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We show that the gauged SU{3) Wess—Zumino—~Witten model can be
classified into several classes by its target space metrics. This fact implies
the appearance of target space transition and two target space dualities.
We also consider the gauged SU(2,1) Wess—Zumino-Witten model as an
analogy of SL(2,R) black hole. We show also that these Wess—-Zumino—
Witten models are connected continuously.

PACS numbers: 11.15.-q

1. Introduction

Since the string is one dimensional extended object, it can wrap around
on a circle, which gives a distinction between particle field theory and string
theory. This fact leads us to so-called target space duality [1]. Target space
duality is regarded to be peculiar to string theory, so we may think of it
as a stringy effect. The most famous one of target space dualities may be
R — 1/R duality which was found in circle compactification, in bosonic
string theory. Under this duality, the winding number and the momentum
number are exchanged. What this duality means is that a theory on radius R
is equivalent to that of 1/R. Of course, target space duality is not restricted
to this case, it appears in many places such as toroidal compactification, two
dimensional black hole theory [2-5], axial-vector type duality as a gauge
symmetry, topology change and in some sense, mirror symmetry [6]. In
particular, one of the most interesting dualities may be mirror symmetry,
because it includes target space duality (in fact, mirror symmetry of torus
is nothing other than R — 1/R duality). We know that mirror symmetry
gives a powerful tool for Calabi-Yau compactifications in super string theory
and that the notion is extended to other fields.
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For example, Giveon and Witten [7] showed that the mirror symmetry
of N =2 SU(3) Wess-Zumino-Witten (WZW) model was a gauge symme-
try, namely the axial-vector type duality, and they conjectured that their
construction could be extended to A, (n = 1,---) WZW models. In [7],
they employed SU(3) WZW model as an example and explained their al-
gebraic construction. But their discussion was (mainly) based on algebraic
aspects of N = 2 super conformal algebra, we can not say that discussions
about geometrical aspects and realizations by Lagrangian formalism of such
mirror symmetric WZW models are filled, so that it is necessary for us to fill
the gap. Of course, though they gave another example SU(2)x U(1), this
example is extremely well-known in string theory, so that even if we should
apply the idea of mirror symmetry as a gauge symmetry to that example,
we could not get any new discovery, i.e., the model is “trivial”. Therefore in
order to establish the idea in the framework of WZW model, we must study
another WZW models which are mirror symmetric. In that case, we may
get some new aspects of mirror symmetry as a gauge symmetry. However, it
is unnecessary for us to investigate all Az, WZW models. It will be enough
to study the simplest case, i.e., SU(3) WZW model corresponding to As.
Therefore, it is interesting for us to investigate SU(3) WZW model, although
supersymmetric WZW model is a little complicated to treat in contrast with
bosonic one. However, since these mirror symmetric WZW models can be
understood in the framework of current-current marginal perturbation and
N = 2 current-current perturbation .Jo.Jo has the following form

Jody = JoJo + (terms including fermions),

where index denotes the number of supersymmetry and Jy(Jy) is a left
(right) handed current, mirror transformation Jo — —J2 induces similar
transformation to the bosonic part J; — —Jo. Obviously, mirror transfor-
mation has an effect on the bosonic part. In other words, in N = 0 part of
N =2 SU(3) WZW model, target space duality will be expected to appear
by bosonic “mirror” transformation Jy — —Jy. However, during the inves-
tigation of N = 0 SU(3) WZW model and related problem such as gauging,
we have found a curious phenomenon about its geometry. The aim of the
paper is to report on the geometrical aspects and dualities of gauged SU(3)
WZW model, although we will treat only bosonic theory.

The paper consits of the following sections. In section 2, we derive the
SU(3) WZW action and then we gauge it. This gauged model is based
on SU(3)/(U(1)x U(1)) which is Kaehlerian as shown in [8], so that our
investigation in this paper will be helpful when we extend our discussions
to N = 2 theory. Of course, though there are several choices for gauging
except SU(3)/(U(1)x U(1)), as our gauging is the most fundamental one,
we employ this gauging. In section 3, we discuss the metrics of the gauged
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SU(3) WZW model and their target space duality transformation. It is
shown that the target space has (basically) two classes (phases) in the point
of view of the geometry of the target space of SU(3)/(U(1)x U(1)) WZW
model. Therefore when we move from one phase to another one, target space
transition should occur. This transition happens continuously. According
to these facts, we can see that there exists two target space dualities. We
will consider analytic continuation from SU(3) to SU(2,1) as an analogy of
the transformation from SU(2)/U(1) to SL(2,R)/U(1) black hole which are
well-known examples of two dimensional black hole. Our models contain
two 2-dimensional black holes. In addition to this, we also show that these
WZW models are connected. Five appendices are added.

2. Gauged SU(3) WZW action

In this section, we derive SU(3) WZW action using Euler angle paramet-
rization, then we perform its gauging.
General worldsheet WZW action is defined by

k ik
S =4 [ oMU+ 5 [ Eoe DU ) Vi0)]
(2.1)
where ¢ is an element of a Lie group G (for notations, see also Appendix A)
[1-3]. , :
Suppose G=SU(3) and let us introduce real coodinates 8] and 63, where
6} and 0% are related to another coordinates #* and 6 such as
9" = 6% — 6% mod 27,
' = 6% + 6} mod 27, (2.2)
where ¢ = 3 or 8 in the case of SU(3) [9]. The Euler angle parametrization
for g € SU(3) (see Appendix C) gives

;103 173 878 o S 6 4 . 7 - 03 1r3 8778
g = BT H+6TH®) i@ T 25T 426 To04+27T") | (H(O3H +6,H ) (2.3)

where H3 and H® are generators of the Cartan sub-algebra, T* are Gell-
Mann matrices (see Appendix D) and zj are real parameters. Then after
some calculations (see Appendix B), (2.1) will bel

S=_ 4_’;. / d2(0,0100% + 0,656
4+ 0,z40% 24 + I, 50" 25 + 0,260 26 + 0 1773”1‘7)
[ 7 B B
_ ZT./d2aP_‘f"8u0{8u0§Mij. (2.4)

! Repeated roman indices are also to be summed.
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We can rewrite this action as
S=- 2% / d*=(06306% + 965065 + 2M, ;56306
+ 0z40x4 + Ox5025 + Ox6026 + Ox7027) , (2.5)
where we have introduced a complex coodinate and its complex conjugate
z=0o! +i0?, z=0' —io?. (2.6)
Then, differential operators are
9 =101 —id2), 0=%(01+1i0). (2.7)
Note that we have used the integration measure
d?z = |dzdz| = 2d%0 . (2.8)

The action (2.5) describes SU(3) WZW model.
Next, let us consider the gauging of (2.5). We can add a total derivative
term Stot

Stot = __2.’“; / d*(06 00 — 96509) , (2.9)

which gives a topological contribution and is needed for gauge invariance of
gauged action. Then the parent action S’ will be

S'= 5+ Siot- (2.10)

This action is invariant under U(1)? x U(1)} affine symmetry generated by
chiral currents

Ji= —g [—(1- f\/[),‘jaej-i-(l-}'tw)ijaéj} (2.11)
and anti-chiral currents

. k . .

T = 2 (T = M)i;087 4 (14 M) ;98] (2.12)

where I is a 2 x 2 unit matrix. Of course, there are several currents related
to z directions, but they are not required here because including them does
not give any interesting problems.

Now, let us gauge our action (2.10) by the following gauge transforma-
tion

98" — 00" + A*,
06" —» 56 + A¥, (2.13)
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where A' and A! are U(1) gauge fields. The gauge invariant action will be
kA' AT

5

1 . . o
Sga.uged =S5+ %/(122 I:AZJz + A'J - (I+ M)”} . (2.14)

Since there is no kinetic term of A*(A?), we can eliminate them by integra-
tion in the path integral. And a finite correction coming from the measure
in the integration over these gauge fields gives a dilaton field &é(z). Thus
the complete action will be

Sgauged = S’ + S[z] + %}: / d?z 2000 (I + M);jl, (2.15)

where . )
S[z]=—— [ d*z ~¢(z)R'?, (2.16)

27 4

and R? is a worldsheet scalar curvature. This type of action is used to
construct a curved background in 6-dimensions which is independent of
2 coordinates as an abelian quotient of (6 + 2) dimensional background.

Substituting (2.11) and (2.12) into (2.15), terms including 6% vanish and
therefore the final result will be

Sgauged == 5;/(123[%,‘89’801 + 024014

+ dwsdas + duedrg + Dx7027]

1
~ — [ d®z0(2)R'®, (2.17)

87
where G;; is a part of background metric with anti-symmetric tensor B;;.
It is given by

Gij = gij + Bij
= - M)(I+ M),:jl. (2.18)

Here g;; is a part of target space metric, in other words, symmetric part of
Gij. We give an explicit form of g;; and B;; below,

gii = 933 938)
Y gs83 088

_tan’VXZ-Y2/ o /Bb
T 2(X2-Y?) \V3b 3¢ )’

([ B33z Bsg
Bij = (383 Bss)

_tan? VX? - Y2 0 V3Y?
T T2(xz-v?) \-Vv3YZ 0 )¢

(2.19)
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where

a:wi+x§+x§+mg,
b=ux?4z2,
c:xi+x§—x§~x§,

X? = 2(2 + 22),

Yi=zl422. (2.20)

Of course, target space metric itself Gy is

E 0 o ¢

where F is a 4 X 4 unit matrix. Since the anti-symmetric tensor is a total
derivative, we can drop it. Rewriting z(Z) in terms of o*, (2.17) will be

k . .
Sgauged = _4—71' / dQU\/ﬁn‘w (gijaug’aufp -+ 6;;31746#374
+ Ouxs0fzs + Ouxs0”xe + 8,,1:73"117) - %/dgo\/ﬁ@ﬁ(l’)]{mw (2.22)
m

where n#” is a worldsheet metric tensor and 5 = det n#*¥. Though n#¥ itself
is trivial in our case, we included it explicitly here. This action describes
SU(3)/(U(1)x U(1)) WZW model.

Now, let us turn to a dilaton. As is shown in [9,10], there is a discrete
symmetry group in D-dimensional curved backgrounds which is independent
of d-coordinates, and is isomorphic to O(d.d, Z) (d < D). This symmetry
group relates (D + d)-dimensional conformal field theory to D-dimensional
one. Then, the dilaton transforms as

&(z) = do(z) + Indet(I + M), (2.23)

where ¢g(z) is a dilaton field in D-dimensional curved background, at least,
at one loop level. Recall that our WZW model is originally defined in 8
dimensions. And the dimension is reduced to 6 by gauging abelian sym-
metries. Thus in our model, D = 6 and d = 2, so the symmetry group is
O(2,2, Z). Then the dilaton field transforms under the target space duality
transformation as

#'(z) = ¢(x) + Indet G . (2.24)

This is a change of the string coupling constant. This transformation prop-
erty means that the string coupling constant ggring is invariant

Goting = (€% 7)) = (Vdet G 3e®®)) (2.25)
under 0(2,2, Z).
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3. Metric and duality

In the previous section, we have performed the gauging of the action and
have derived the gauged SU(3) WZW action. In this section, we show the
detail of the target space metric and the curious duality which we mentioned
briefly in the introduction.

We can easily obtain the metric of the target manifold from the action.
It is

(ds)? =(dz4)? + (dzs)? + (dze)? + (dar)?
+ 933(d8%)% + 2935 d6° dO° + ggs(df®)%. (3.1)

Let us assume X2 — Y2 > 0 and define this region as a region I. Now

introduce a new variable R = X2 — Y? for later convenience? and change
notations such as (3.1) is
2
(ds)? = (do)? + R2(d8%)? + TAE B ya e L p2agsy2. (3.2)

V3
where we have abbreviated (dz)? = (dz4)? + (dz5)? + (dzg)? + (dz7)? and

2 2
g2 tan VR ()i +Y2)

2R 2
3 tan? \/
2= -Y 3
k 2R ( 2 ) (3-3)

Strictly speaking, we must consider an overall sign of X2/2—-Y?2 If R—Y? >
0, then R > Y2 > 0, which is in region I, so we name this region as I-1. If
R —Y? < 0, then we have two possibilities, Y2 > R>0and Y2 > 0> R
(i.e., 0 > R). Let us name the former as region I-2 and the latter as region
II. In this classification, the signature of the metric in I-2 and 11 is Minkowski
whereas it is Euclidean in I-1. However, if we should use these three classes,
the result would be a little complicated and might give us uneasy impression
to understand. Thus, we employ (the basic) two classes I and II instead of
1-1, I-2 and 1.

We may think R; and R» as radii, so, roughly speaking, this space may
be regarded as a direct product manifold R* x T2, where T2 is a (real)
two dimensional torus with some additional structure whose existence is
implied by non-diagonal components in the metric tensor. This metric
behaves singularly due to its own right, for the metric can partially vanish.

2 Do not confuse R with the radius itself.
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We can easily see that there seem to be several singularities corresponding
to X2 =0,X2-2Y2=0,R=0and R=n?7? (n=1,2,--9). R =0 can
be excluded among these candidates of singularity, because

tan? \/}_2 . 1
2R 2"
R—0

(3.4)

Therefore the remainders are the candidates.

In order to see whether these candidates are really singular points or not,
one needs certain quantities such as scalar curvature or curvature invariant
which are independent of choices of coordinate system. We included the
scalar curvature in Appendix E.

At X? =0, i.e., at the point (z4,25) = (0,0), the non-diagonal compo-
nents of the metric vanish, so this space reduces to the “pure” space with
two radii K1 and R, in other words, this space reduces to R* x T? exactly.
However, as can be easily seen from the expression of the scalar curvature,
X?% = 0is a regular point of the scalar curvature, so it is simply a coordinate
singularity which can be absorbed by a coordinate redefinition.

At X2 -2Y2 =0, i.e., the points which are solutions of a::‘i + 1% - wg -
x% = 0, Ry is zero, so this space is the space whose one radius vanished.
Since the scalar curvature at these points is regular, those are coordinate
singularities.

The constraint R = n?r? originates from the following fact. Since
the radii R; and R, contain tangent function, they are quantized with a

periodicity 7, i.e.,
VX%2-Y?2 mod 7. (3.5)
At R = n?r? (n=1,2,-+4),

tan? \/E

, 3.6
2R —0 (3.6)

3
R=n?n?

so these may be expected to give singular points. In fact. since the scalar
curvature diverges to infinity at these points, these are “really” singularities.

To complete the discussion, let us consider the determinant of the metric
tensor of (3.2), which is

3Y*tan* VR

det G p = — iR?

(3.7)

Since X? and Y? always belong to real positive numbers, (3.7) is always
negative, which means our choice of Euler angle coordinate for SU(3) is a
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negative coordinate, although this is not important because the sign could
be absorbed if we should use another coordinate system to parametrize
SU(3). From (3.7), we can easily see that Y? = 0 and (3.5) give zeros of
the determinant. Thus Y2 = 0 and (3.5) mean that the volume form of the
target space is zero. But since the scalar curvature at Y2 = 0 is regular, it
is a coordinate singularity.

It is interesting to note that if we should further cut the space with
Y2 =0 with 5 = 0 or 24 = 0 then the target space metric would be

tan? \/_ 2x4

(ds)f 3o’ = (dza)® + ——2(d6*)?
\/_tan2 fm4d03d08+ 3 tan? \/_a:4 d98)
(ds)? X750 = (das)? + L2 V205 f” (d6*)?
+ v/3tan? \/_xsd03d08 | Btan” v2zs 3 tan? \/_335 (d6%)?. (3.8)

2
The first two terms, for example, are nothing other than SU(2)/U(1) black
hole® up to constant factor whereas the fourth i 15 S1. Thus we can identify
the reduced space is a product space SU(2)/U(1) black hole xS with some
additional structure which correponds to the third term. Accordingly, the
gauged SU(3) WZW model includes SU(2)/U(1) black holes in a sense.
However, this fact is not surprising because SU(2 ) is a sub-group of SU(3)
and thus the appearance of SU(2) is naturally expected. From this simple
reason, roughly speaking, we can see that our cuttings correspond to the
“break down” from SU(3) to SU(2). The reason why we have used a term
not black hole but black “holes” is due to the freedom 24 = 0 or 25 = 0.
On the other hand, at X% = 0 with z¢ = 0 or 27 = 0, SL(2,R)/U(1) black
holes will appear which can be shown repeating a similar discussion above!
Therefore we can say that the gauged SU(3) model contains two black hole
theories. However, it is unclear whether the target space (3.2) itself is also
black hole or not. In addition to this, as we could not find a convenient
coordinate such as Kruskal coordinate, we do not discuss the causality of
this space time here. So physical meanings are not understood at present.
But, since we already know that the target space has singularities which can
not be absorbed by coordinate redefinitions, we conjecture that the space
may be a six dimensional black hole.

3 The appearance of the number v/2 in front of the argument of tangent is due
to our normalization for Gell-Mann matrices. In the literature [2-5,10], since
the normalization Tr T*°T* = 2 is taken, the number in front of the argument
is 1.
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The dilaton in the region I is given by
or(z) = q% +In4cos® VR, (3.9)

where QSII} is a constant dilaton in the region L

We have assumed as far that we are in the region 1. Next, let us turn to
the region IT (R < 0). The discussion on the null line R = 0 will be treated
later.

In this region, (3.2) reduces to another metric, because tany/—1lz =
V/=1tanhz, ie., tan?iz = —tanh?z. Therefore we obtain the following
metric

3R%+ R}

(ds)} = (d=z)% + R3(d6%)? + 7 4463d6® + R2(d6®)2, (3.10)

where

2 tanh’ VR' (X2,
B=—pm Tt )
3tanh? VR (X2
RZ = —E <—2 - yg) , (3.11)

and R' = Y2 — X2, Note that the factor (X2?/2 — Y?) in R? is actually
always negative in the region II. The derivation of the above metric requires
a little care. For example, notice that Rf is a function of X and Y. If we
used R, it could be written as (X2/2+Y2) tan2 \/E/ZR. In this expression,
the first factor should be unchanged (or it is unnecessary to rewrite it under
R — —R = R') when we pass from I to II because we can always move
freely from I to Il continuously preserving X2,Y? > 0.

Now we can see that the theories are classified by a cone X? ~Y?2 = 0.
In the region 1, the metric behaves tangential whereas it behaves hyperbolic
tangential in the region II. Accordingly, we can say that the transition of
the target space of the gauged SU(3) WZW model appears when passing
through the null line. These two metrics are connected on the null line. This
is easy to check (see below). These features can not be seen in SU(2)/U(1)
black hole solution or other space-time manifolds. For example, in the case
of two dimensional black hole solution, it has only one class due to its
triviality, which means that the target space has just one type metric in the
full domain. However, the target space of the gauged SU(3) WZW model
has now (basically) two types of metrics. We will summarize the discussion
in the figure 1.

In this figure, T. means that the metric is “tangential” whereas H.T.
“hyperbolic tangential”, whose meanings should be obvious.
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II I
HT. T.

R on® 4n’ on’
Fig. 1. Classification of target space of gauged SU(3) WZW model.

The dilaton in the region II is given by
or1(z) = ¢ + Indcosh? VR! (3.12),

where gbg is a constant dilaton in II. Since the theories in I and Il should
coincide on the null line, we can get ¢¢ = @}) = q‘}g from the require-
ment ¢1(z)|p—o = é11(¢)| gr—o- Under this situation, the underlying string
theory is well-behaved in the full domain of the gauged SU(3) in view of
coupling constant. Namely, there is no gap of string coupling constant pass-
ing from I to II. Recalling the points on the null line in these target spaces
we can find that the target space transition occurs continuously.

Now, let us consider target space duality transformation. To get a dual
metric, it is enough to make

' 1 iR
R2 — — 2 /R
VTR (X242Y2) cor VI
' 1 1R .
R2= —=———cot’ VR 13
2T RZ T O3(X2-2Y7?) «© ’ (3:13)

for (3.2) in the region I, for example. Then, it is easy to write down the
dual metric. The dual metric is

M 463
V3

The dilaton transforms under the target space duality transformation as

(ds")? = (dx)? + R2(d6%)? + d9® + R2(d6%)2.  (3.14)

3Y* tan? VR cos? VR

S1(x) = ¢p +1In 7

(3.15)
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where we used (2.23), (2.24) and (3.9). The dual metric for (3.10) is

3R32 + R42 d93

v d6® + R2(d6%)2,  (3.16)

(ds"fy = (dz)* + RS (d6°)” +

where
' 1 4R' .
2 2
= e = ————— th ”
Ry R§ X7+ 277 co VR
; !
Rz=t o 4R e VR'. (3.17)

t TR T 3(xX7-2v?)

Target space dualities are now generalized version of so-called cigar and
trumpet of two dimensional black hole. It is important to note that we
have now two kinds of target space dualities. The dilaton transformation is
now given by

3Y% tanh* VR’ cosh? N

72 (3.18)

$11(e) = ¢g +In
Also in the dual theory, we can get the result q% = qu(I)I, repeating similar
discussion as before.

Next, let us consider analytic continuation which is an analogy of the
transformation from SU(2)/U(1) black hole to SL(2,R/U(1) black hole.
This is given by z; — 2. This analytic continuation turns SU(3) into
SU(2,1). Then (3.1) in the region I will be

_ 3R}, + B3, 16

(d9)? = ~(dn)? ~ B, (a6°) — D

de® — R3,(d6®)*, (3.19)

where
2 tanh® VR [ X?
= Y 4y?),
i 2R >t
3tanh? VR [ X2
2 _2tn VT —v?). 3.20
Rz 2R (2 ) (3:20)

However, since an overall sign of metric is trivial, we may always change the
sign of it. This corresponds to & — —k in the action. It is useful to invert
the sign. Thus, we will employ

3R?, + R}

(d3)? = (dz)% + R%,(d6*)? + 7 22 193 d6® + R3,(d6%)2,  (3.21)
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I I
HT. T.

R o7 —4%  -n?0
Fig. 2. Classification of target space of gauged SU(2.1) WZW model.

as the metric after analytic continuation, in other words, the metric of
SU(2,1)/(U(1)x U(1)) WZW model.

It is interesting to note that if we cut this space with metric (3.21) by
the planes 25 = 24 = 7 = 0 or 24 = 26 = x7 = 0, then the metric of
cutted space would coincide with that of SL(2,R)/U(1) black hole while
X? = 0 with ¢ = 0 or x7 = 0 gives again SU(2)/U(1) black holes! So we
can say that this analytically continued WZW model also contains both of
SL(2,R)/U(1) and SU(2 )/U ) black hole solutions.

On the other hand, in the region 1, {3.21) reduces to another metric,
because tanh? turns into — tanZ. Namely, the metric in Il is

3R33 + R

(d8)} = (dz)? + R2;(d6%)? + 75 41 4% de® + R2,(d6®)?,  (3.22)

where

2 tan? vR
R33 = Y ‘*‘ y?
3tan? VR [ X
2 _ 2 K

These metrics (3.21) and (3.22) are very similar to that of gauged SU(3)
model except interchangings of I and II, R and R’. The radii are again
quantized with a periodicity 7 and give a constraint

VY2 - X2 mod 7 (3.24)

instead of (3.5). By repeating the similar discussion as in the original
SU(3)/(U(1)x U(1)) WZW model, we can summarize them in the following
figure 2. Notices are the same as before.
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In this figure, the reader may ask the sign changing of the constraint,
but we have included them in the region Il in order to emphasize that (3.24)
appeals in 11. Therefore, R = —72, for example, in the figure means actually
R' = 72, As the target space duahtv tra,nsformatlon and dlldLOIlb are the
same as before except interchanging the regions, tan? and tanh?, R and R',
we will not repeat them here.

Before ending this section, let us give a comment on metric on the null
line. The metrics have a same form on the null line and is given by

3& fy

(ds)f = (dd) 1 = (da)*+=—(d#%)*+

de*de® - 3Y”
4

Z(d6®)%. (3.25)

Thus the gauged SU(3) and SU(2,1) WZW models on the null line is just
the same! This fact implies that we can move freely from SU(3) theory to
SU(2.1) theory passing through the null line continuously and these theories
are degenerate on it. Turning to dilaton, though dilatons in each WZW
model are different function, they coincide on the null line. Accordingly,
we can see that these WZW models are connected. So, if we express this
situation roughly, we may say that we can go and go back among these
space-times through the null line.

4. Summary

We have described the target space geometry of the gauged SU(3) WZW
model and have observed that there are two interesting facts. One is the
transition of the target space and the other is the relation between the
gauged SU(3) and SU(2,1) WZW models.

The former means the transition of the metric passing through the
null line. When we pass the null line, the metric is partially analytically
continued from tangential type to hyperbolic tangential one. Of course,
since the metric determines the theory, we should regard that these two
theories are basically different, although we can pass continuously from the
region I to Il and vice versa. Accordingly, the null line may be considered
as the “horizon” of the gauged SU(3) WZW model in a sense.

And the latter will be important when we perform analytic continua-
tion from SU(3) to SU(2,1). We have seen that the gauged SU(2,1) WZW
model has a similar property as SU(3) model. These two WZW models
are “reflected” on the “wall” of the null line. Their metrics in any regions
are reduced to a certain metric on the null line and thus we may say that
the null line is a horizon all the same, also in this case. Therefore, we can
interpolate these two WZW models (as well as moving from I to II, and vice
versa), while the dynamical mechanism passing through the null line is not
revealed at present.
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In addition, since SU(2) is a sub-group of SU(3), the discussion about
the model in this paper may be seen as an extended version of SU(2)/U(1)
black hole. But, as it actually also contains SL(2,R)/U(1) black hole, it may
be considered as an extended version of these two dimensional black hole
theories. However, in the (Lorentzian) SL(2.R)/U(1) black hole, there is a
Kruskal-like coordinate and so one can discuss causality, but unfortunately,
we could not find such convenient coordinate for our WZW models and
therefore we avoid the discussion. Note that these two dimensional black
holes have only one phase, so the target space transition which we have
observed can not appear.

From the discussion throughout the paper, we conjecture that general
WZW models have several classes as well as SU(3) model and the similar
transition should occur.

To summarize. it will be necessary for us to study further the dynamics
passing through the null line in order to clarify physical contents of these
gauged SU(3) and SU(2,1) WZW models because such discussions are not
given in the paper. It may be interesting to apply our discussions to mirror
symmetry, in particular mirror symmetry as a gauge symmetry which is
expected to exchange axial and vector gauging, and so on. These topics will
be discussed elsewhere.

I would like to express my thanks to Dr. H. Kanno for discussions and
T. Yamanoue for workstation service in the department.

Appendix A

In order to avoid ambiguities among references and to clarify notations,
we derive Polyakov-Wiegmann’s formula [2, 3, 11, 12] in this appendix. We
define level £ WZW model on a Lie group G (g € GG) as

19) = - Ins(9) + 2 Tlg), (A1)

where

I{g)ns = / o Te[Uu(g)U"(9)],
I'(g) = / Bo P Te{U() U (9)Upl9)] (A.2)
B

o' are worldsheet coordinates and ¢#”? is an anti-symmetric tensor
(e12% = 1). We set

Uu(g) =9¢710,9, Vulg)=0ug- 97", (A.3)
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and OB = S2. Using h € G,

k 1k
) = — — ) . A4
I(gh) 4F1Ns(gh)+6ﬁf(9’?) (A.4)
Since

Uy (gh) = h™tg™ 0,(gh)
= ™ WU, (9)h + Up(h), (A.5)

the trace of the product will be

Tr[U,(gh)UP(gh)] = Te[h U, (g)U*(g)h + A~ U, (9)RU 4 (R)
+ U, (R)h™YU*(g)h + U, (R)UH(h)]
= Uu(9)U*(g) + 2Un(g)V*(h) + Up(R)UH(R) .
(A.6)

Therefore,

Is(gh) = Inslg) + Ins(h) +2 [ @aTE T VR]. (A7
Similar calculation gives

Tr[Uu(gh)U, (gh)U,(gh)] = Tr[U, (9)Us (9)U
+ Uplg WuhU,ly
+ h(h)h(h)Up(

Un(9)Vu(R)V,(h

Consequently,

I(gh) = [(g) + I'(h) + / B 40 THUL ()Vi (R)Up(9) + Vi (W)U, (9)U(9)

V(R (R)Up(9) + Un(9) Vo (Vo (h) + Up(9)Un (9)V(h)
+"n(h) (9)Vo(R)] .- (A.9)

After partial integration, we will obtain
I'(ghy=1(g)+ I'(h) — 3/(120 VP Tr[U, (g)Vo(h)] . (A.10)
Then Polyakov—Wiegmann’s formula is

I(gh) = I(g)+ I(h)+ ;—ﬁ / d?a P Ti[U,(9)Va (R)], (A.11)
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where
PV = §HY kv, (A.12)

Repeating Polyakov-Wiegmann’s formula. we will find

I(ghf) =I(g) + I(k) + I(f)
+ % / d*aP*” Te[U,(9) Vi (h) + Uulgh)Vu (f)),  (A13)

where f € G. From Euler angle parametrization (see also Appendix B)
ghfzeiZ::I aiHi .h.eiZ::I ‘TiHi’ (A.14)

where 7 = dim G, and H' are bases of Cartan sub-algebra normalized as
Te[H*H?] = 6%, (A.13) will be reduced to o-model action.
After some calculations, (A.13) will be written as

k
I(ghf)y=1I(h) - 1 /d20[6“aif)"ai + 3u7i0"i]

ar
ik [ . o ) ‘ Z,
+ E/dzaP’_‘ [Bpcvi - VE(h) + duyi - UL ()]

k ’
- 5/(12an' p0idyy; Mij(h), (A.15)

where repeated roman indices are to be summed and we have used following
notations, ‘ _ _ '
U, (h) = Te[H'Uy(R)], V,(h) = Te[H'V,(h)] (A.16)

and _ _
M;j(h) = Te[H*hH h™1]. (A.17)

Appendix B

In this appendix, we show the calculation of (A.17) in the case of SU(3)
because its evaluation is technical. In this case, h is defined by (see Ap-
pendix C)

b= ei(14T4+1‘.5T5+z5T6+z7T7)q (Bl)
where T* are Gell-Mann matrices. However, in order to simplify the no-
tation, we will drop i = v/—1 from now on. Its Lie algebra is [T, 1] =
ifijka and the structure constants fijk are listed below.
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Structure constants of SU(3).

iJok fgt i g kSt
1 2 3 22 3 4 5 V2
1 4 7 V2 3 6 7 =2
1 56 —/2 45 8 V6
2 46 V26 78 V6
25 7 V2

f;:¥ are skew symmetric on its indices.
Let us compute M33(h) as an example. It is defined by

M3z (h) = Te[H3hH3R ™).
Now, define
fla) = h(a)H*h ™ (@)
=N g3,
where « is a real parameter and
K = a(z4T 4+ 25T° + 26T% + 27 T7) .

Of course, f(a — 1) is what we need. Differentiating (B.4) respect
will obtain

fl=ieN[egT* + 25175 + 26T + 2777, H3¥je™ N
= iv2el [—24T5 + .7;5Tf + 26T — 27T,
Differentiating f' again,
=2+ 2t + 22+ ad)eNHI R
+2V3(a? + 2k — 2k — 22)eN HE R
=2(zi+ 2§ + g +22)f
+2V3(23 + 2% — 2% - a2 eN HSe K,

And third derivative gives
"= 4(22F + 2% — @ - 23) [’

Integrating (B.8) we find that a general solution is

f(Oz) — A+Be2\/2(z§+x§)—(z§+x$)a+Ce—2\/‘2(r:~:+rg)—(zg+x%)a‘

TABLE 1

(B.3)
(B.4)

(B.5)

to o, we

(B.6)

(B.7)

(B.8)

(B.9)
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Integration constants A, B and C can easily be obtained from initial condi-
tions,

f(0): H*=A+B+C,
F1(0): iV2[—24T5 +25T* + 26T7 — £7T9]
= 2\/2(.7:?1 + z%) - (22 + 2%)(B - 0),
£'(0): 2V3(ef +af — 2 — 2D H® + 2(e] + 23 + 2 + 2D H®

= 2[4(23 + 23) — 223 + «})](B+ C). (B.10)
After some algebraic works, we will find that
(X2 -2y?2
A :m%(wf‘ - V3H?®),
B :(X2 +2YH)H3 4+ /3(X?% - 2Y?)H?
8(X2-Y?)
N iV2(—24T% + 25T* + 26T — 27T%)
4vR '
c _(XP+2v?)H 4+ V3(X?%-2v?)H?
8(X2 -Y?)
_iV2(=z4T% 4 25T 4 26T — 277°) (B.11)
4R ’ '
where
X2 =222 +ad), Y2 =k + 2. (B.12)

As we would like to get the quantity Ms3, we must evaluate the trace of
H3f(1). Namely,
M3z = Te[H3 f(1)]. (B.13)
Using the matrices in Appendix D, we can arrive at the result
1
Tr(H f(1)] = ——5—<5
where we have recovered the missing ¢. The other components of M matrix

can be obtained by similar calculations, but we will leave them to the reader
as an exercise. The result is

B(X%2-2Y?) + (X2 +2Y?) cos2VR], (B.14)

2 _ oy2
Mgz = %;}2/—)2/))—(02052\/5— 1),
2 2
Mg = %(COSQ\/E— 1),
Mgs = Z(_Xz_l_..}_n_)[(x2 +2Y2) + 3(X? - 2Y%) cos2VE]. (B.15)
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Appendix C

In this appendix, we explain a little about Euler angle parametriza-
tion[10,13]. As is well-known, SU(2) is a rotation group in 3-d Euclid space
and is isomorphic to SO(3). SO(3) can be parametrized by Euler angles. In
this case, g € SU(2) can be written (using Pauli matrices o; (: = 1,2,3) as
the bases of SU(2) Lie algebra and Euler angles 6;, 6, and 63) as

g — eiel 01€i62026i0301 . (Cl)

For another groups G, let r = rank G and N denotes the total number
of generators. Then such parametrization (strictly speaking, G is assumed
to be an unitary group or its sub-group) is locally

g = el Lz 6;H' h{zq) et =1 e Y (C.2)

where H* are generators of the Cartan sub-algebra. h(z,) is any element
of G and is independent of 8; and ¢;. It is convenient to choose

. N—Q'f‘ a
h(_’l;a) = ¢! Za:l zaT R (C3)

where &, are real parameters and T® are specific N — 2r generators outside
the Cartan sub-algebra.
Using this form of a group field g, we can write WZW action in the form
of o-model action {in fact, recall that we have performed it in Appendix A).
With the above observation, we set

.03 . 5 7 .
g= cHOTH+6TH®) i(2a T a5 T+ 26T+ 27T )GL(OS’H3+9§H8)7 (C.4)

in the SU(3) WZW model. The reason why we have chosen h(z,) =
; 4 S, 76 7y . i 7.

eeaT + 25T+ 26T +27T") g that T4, T%, T and T7 give closed commuta-
tion relations with H3 and H®. The reader may ask whether this parametriza-
tion is indeed suitable for SU(3) or not. But, since any elements of SU(3)
are in fact obtainable from (C.4) taking certain values for “Euler angles”
and are therefore well-parametrized by eight independent parameters, it is
unnecessary to worry about it.

Finally, let us comment on the analytic continuation, t.e., z; — 17y
Then (C.4) will be

g = ei(9:13H3+9?H8)6.~(x4T4+15T5+x6T6+x7T7)61‘(0%H3+0§H8)’ (C.5)
where ¢’ is now an element of SU(2,1), which can be shown by direct and
lengthy computations.
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Appendix D
We take the following Gell-Mann matrices throughout the paper as the
bases of SU(3).
) 1 (O 1 O) \ 1 (0 —1 O)
I"=—[|1 0 0}, T"=—1¢ 0 0],
V2 0 00 V2 0 0 0
. 1 (0 0 1) - 1 (0 0 ~—Z>
I*"=—10 0 0], 7°=—10 0 0
v2\1 0 o vZ\i 0 o
. 1 (0 0 0) N 1 (0 0 0 )
I"=-—10 0 1}, T'=—|0 0 —i],
V2 010 V2 0« 0
0

. 1(1 0)8 . 1(10 0)
T°=H*=-—(0 -1 0], 7®*=H®=—<(0 1 0 |.
vV2\g 0 o VB\g o0 -2

These are normalized as Tr (T°T%) = 1. H? and H® generate Cartan
sub-algebra.

Appendix E

The scalar curvature is

. A+B+C+D
T R2(RZ 4 2RY? - TY 42

where

A= (R+3Y%)(8R* - 81R*Y? — 291R?>Y* — TRY® + 707Y®),
B = 6VRY?(—9R* + 20R%Y ? + 198 R*Y*
— 116 RYS — 413Y ®)cosecV/RsecV/R,
C =8R(2R+ 3Y?)(R? + 2RY? — 7Y*)%sec*VR,
D = R(2R+3Y%)(R? + 2RY? - 7Y*)
X (3R? + 6RY? — 17Y*)sec?V/Rcosec VR,
R=X2_-Y?, (E.2)



2120 YU OHTA
REFERENCES

. Giveon, M. Porrati, E. Ravinovici, Phys. Rep. C244, 77 (1994).

. Kiritsis, Nucl. Phys. B405, 109 (1993).

. Kiritsis, Mod. Phys. Lett. A6, 2871 (1991).

. Giveon, Mod. Phys. Lett. A6, 2843 (1991).

. Witten, Phys. Rev. D44, 314 (1991).

. Yau eds, Essays on Mirror Monifolds, International Press, Hong Kong 1992.

=3 O Ot W QO DD et

Giveon, E. Witten, Phys. Lett. B322, 44 (1994).

Kazama, H. Suzuki, Phys. Lett. B216, 112 (1989).

Giveon, M. Roéek, Nucl. Phys. B380, 128 (1992).

. Hassan, A. Sen, Nucl. Phys. B405, 143 (1993).

. Di Vecchia, B. Durhuus, J.Petersen, Phys. Lett. B144, 245 (1984).
. Di Vecchia, P. Rossi, Phys. Lett. B140, 344 (1984).

. Dijkgraaf, H. Verlinde, E. Verlinde, Nucl. Phys. B371, 269 (1992).

QC
R N o B o W o B

b2 R b e ey ey ey e oy ey ey

L me©
j=vIigviigv]

ey ey iy ey



