the above de-
scription of the discrete quantum chaotic system. The distribution fgr(x)
(17) predicts the improbability of the fulfillment of the above six conditions.
Therefore their contraries hold:

1. The continuous function E(k) = Fj is not constant at its domain and
the energy F(k) is not degenerate with respect to its continuous index
k.

2. The inversion of the function F can be made for every energy.

3. The continuous density of states p(E(k)) assumes finite values at every
energy.

4. The first derivative is not equal to zero.

. The cumulative distribution function n = n(FE(k)) has no jumps.

6. The energies tend to repel each other in the domain of .

)]

The distribution fgr () fulfils the above six conditions like the Wigner
distribution fulfils its six ones.

Having drawn these analogies we state that the continuous quantum sys-
tems in which the first derivatives E'(k) are governed by fg(4) are chaotic
and the continuous quantum systems in which the first derivatives E’(k)
are governed by gp () are integrable. We call former systems CCE — Con-
tinuous Chaotic Ensembles, and the latter CIE — Continuous Integrable
Ensembles.

To end we study the distribution of the jumps An(E). For the discrete
systems the jump is:

An(E)= > L. (40)

W(Ep)<i<i(Er)
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Therefore for the continuous systems the jump is:
An(E) = / dk. (41)
k(Ep) Sk<K(EY)
Since the energy is a random process (compare (5), (11), (29)), therefore

the jump is also a random process. The distribution of the jump for CCE
is

B lw
V2nom (VE -~/ Ep)?

o

Faney(w) = M) 42)
n(E) ><exp<— ("(‘/E—"_}Z/(i,g)? ) ) for w >0,
0 " for w<0,
and for CIE is
gAn(E)(Z) =
h2z for z € {\ﬁawt—Eb) \/2b<Et—Eb)}
(b—a)(VE;—/Ep)? h ’ h ’ (43)
0 for z € R\[\/za(bhjtﬁEb), \/Qb(l;j,t_Eb)]«,

(compare (12), (30), (41) and the change of the variable formula [12]. In
obtaining (42) we perform the steps analogue to those which were performed
in obtaining (24)).

We find the distribution of E’(k) to be the proper tool for description
of quantum chaos in continuous spectrum.

REFERENCES

[1] T. Geisel, R. Katzmerick, G. Petschel, Phys. Rev. Lett. 67, 3635 (1991).

[2] H. Silberbauer, P. Rotter, U. Roessler, M. Suhrke, Europhys..Lett. 31, 393
{1995).

[3] H. Silberbauer, J. Phys.: Condens. Matter 4, 7355 (1992).

[4] U. Smilansky, in Chaos and quantum physics, ed. by M.J. Giannoni, A. Voros

and J. Zinn-Justin, Les Houches Summer School, Session LII, North-Holland,

Amsterdam 1991.

[5] C.H. Lewenkopf, H.A. Weidenmiiller, Ann. Phys. (N.Y.) 212, 53 (1991).

[6] P.W. Brouwer, Phys. Rev. B51, 16878 (1995).

[7] E. Doron, U. Smilansky, A. Frenkel, Physica D50, 367 (1991).

[8] E. Doron, U. Smilansky. Nucl. Phys. A 545, 455 (1992).



[9}

Quantum Chaos in Continuous Spectrum 2043

L. Collatz, Numerische Behandlung von Differentialgleichungen, Springer Ver-
lag, Berlin, Gottingen, Heidelberg 1955, Appendix, Table II.

M.M. Duras, K. Sokalski, Phys. Rev. E54, (1996) in press.

C. Kittel Introduction to Solid State Physics, John Wiley and Sons, Inc., New
York, 1966, section 9.

P.J. Bickel, K.A. Doksum Mathematical statistics. Basic Ideas and Selected
Topics, Holen-Day, Inc., San Francisco, Diisseldorf, Johannesburg, London,
Panama, Singapore, Sydney 1977, p.445.

E.P. Wigner, International Conference on Neutron Interactions with the Nu-
cleus, (1957), Columbia University, New York, September 9-13, 1957, Columbia
University Report CU-175 {T1D-7547) (unpublished), p.49.

E.P. Wigner, Conference on Neutron Physics by Time-of-Flight, (1957), Gatlin-
burg, Tennessee, November 1 and 2, 1956, Oak Ridge National Laboratory
Report ORNL-2309 (unpublished ), p.59.

C.E. Porter, Statistical Theories of Spectra: Fluctuations, Academic Press,
New York, 1965, p.223.

C.E. Porter, Statistical Theories of Spectra: Fluctuations, Academic Press,
New York, 1963, p.199.

L. Landau, Ya. Smorodinsky, Lectures on the Theory of the Atomic Nu-
cleus, State Technical - Theoretical Literature Press, Moscow,1955, (trans-
lation: Consultants Bureau, Inc., New York, 1958, p.55).



