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The MST algorithm is applied to calculate generalized dimensions and
singularity spectra of attractors of the Bloch magnetic domain wall — a
spatially extended nonlinear dynamical system. It is shown that the states
of the Bloch wall are multifractal and that the time delay coordinate
reconstruction enables access to the local multifractal properties of the
system. Depending on the size of the system, for some states of the wall,
the multifractal properties are uniform throughout the wall. For others,
the multifractal properties are different at different points in the wall.
In particular, the spatial distribution of the correlation dimension found
earlier by means of the Grassberger-Proccacia algorithm is repeated in
the spatial distribution of the generalised dimensions.

PACS numbers: 05.45.4+b, 47.53.4n, 75.60.Ch

1. Introduction and theory

Two tools often used for the analysis of finite dimensional chaotic sys-
tems described by ordinary differential equations or maps are: generalized
dimensions D(q) and the thermodynamic formalism of singularity spectra
f(a) [1, 2]. They have been successfully calculated for many such systems,
for instance for the Lorenz attractor [3] or for the Hénon map [4, 5]. The
question open now is whether these methods may be applied for the much
more complicated spatially extended chaotic systems which possess an infi-
nite number of degrees of freedom.

Usually, the analysis of a one dimensional signal from experimental data
starts with the delay time reconstruction of the finite dimensional phase
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space of the system — a method proposed by Takens [6]. For a spatially ex-
tended system, one can obtain a whole set of samnpled signals from different
locations in the real space occupied by the system and does not have to use
the Takens method. All these signals considered together form a high but
finite dimensional phase space — an experimentalist’s approximation to the
infinite dimensional phase space of the system. However. calculations of the
generalised dimensions and singularity spectra performed in this high di-
mensional phase space give us only the spatial average values for the whole
attractor [7]. The local behaviour of the system is often more interesting
and this requires calculations for the single time series from a given point
in the real space.

Dimension densities [8-10] have been used in the past to study the effect
of the decay of the effect of the dynamics at one point in the system on the
dynamics at a remotely situated point in the system. This technique has
been shown to work well at least for the class of systems for which it was
designed, i.e. such that the mean amplitude dynamics does not depend on
position [10]. Calculation of dimension densities [10] as well as the results of
Grassberger [11] show that the effect of the local dynamics on the dynamics
at other points on the system does decay with the distance — often rather
rapidly.

With this effect in mind, we propose the use of the concept of a “local
phase space” as applied in [12], i.e. all degrees of freedom needed to describe
the local behaviour of the small area of a system near a given point in the
real space. The effect of the nonlinearity in a spatially extended system is
that neighbouring parts of the system interact together mutually influencing
their behaviour. Due to this, the dimension of the local phase space may be
greater than the number of local variables at the given point in the system,
the additional dimensions describing the nonlinear interaction. In order to
reconstruct the local phase space we applied the well-known Takens method
[6] to a one dimensional signal from a given point in the real space.

As will be shown below, applying the time-delay embedding to selected
local variables of the spatially extended system vields interesting and non-
trivial results for the system we used as a model: the Bloch domain wall.
We do not possess a rigorous mathematical proof of the general validity
of our procedure. The generalization of the Takens theorem to spatially
extended systems is still the matter of future investigations for mathemati-
cians. At this point we simply aim to manifest an effect that is clearly seen
in numerical calculations by the methods used in the present paper and in
the results of some previous reports obtained by other methods [13-15].
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2. Application

We chose the strange attractors of the Bloch domain walls of the uniax-
ial thin films [12-14] to study the possibility of calculating the local values of
dimensions D(q) and f(«) curves for a spatially extended system. Recently
published results [13] regarding the spatial behaviour of the correlation di-
mension in the local phase space of this system indicated a possible success
of such calculations.

The Bloch domain wall in a thin magnetic film [12-14] is a transition
zone between two magnetic domains bounded by an interdomain distance
A and the thickness of the magnetic material h (see Fig. 1). At a given
point along the Bloch wall there are two variables describing the system:
g(z,t) is the local position of the wall and ¢(z,t) is the angle between the
magnetization vector and the plane of the wall. The z axis lies in the
plane of the wall and is parallel to the easy axis of the anisotropy — here
perpendicular to the surface of the magnetic material. The equations of
motion of the wall consist of two nonlinear partial differential equations
yielding only numerical solutions in the interval of parameters considered
here [12-14]:
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Fig. 1. Bloch wall between two domains in a thin magnetic film with uniaxial
perpendicular anisotropy.
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where the material parameters are: A is the exchange constant, v is the
gyromagnetic ratio, 4w M is the saturation magnetization, « is the Gilbert
damping constant and H. is the constant drive field. Above a critical value
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of the external magnetic drive field H,, (the Walker critical field) chaotic
states emerge. The Bloch wall divides itself into parts separated by the so
called Bloch lines (solitary waves like kinks) moving along the surface of
the wall in opposite directions. The numerical method of calculation of the
solutions of these differential equations describing the system was a version
of the well known DuFort-Frenkel method rewritten in vector form [12]. The
material parameters chosen were the same as in [12].

We analysed Bloch walls 3.5 yum and 5.0 pm in height. The values of
the variables ¢ and ¢ were calculated at a time interval of 1 ns at a finite
number of points along the wall (52 points for the 3.5 um wall and 88 points
for the 5.0 um wall). For the 3.5 um wall height, the values of the variable
¢ at 15 grid points 1, 4, 8, 12, 16, 20, 24, 26, 28, 32, 36, 40, 44, 48 and 52
(from the top surface to the bottom of the film) were used to reconstruct
the local phase spaces of dimension 5 at these points with a time delay
of 3 ns. For the 5.0 um wall height 13 variables ¢ from grid points 1, 4,
16, 24, 28, 36, 44, 52, 60, 68, 76, 84 and 88 (from the surface to the base
of the magnetic film) were taken. Local phase spaces of dimension 6 were
reconstructed using a time delay of 3 ns. 15000 data points for each time
series were used.

The particular choice of the fixed embedding dimensions 5 and 6, the
time delay and the number of data points is justified by the results of [12]
where the correlation dimension was obtained for the same states of the wall
and the dependence of the dimension on the reconstruction parameters was
considered. It was found there that the value of the correlation dimension
saturates at the embedding dimension as low as 4 for all attractors con-
sidered. The value of the correlation dimension found in [13] for the 3.5
pm high wall was almost constant at 2.154 0.1 throughout the wall height.
For the 5.0 um high wall the value of the correlation dimension in this dis-
tribution did not exceeded 2.6. Thus, in the present calculation, we fixed
embedding dimensions for the two attractors considered here accordingly.

We performed calculations of the D(gq) curves by means of the recently
proposed minimal spanning tree (MST) algorithm described in detail in
[3, 5]. We chose this particular algorithm from among other approaches
(e.g. density reconstruction [17]) as it promised valid results for a minimum
number of points required (15000 were sufficient for the Lorenz attractor
[3]) and to remain as close as possible to the mathematical definition of the
generalized dimensions [3]. We cut-off the branches of the minimal spanning
trees that were longer than 10 times and shorter than 0.01 of the average
branch length in order to get rid of anomalous lengths distorting the parti-
tion function, as suggested in [3]. Note, that in [13] the data set contained
5000 points for the correlation dimension calculation, while in the present
calculation 15000 data points per set was used with the MST algorithm.
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The minimal spanning trees were calculated for the number of reference
points varying from 0.4% to 40% of the number of points in the set. Because
of the large number of data series to analyse we did not apply any auto-
matic numerical procedures [18] to detect the scaling region inside the fixed
0.4%-40% interval. Instead, we discarded the results for which the linear
regression method returned the correlation coefficient below the value fixed
at 0.9. Since most of the results obtained had their correlation coefficient
above that value, we inferred that the number of reference points was chosen
correctly. For the given number of the minimal spanning tree nodes, the
calculations of partition functions were averaged 10 times to improve the
quality of the fit. In view of the fact that in the MST algorithm random ref-
erence points are chosen, the entire calculation was repeated for each data
set six times to assess the spread and repeatability of the method.

The Legendre transform from the dimensions D(g¢) to the singularity
spectra f{«) was performed with the help of the cubic spline interpola-
tion for the D(q). For that interpolation the analytical first derivatives are
known [16]. This released us from the tedious and often precarious numer-
ical differentiation of the D(g) curves.

3. Error estimates

The MST method requires randomly distributed reference points. To
estimate the degree of influence of this randomness on the numerical results,
we carried out the same calculations for the same data set six times. The
uncertainties of the individual calculations returned by the linear regression
method for the values of D(q) for the variable ¢ from interval (-5, 5) were of
order 0.1 %. This is evidence of wide and smooth scaling regions. However,
the dispersion of the results obtained from the repetition of the calculation
is much greater than these uncertainties. This in turn suggests that, at least
in the case of the MST method, one must be cautious in order to obtain the
true estimation of errors from a single calculation.

4. Results

Typical examples of the D(g) curves obtained in this series of calcu-
lations are shown in Fig. 2 and Fig. 3 for h = 3.5 um and h = 5.0 um,
respectively. The linear regression errors on D(q) curves grow rapidly out-
side the interval of small values of ¢ (approximately (-5, 5)) indicating the
loss of scaling properties of the distribution of points. On some of the D(g)
curves we noticed a nonmonotonicity in the neighbourhood of point ¢ = 2.
The same nonmonotonicity of D(g) curves for the Lorenz attractor was re-
ported in [3]. The authors explain this as a peculiar property of the specified
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attractor. In the light of our results, we consider it a general property of at
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Fig. 2. D(q) curve

from signal ¢(t) at point no.12 in 3.5 um Bloch wall.
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Fig. 3. D(q) curve

from signal ¢(¢) at point no.24 in 5.0 um Bloch wall.

least the MST method for calculating generalized dimensions.

Typical examples of f(a) curves are shown in Figs 4 and 5 for the
attractor at h = 3.5 pum and h = 5.0 um respectively. The same loss
of scaling properties as in the D(g) curves for large ¢ values was observed.
With the rapidly growing linear regression errors at their ends, they acquired
unphysical, divergent “whiskers” we had to cut off manually. The dispersion
of individual results over and above the intervals of the very small linear
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regression error was especially visible in the case of the f(a) curves. We
believe this to be the effect of the random choice of reference points as made
in the present work and as prescribed by the authors of the method [5]. It
can be seen that the large dispersion is obtained mainly for the right-hand
branches of the f(«) curves. This unfortunately seems to be a common
property of many other methods also.
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Fig. 4. f(a) curve from signal ¢(¢) at point no.26 in 3.5 ym Bloch wall.
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Fig. 5. f(«) curve from signal ¢(¢) at point no.1 in 5.0 gm Bloch wall.

For the same set of material parameters as used in the present discus-
sion, strong indications of spatial correlations were obtained, for the case
of the Bloch wall 5.0 um in height, by means of the correlation dimension
(Grassberger-Proccacia algorithm) [13] and with a nonlinear correlation co-
efficient [15]. In contrast. the dynamics in the case of the Bloch wall 3.5 pm
in height was found to be much more spatially uniform {13, 15]. Fig. 6 and
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Fig. 7 depicts the spatial distributions of D(0), D(1) and D(2) as found by
means of the MST method for the 5.0 um wall height and for the 3.5 um
wall height, respectively. In the latter case the change of fractal dimension
along the wall did not exceed 0.25 which is not very much larger than the
error (Fig. 7). Also the value of all fractal dimensions is larger at grid point
number 1 than at the other end of the wall — at the opposite surface of the
film. In [13] the value of the correlation dimension (equivalent of D(2) here)
obtained from a slightly modified Grassberger-Proccacia algorithm was 2.25
at grid point 1 and decreased practically monotonically to 2.05 at grid point
52 (Fig. 9). Similarly as in the MST calculations presented here there was
a certain amount of scatter in the correlation dimension at the midplane of
the wall (points marked by x in Fig. 9) due to a secondary scaling region.

§ 3507
2
@
£ 300
D(0)
2,50 -
D(1)
2.00
D(2)
1.50 -
1.00

T T T T T

0 11 22 33 44 55 66 77 88

grid point number

Fig. 6. Spatial dependence of the dimensions D(0), D(1) and D(2) in the Bloch
wall with height 5.0 um. For the convenience of the eye we have connected the
points with straight lines.

On the other hand, the spatial distribution of the correlation dimension
found in [13] for the 5.0 um wall height (Fig. 8) strongly resembles that found
for D(0), D(1) and D(2) (Fig. 6). Except for D(0) both fractal dimensions
D(1) and D(2) show a certain increase of value at grid point number 1.
There is a maximum of all three fractal dimensions at grid points 22 and
66, there is a minimum at the midplane and there is an increase of the value
of all three fractal dimensions at the opposite end of the wall (grid point 88).

It can be seen that the results presented here reflect, at least qualita-
tively, the main features of the spatial distribution of the correlation dimen-
sion as found in [13] by a complete different numerical method: for the 3.5
pum case, the dynamics is almost uniform throughout the system while for
the 5.0 um case all dimensions calculated here have a spatial distribution of
a definite symmetry. Note, however, that the values of correlation dimen-
sion distribution found in [13] are somewhat larger than the values of D(2)
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Fig. 7. Spatial dependence of the dimensions D{0), D(1) and D(2) in the Bloch
wall with height 3.5 um. For the convenience of the eye we have connected the
points with straight lines.
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Fig. 8. Spatial dependence of the correlation dimension in the Bloch wall with
height 5.0 pm as found in ref.{13].

found here due to a difference in the definition of fractal dimensions used in
the MST algorithm and in the Grassberger-Proccacia algorithm (see [3]).
In [15] it was shown that the symmetry found for the attractor at wall
height 5.0 pm is associated with the existence of a specific state of spatial
intermittency in which chaotic domains of similar chaotic dynamics situ-
ated along the wall height are interlaced with domains of different chaotic
dynamics. It was shown there also that the domains of similar dynam-
ics, remotely separated in space, show strong correlation with each other.
The fact that a third method — the MST algorithm, a completely different
method of fractal analysis, shows the same features of the D(q) and f(a)
spatial distributions as found in [13] and [15] further strengthens the case
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Fig. 9. Spatial dependence of the correlation dimension in the Bloch wall with
height 3.5 pym as found in ref.[13].

for the new kind of spatial intermittency as defined in [15].

Finally, a two-point correlation dimension similar to the one applied by
Kurz and Meyer-Kress [9, 10] to calculate dimension densities was also used
in [15]. This quantity was not calculated per unit length of the system (i.e.
as a density). Instead, a spatial distribution of the two-point correlation
dimension was obtained. The shape of this distribution confirms the spatial
intermittency found by means of the nonlinear coefficient and manifesting
itself in the data presented here in the spatial distribution of the fractal
dimensions. The basic difference between the results obtained from the two-
point correlation dimension and those found through the local phase space
here and in [13, 15] is that the two-point correlation dimension changes
much more rapidly with the distance indicating a very fast spatial decay
of correlations in the system. As seen in Fig. 6 and Fig. 8 (as well as by
the behaviour of the nonlinear coefficient in [15]) the correlations between
remotely situated areas of the system seems to be rather long range.

5. Summary

The concept of the local phase space proposed here and in [13-15] serves
as a good model for the transfer to spatially extended nonlinear systems
of some of the tools for time series analysis developed earlier for chaotic
systems with finite degrees of freedom. In the case of the Bloch domain
wall, we were able to demonstrate its local multifractality and verify -the
spatial correlations in the system. The calculations performed here show all
the features of the new kind of spatial intermittency found earlier in [12].
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