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Relativistic N-particle exactly integrable system with oscillator-like
interactions in the two-dimensional space-time is considered within the
framework of the front form of dynamics. Using the Weyl quantization
rule we obtain eigenstates and eigenvalues of the mass-squared operator.
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1. Introduction

Among various forms of relativistic dynamics [1, 2] the front form [3]
in the two-dimensional space-time My [4, 5] takes a special place. Its dis-
tinctive feature consists in the fact that the Poincaré transformations are
automorphisms of the set of simultaneity surfaces. As a result the Poincaré-
invariance conditions [2] allow the existence of the N-particle interaction
Lagrangians depending only on the first order derivatives of the particle co-
ordinates [5]. This means that the front form in two-dimensional space-time
M is an exception of the no-interaction theorem [6]. Therefore covariant
particle coordinates can be used as canonical variables and the transition
to the Hamiltonian description may be performed by usual Legendre trans-
formation. This allows us to construct rather simple models with exact
solutions in classical [6] as well as in quantum [7] cases.

The aim of this article is an application of the Weyl quantization rule
(8] in the front form of dynamics in the two-dimensional space-time [7, 9]
in the special case of an N-particle system with oscillator-like interactions.
A similar analysis has been carried out in Refs. [7, 9], and [10] for the
two- and three-particle cases, respectively. This model constitutes one of
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possible relativistic generalization of nonrelativistic N-particle system with
oscillator interaction. The symmetry group in our case is the Poincaré group
P(1,1). This leads to three conserved quantities: energy, momentum, and
boost integral. The model considered here possesses additional integrals of
motion in involution. They are responsible for the exact integrability of the
system. But the structure of these conserved quantities is quite different
than in the nonrelativistic case. The reason is the unusual kinematical part
of the Hamiltonian and the momentum dependence of the interaction term
which is caused by the Poincaré-invariance condition.

Systems with oscillator-like relativistic interactions are of interest for a
variety of reasons. Such models are as a rule exactly solvable in the classical
case as well as in the quantum case. They may describe phenomenologi-
cal aspects of the inner structure of mesons and baryons [3, 11]. Besides,
these models may be useful for the verification of different approximation
methods, and may be considered as a some approximation of more realis-
tic models. It appears to be significant to explanation of the relativistic
effects in the well-established nonrelativistic oscillator-like quark models of
hadrons. A number of relativistic models was considered in various for-
malisms and approaches in the classical case [12] and in the quantum case
(13] as well.

Using the Weyl quantization rule (Sec. 2) and Jacobi type inner vari-
ables (Sec. 3) we solve the eigenvalue problem for the total mass operator of
the N-particle system with oscillator-like interactions and obtain its eigen-
values and eigenfunctions (Sec. 4).

2. Weyl quantization in the two-dimensional
front form of dynamics

In the two-dimensional space-time My with coordinates (29, 2) the front
form of dynamics corresponds to the foliation of My by isotropic hyperplanes
2%+ 2 = 7, where 7 € [ is the evolution parameter [5] (here and henceforth
¢ = h = 1). The classical Hamiltonian description of the system of N
structureless particles with masses m, (¢ = 1, N) leads in this case to the
canonical realization of the Poincaré group P(1,1) in terms of canonical
variables x4, p, with generators H, P, K. They correspond to the energy,
momentum, and boost integral. It is convenient to introduce the quantities
Py = H + P, for which the commutation relations of the Poincaré algebra
p(1,1) in terms of Poisson brackets are

{Py, P_} =0, {K, Py} =+Py. (2.1)

The structure of these quantities is determined by the formulae [5]
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N N
P+ = El’aa I(: Zwal)a» (22)
a=1 a=1
N 2
m 1
P_ = —2 + —V(rpy,r1c/7) - (2.3
az=:1 Pa Py ! ) )

Poincaré-invariant function V depends on 2N — 1 indicated arguments,
where rgc = T4 —~ &o;r =1r12;a,0=1,N,c = 2, N . Generators (2.2), (2.3)
determine the square of the mass function of the system

N 2
M*=PP_=P. Y 1;-“— + V(rpp, r1e/7) - (2.4)
a=1 ¢
The function V describes the particles interaction, and the first term in
Eqgs (2.3), (2.4) corresponds to the free-particle system. The special feature
of the front of dynamics is the positiveness of the the momentum variables:
Pa > 0[3,9].

As follows from (2.2)—(2.4), the quantization problem reduces to the
construction of a Hermitian operator corresponding to the function V in
Eqgs (2.3),(2.4). It determines the square of mass (inner energy) operator of
the system

M= MRV (2.5)

where Z\Y% is the free particle part of the square mass operator. Operator
(2.5) commutes with all operators which determine unitary realization of
the group P(1,1).

It is well known that there exists no unique path from the classical
description to the quantum description. From the set of known paths for
such a transition we choose the Weyl quantization rule [8]. According to

this rule, operator /i, which corresponds to the classical function a(z, p) on
the 2N-dimensional phase space with coordinates 4, pq, has the form

A N
A= /(d.s)(dk)&(k,s) exp (1: > (kaia + saﬁa)> ‘ (2.6)

a=1

where (dk) = Hi\;l dkg, (ds) = Hflvzl dsg, @ is the Fourier transform of the
function a

N
a(2,p) = / (ds)(dk)a(k, s) exp ( 3 (kaza + sa‘pa)) ,@)

a=]1
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and &,, p, are Hermitian operators of coordinate and momentum of the a-th
particle in some Hilbert space

The wave functions ¢ (p) = (p|¥) describing the physical (normalized)
states in the front form of dynamics counstitute the Hilbert space HF =

£2(RY, duk;) with inner product [3, 9]

(wmo:/m&@wumwm, (2.8)
where
= ﬁ dpe g (2.9)
C A 2 '

is Poincaré-invariant measure, and ©(p,) is the Heaviside function.
An application of the Weyl quantization rule to the classical functions
(2.2), (2.3) in the case of the Hilbert space #%; leads to operators [9]

N N
Py =>"pas K=iY pad/Opa, P-=M*/Py, (2.10)

which are Hermitian with respect to the inner product (2.8). They deter—
mine the unitary realization of the group P(1.1) on the Hilbert space HN

Here M is determined by (2.5) where
N om
M} =P, § 1. (2.11)

The operator V acts on the wave functions as integral operator

me:/m%@wmﬂWW) (2.12)

with the kernel

o>
!
(P4 — P+)/V (rp“b;pb;%ﬁ)

el ]

a o dr
X exp [i }: r1a(Pa — p;)} 2;“ . (2.13)
a=2

The general properties of the Weyl transformation [14] ensure that in the
classical limit these operators correspond to the functions (2.2), (2.3).
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The evolution of the quantum system is described in the front form of
dynamics by Schrédinger-type equation

ov -
}— = HY | 2.14
i ‘ (2.14)
where ¥ € ?{fi and
A=1YPy+P)=3(Pr+M*/Py). (2.15)

Putting ¥ = x(¢, P4+ )%, where ¥ is a function of some Poincaré-invariant

inner variables, we obtain the stationary eigenvalue problem for the operator
M2,

3. Inner variables
The separation of the motion of the system as a whole may be performed
by choice of Py and Q = K /P4 as new (external) variables. There exist

many possibilities of the choice of inner variables. For the model considered
below it is convenient to introduce the following inner variables

P _ ,
e = 2 P G = Py (Qa — 2a41)i P = Py Q= QN (3.1)

2P(a+l)+
{gam} =00p; {Q.Py}=1, ab=1N-1, (3.2)
where . .
Poy = Zpi-, Qa = a-_: Z Zipi - (3.3)
=1 =1

The Poisson brackets between other pairs are equal to zero. Inverse trans-
formation of variables is determined by

N
Pa=Pr(t —mat) [T (3 +m), (3.4)
t=a
N 1 1
5 — h)q 5+ Na—1}9a-
g :Q+P_:] Z 352 n:i)q _ (2 Na—1)9a—1 1 (3.5)

N
i=a Hj=i+l(%+nj) Hj:a,(%+nj)

where we put qo = gy = 1/2;9ny = —7no = 1/2. In the two-particle case
variables (3.1) coincide with the variables proposed in Ref. [3].
Using variables (3.1) in Eq.(2.4), we obtain

M2 = M3 (n) + Flg,m), (3.6)
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where
M2(n) = —_— 1/2+n;)! 3.7
HE) ;1/2—%_12””’) (37)

is the free-particle term and F is the expression of the interaction function
V in terms of variables (3.1)

Virps,rie/r) = Flg.n) - (3.8)

Let us note that the positivity of the particle momentum variables p, > 0
gives inequalities |nx| < 1/2,k = 1, N — 1. As a consequence of the equality

N
a=1 Pa 1/4 - Uk

the Hilbert space HF decomposes into the tensor product ’HN = hint @
Hert, where “inner” and “external” spaces are realized, correspondingly, by
functions ¢(n), and f(P4+) with the inner products

(hh=1 / 5 e () F(Py). (3.10)
0
12 /N

(o) = | (H ﬁg—)lzl(nw) (3.11)
—1/2

It is convenient to pass from the functions ¥ with inner product (3.11) to
the functions

N-1
n [ & - 2m) y~1/2 (3.12)
b=1
with inner product
1/2 N—1
(p1,9) = / (e [ dne- (3.13)
~1/2 a=1

The latter differs from the nonrelativistic product only by limits of integra-
tion.

As it follows from (2.12) after passing to variables (3.1), the function
V in the integral expression for kernel takes the form V = V (7, g), where
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n=n(p+7)/2).4=q((p+p')/2, 24 — xp). Therefore it is convenient to
use ¢ as new variables of integration in (2.13). In terms of variables (3.1)
the quantities §, 77 have the form

Dast ( Dag s, R
~ at1 ala < J
Qo =7 N=1 +z v = M)y H 1 ) (3.14)
ZDa H]:a-i—l(% + T]]) rv=1 ':y 5
N
Na :D;_|l_1 (Ua H (% +n;) + M + 77] ) (3.15)
j=a+1 = (L+1
where
N N
H + 1;) H +175) - (3.16)

The operator M? acts nontrivially only on h;n¢. It is an integral operator,
which is determined by the rule

1/2

N-1
Wee = M3netn+ [ Wone) I] d. (317)
—1/2 n=1
with the kernel
N-1
(d=1)/2___
W(n,n') =( IT [+ 5 G +na)] Ddi1>
d=1
oo N—-1 N-1 di,
X / F(g.7) exp(i Z Ga(Na — n;)Ya> H 7 ,(3.18)
—o0 a=1 b=1
where
N
Yo=4D7 [ G+n)G+n)- (3.19)
j=a+1

As it follows from Eqs (3.15), (3.16), (3.19), the kernel W satisfies the
conditions

W*(n,n') =W(n',n), (3.20)
which provides the Hermiticity of the integral operator (3.17).
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4. System with oscillator-like interaction

Let us consider the system with the interaction function

V =w? Z Z 2 paps, w?>0. (4.1)

a<b

The function (4.1) gives N-particle generalization of two-particle interac-
tion (see Ref. [9]), as well as one of possible relativistic generalization of
N-particle oscillator potential. There exists no unique relativistic general-
ization of the nonrelativistic oscillator potential. For instance oscillator-like
model has been considered by Staruszkiewicz [15] in Lagrangian formalism
for the two-particle system in the two-dimensional space-time. It leads, in
the Hamiltonian description. to the interaction function V = w272 (py +p2)2.
In terms of variables (3.1) the interaction function V' takes the form

V=F(q,17)=w2[\lz_:1 (3-n)e? INI (%Jrnj)_l- (4.2)
a=1 j=a+1

The system with interaction (4.1) has N — 2 additional integrals of
motion Aj, which mutually commute

XA} =0, k=2, N—1. (4.3)

In terms of variables (3.1) they have the form

J 2 J -1 m2
2 _ md 1 ) 741
M= 2=l (3+m) +2
d=12 -1 ;-4 3=
: = ! - 2(1 2\ 2
+w? (% - nﬁ)qﬁ 11 (% + m) +w (; - 77j)‘1j ,(4.4)
d==1 i=d+1

where /\?V = M? j = 1,N —1. They can be represented by means of
recurrence relations

2 2
Aj Mj+1

1
P RAUIE R

N1 = +? (- n2)dl, (4.5)

where we denote A2 = m2. As it follows from Eqs (4.4),(4.5), the integral
of motion \; does not contain 7, qx, k > ¢ and it plays the role of particle
mass for integral X;4i.
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Consider now the eigenvalue problem for the total mass operator

(M%) (n) = M*o(n) (4.6)

using the representation (3.13). Substituting interaction terms of the in-
tegral /\? 4+1 (they contain w) into kernel (3.18) we obtain expression for

2
operator ’\j+1

J 2 J 2
312 mg - Mj+1
M=) 7= [lG+m ™"+
d=1 2 d—1 i=d 2 3
]""1 F & J
1 ) d?
2 1 2 1 ~1
D ———277d7“‘“+(z—774)7*—2] I G+m
d=1 4 0ma g k=d+1
2| J+1 0 A
~? (-1 gt (- (4.7)
4 Tom, 4 an?
and boundary conditions
0p;
Ii 1 _ 27 ¥J — 1§ . Y =0 N 4.8
m (4 7}]) 81}] nj—irinl/Q ‘193(7?3) ( )

n;—+1/2

which ensure the Hermiticity of (4.7). Putting j = N — 1 we have the
expression of total mass operator. As it follows from Eq.(4.7) the operator
A; does not contain Nk, k > ¢ and derivatives with respect to ng, k > 7.
The operators (4.7) can be determined by means of the following recurrence
relations

12 20 2
;\2+1:’\j“1’ (G —1)/4 s
J
2t 2 =M
of J+1 0 1 2 9?
SREY ALV SRLAYD S ) e (4.9)
( 4 Ton; -t o

Operators (4.7) commute between themselves and therefore they have a
common set of eigenfunctions. Let ¢(n) be the eigenfunction of M? =

5\%\, Putting ¢(n) = Hfi;l i(n;) gives us the system of N — 1 differential
equation of the hypergeometric type

3+ 3=
Aj j+1 ] 9, 02
2 341 J 1 9 oy
—w ( o2 a4 “277j577_j+(z_77j)’87]2.)}§93(77]) =0, (4.10)
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\ivhere H{:l @i(m;) is an eigenfunction andhz\g_‘_l is an eigenvalue of operator
)‘§+1 and /\§ is an eigenvalue of operator /\?. The substitution

i) = (3 = 1) (3 + 1)y (nj) | (4.11)
where a? = m?_H/u,)2 b2 = Az/w (7 — 1)/4, reduces Eqs (4.10) to the
known equation for Jacobi polynomial P,(,2a”2b )(2 ;) [16]. The Eqs (4.10)

have nontrivial solutions, which are bounded and square integrable on the

interval (— 2,5) under the conditions

VA -t/ = N -2 - DA g e+ 3),, (412)
where n; =0,1,2,.... Here we consider
a; > 0, b; > 0. (4.13)

Solving recurrence relations (4.12) we obtain the mass spectrum

N N-—-1 2 N -1
Z\/If3 = Zl Mg + w bzl (np + %) + - n w? . (4.14)
a—= prod

The normalized solutions of the Eqs (4.10) give the wave functions

‘ij)

N-1
 (2a;, B
Ch, H (1/2 = n;)% (5 +0j)% Pa. 7 (20)) | (4.15)

where , -
1 < = )
aj:m]'+1/w, b]':;ka+Z(nk+§). (4.16)
k=1 =1

The constants an are determined by the normalization conditions
(c,onj,cpn;) = 5%,”3 which give

nj!(an + 1+ 2a; + 'ij)f'(nj + 14 2a; + ‘ij)
I(nj+1+42a;)(nj+ 14 2b;)

IC’ndQ = (4.17)

Let us note that conditions of square integrability for Pn; (n;) are fulfilled
under weaker limitations on numbers a;, b; than (4.13), namelv 20 + 1>
0,2b; 41 > 0. This could give three other branches of the spectrum, which
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differ from the Eq. (4.14) by signs of m,. But corresponding wave functions
do not satisfy the boundary conditions (4.8).

Interaction function (4.1) may be generalized by adding terms which
are linear in the coordinates

V—>V:V+aZZrab(pa—pb). (4.18)

a<b

Such a system has also additional integrals of motion. They may be deter-
mined by the recurrence relations

A2 m2
N =1+ T+ - )]
R T 7
+al(1-7)/24 (14 5)n;le; (4.19)

and satisfy the Eqs. (4.3). The integral )‘{7)\/ coincides with the square of the

total mass M? of the system . Therefore, similarly to the previous case, we
obtain the wave functions

N-1 ) .
i b4 (2a;,285) .
en(n) = Cny [T (5 = n)™ 727 (5 4+ nj) 7 T w2 Poy 7770 (205)  (4.20)
j=1

and the mass spectrum

N-1 2
[Z \/m2 — b=1 N4‘ lwz + 0‘;7\;2 , (4.21)
where
7n2 2 i1
aj = u%l——ﬁq, bj=a0+kz:(ak+nk+%) (4.22)
=1

and constants Cp; are determined by Eq. (4.17). Discrete spectrum exists
only for real a; . This leads to inequality |a| < 2wmin {mg},a=1,N. In
the nonrelativistic limit M — m + E/c? we obtain the energy spectrum

N-—1 o
En=w)_ (nk +1- 2w2’€ ) : (4.23)



2068 V. SHPYTKO

The expression (4.23) corresponds to the spectrum of the N-particle system,
which is described by the Hamiltonian

'2 2

TRy
= E + s 4.24
(2#k 9 akPk) ) ( )

where masses p; and constants aj, are related to parameters of original
relativistic problem by equalities

k
M1 Zf 1M « (Z]‘—1 mj — kmj-i»l)
u,k: k+1 s (I,k: N k:l.N"l
Z]-l mj Z] 1mj
(4.25)

Expression (4.24) may be obtained from the nonrelativistic limit of the
Hamiltonian of the system with interaction (4.18)

* 5m ZZ repmams

a P?
+ o 3 rap(me —mp) = 5+ Hin, (4.26)

c—

where m = 25:1 me;a,b=1,N;k=1.N -1 and p, are nonrelativistic
particle momenta. After canonical transformation

ko~ ~ k k
Mk41 Y =1 Pj — Pk+1 > i=1 mj 2 =185 .
fk = k+1 v PE= % — Th41s

E] 1My Zj:lmj

R SN zm;
=Y"5; en="S bl =0 (427)
2

N
Z;’:l m;
the inner Hamiltonian takes the form (4.24). In the case of equal particle
masses, m] = mg = ... = my , the “nonrelativistic” constants of linear

interaction are equal to zero, o, =0 .

5. Conclusions

We have considered the quantization of exactly integrable model of
N-particle relativistic system with oscillator-like interaction in the two-
dimensional variant of the front form of dynamics. Using the Weyl quan-
tization rule in the case of Hilbert space %ﬁ and inner variables (3.1) we
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have solved the eigenvalue problem for square of mass (inner energy) oper-
ator M? . Generalization of the oscillator-like potential (4.1) by addition of
terms which are linear in the coordinates permits, to find the exact solution.
In contrast to the nonrelativistic case, the value of the coupling constant of
linear interaction must lie in the interval |a| < 2wmin{m,},a =1, N. This
condition is necessary for the existence of a discrete spectrum. Other values
of « lead to continuous spectrum.

There are many quantization methods. As a result of Poincaré
-invariance conditions, the relativistic Hamiltonians usually cannot be rep-
resented as a sum of terms that depend only on commutative operators.
Therefore different quantization methods may lead to different expressions
for observable quantities. We have applied the Weyl quantization rule be-
cause it leads to the unitary representation of the Poincaré group in the
two-dimensional space-time [9], is in agreement with the quantum resuits,
and preserves, in the case of oscillator-like potential (4.2), the commuta-
tion relations between additional integrals of motion: [5\,',;\]'] = 0. This
means that Weyl quantization rule preserves additional symmetries which
are responsible for integrability of this model.

I would like to thank Prof. R. Gaida and V. Tretyak for helpful discus-
sions of this work.
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