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TEXTURE DYNAMICS*
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We show how quantum dynamics can be introduced into the “texture”
of fundamental-fermion mass matrices by means of annihilation and cre-
ation operators acting in the space of three families. Then, at least one
texture zero appears in a natural way. A model of such a texture dynam-
ics is described for charged leptons, predicting m, = 1776.80 MeV from
experimental values of m. and m,.The model is reasonably extended to
quarks in a straightforward way.

PACS numbers: 12.15. Ff, 12.90. +b

As is well known in today’s physical theory the mass of a particle is still
a free parameter, subject to experimental determination, as it was from the
very beginning in Newtonian dynamics. Of course, differences between par-
ticle masses may arise from a composite model introducing a few constituent
masses and their binding energies, and /or from radiation vacuum contribu-
tions to particle energies. So, if we are lucky, the mass spectrum of a particle
multiplet may be parametrized by a few massdimensional constants to be
determined from the experiment. Such a fortunate situation takes place for
the periodic system of elements, where the mass spectrum is parametrized
grosso modo by proton and neutron masses. To some extent, an analogi-
cal situation occurs also in the quark model of hadron multiplets. For the
fundamental fermions, leptons and quarks, such a program in its composite
(preonic) version or, favourably, noncomposite (elementary Higgs) version
is nowadays a main challenge in particle physics. Meanwhile, in absence of
a successful realization of such a program, some phenomenological ansatzes
are tried for the “texture” of lepton and quark mass matrices [1,2] in hope
that they will guide us to find out a solution for the fundamental-fermion
mass problem.

* Work supported in part by the Polish KBN-Grant 2-B302-143-06.
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In the present note we try to introduce formally quantum dynamics into
the texture of fundamental-fermion mass matrices, using — as its possibly
simplest agents — annihilation and creation operators acting in the space of
three fundamental-fermion families. Then, as will be seen, mass matrices
containing at least one texture zero can be constructed in a natural way
from these operators.

To this end, consider a horizontal or family triplet of three bispinors

(Yo(x), Y1(2), Ya(z)) (1)
numerated by the family number n = 0,1,2 ascribed to three consec-
utive fundamental-fermion families (ve, e~ , w, d), (vp, p=, c, s),
(vr, 77, t, b). Thus, there are four family triplets (1),

(Ve vy ve) s (€7, 1™, 770 (s ey ), (dy s, b), (2)

which may be labelled by f = v, e, u, d. Then, introduce in the space of
three families the matrices

01 0 0 0 0
a;(o 0.\/§>,a‘fz<1 0 0). (3)
0 0 0 0 V2 0

Of their mixed products

0 0 0 1 0 0
ﬁz&*&:((} 1 0),5@*:(0 2 0) (4)
0 0 2 0 0 0

the former defines the matrix for family number: 7|n) = n|n), n = 0,1,2
(¥n(x) = (n|¢p(z))). The matrices (3) satisfy familiar commutation rela-
tions,

characteristic for annihilation and creation operators. They imply that
@ln) = /nln — 1) and @f|n) = Vo F I|n + 1). However, @fln) = 0 i.e.,
|n 4+ 1) = 0 for n = 2 (in addition to @|n) = 0 for n = 0), because

at=0,at*=0. (6)

We will call the matrices @ and @' truncated annihilation and creation op-
erators. Notice that

10 0 0 0 0
[a,a*]:(o 1 0):?-(0 0 0). (7)

0 0 -2 0 0 3
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Below we list other nonvanishing quadratic, triple and quartic products of

a and af :
0 0 V2 0 0 0
a2:<0 0 o):ma,a” :<o 0 o):a*aa",
00 0 V2 0 0
0 20 0 0 0
a%*:(o 0 0) ,a’(z*zz(-z 0 0>,
0 0 0 0 0 0
00 0 0 0 0
ﬁa:(o 0 ﬁ) ,a‘fﬁ:(o 0 0>,
00 0 0 v2 0
01 0 0 0 0
aﬁ:(o 0 -2\/5) ,ﬁa’f:(1 0 0) (8)
00 0 0 2v2 0
and
1 00 00 0
aaa’f:<04o>ﬁ2:(o1o>,
0 0 0 0 0 4

2.0 0 0 0 0 0 00
aza”’:(o 0 0),6&*&:(0 2 0):&&3*,&"%:(0 0 0].

000
(9)

Note also that : 72 := @242 = affa = A(7 — 1), where :( ): denotes the
normal ordering.

The overall wave function of family triplet (1) may include in general
some nontrivial weight factors pg, p1, p2, ’

poto(z) Yo() po 0 0
V() = (/’111’1(9«')) =p ("L’l(@) L P = ( 0 pp O ) : (10)
p2ta(x) Po(z) 0 0 po

where Trp% = 1 (in the trivial case p = 1/4/3). Thus, the mass matrix for
this triplet gets the form

——

M = php. (11)

Here, a strength matrix h appears that has to be built up of our annihilation
and creation operators @ and a'.
Consider the following simple operator form:

h = p(R) + (ol + BR)ae® +al (ol + BR)e ™%, (12)
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where p(n) is a massdimensional real function, & > 0 and 3 > 0 play the role
of massdimensional coupling constants, while ¢ denotes a constant phase.
If u(n) = win+ %) and 8 = 0, this form would remind us of the simplest

one-mode field theory. The matrix h and so u(n), a, B and ¢ depend
generally on the label f = v, e, u, d of family triplet (1). On the other
hand, the weight matrix p may be universal for all f (¢f. Eq. (16) later on).

Then, making use of Egs. (11) and (12) we obtain the mass matrix of
the following texture:

. 1(0)p5 apopret? 0 ‘
M = | apopre™'? p(D)pt  (a+B)V2p1p2e | . (13)
0 (4 B)V2p1pae™*® 1(2)p3

It contains one texture zero at least. A priori, in Eq. (13) there are five real
constants pu(n), «, B and one phase ¢ to be determined experimentally [if
the weights p, are given; otherwise, five real constants to be determined

are:u(n)p? , apopr, (a+ B)p1p2].
In the particular case, when
(W) k() =0=p™(1), o =0,
(d) £ 0) =0, o' + 3 =0,
(&) (0) =0, pI(1) = =3V (1), p'9(2) = u(2),
ol = ol gle) = gd) | ple) _ () - (o) g

the texture (13) reduces to the Georgi-Jarlskog ansatz (at the GUT scale)

[1]. In this case M and M(®) contain two texture zeros.

If the coupling constants & and 3 are small enough to allow us to apply
the perturbative calculation to the mass matrix (13), we get in the lowest
order the following mass eigenvalues for our family triplet:

a,2p2p2
My = p(0)p3 — e ,
° n(1)p? - p(0)p}
a2 o?pfp} 2(a + 8)%p}rs
My = p(1)py + 3 7T o2 70
w(L)pt — u(0)pg  p{(2)p3 — p(1)p3
2(a + )% pkp}

. 14
#(2)p3 — n(1)p} .

Also, we can calculate perturbatively in a straightforward way the diago-
nalizing matrix U ™! for M,

U-1'MU = diag(Mo , My , Ms). (15)



Texture Dynamics 2125

Then, ¥(z) = 17_111(0)(:6), where the unperturbed ¥(®)(2) corresponds
formally to @ = 0 == 3. The Cabibbo-Kobayashi-Maskawa quark mixing
matrix is given as V =0 =10, But the simple perturbative calculation
of U*) and U(? is not expected to work in this case since quark mixing is
considerable.

Some time ago we argued [3] that for fundamental fermions the weight

matrix has the form
p=——(0 v4 0 |, (16)
V29 \y V24

if all of them can be deduced from Dirac’s square-root procedure \/]—95 —T-p
by means of its (generally reducible) representations. In this approach,
the weights p, as given in Eq. (16) correspond to the multiplicities with
which the wave-function components ¥,(z) , n = 0,1,2, appear (up to
the phase factor) in the reduction procedure, while N =1+2n =1,3,51is
the number of Dirac bispinor indices appearing in three generally reducible
representations of Dirac’s square-root procedure, allowed for leptons and
quarks by the intrinsic Pauli principle [3].

Then, in the case of charged leptons e~ , p~ . 77 we tried successfully
the specific ansatz for the unperturbed term in Eq. (12):

. ~ 0\2 1-¢?
@) =p | (T+20) - ——| (7)
(T+27)
where 1 and €? were real constants to be determined experimentally. In

fact, in this case the unperturbed mass matrix MO = pu(n)p gets the
eigenvalues

(0) M(O) u 2
4 0 -_

29"
(0) _ g0 _ 4 p
=M ~ 2 (80 ,
my N 929(8 +€)
(0) _ Ag(0) _ 24 p
=M. 2L (624 18
my) = M, 2529(6 +<%) (18)

leading to the predictions

m® = 1776.80 MeV (19)

and
1= 85.9924 MeV |, % = 0.172329, (20)
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(0) and m(o) The

ex
with recent experimental value mz P =

when experimental values of m. and m, are used for m.

agreement of the predicted mfo)

1777.1102 MeV [4] is remarkable.

The first term g /N2 in the function u(n) = uN2+pu(s -»1)/’\’2 following
from Eq. (17) may be interpreted as an “interaction” of N = 14+ 2n =
1,3, 5 elements ( “algebraic partons” corresponding to Dirac blsplnor indices)
treated on the same footing, while the second term u(s -1) P~ with Py =
(N = 1)!/N! = 1/N may describe an additional ° “interaction” with itself
of one element (the “algebraic parton of the centre of mass”) arbitrarily
chosen among N elements of which N —1 are then always undistinguishable.
This distinguished “algebraic parton” within a pointlike lepton or quark
is coupled to the external gauge fields of the Standard Model [3]. The

operators @ and a perturbing p(7) in the matrix (12) annihilate and create
pairs of undistinguishable “algebraic partons” within leptons and quarks.

Now, calculate from Egs. (14), (16) and (17) the lowest-order perburba-
tive corrections to unperturbed masses (18). Then. the resulting corrected
masses are

" _H 2 3_6 o\’ H
©T29° T 29\pu/) 320-5e2°

4 p 36 (o) 7
= (8 2 — | = S —
M =559 80+ )'*"29( ) 320 — 5e?

10800 f o+ (3 0
29 u 31696 + 292
10800 [ o+ 3\° u

, 24 21

" 2529 5 (624+27) + 29 ( " ) 31696 + 29¢2 (21)
Hence, we can derive the formula
6
My = IEH (351m, — 136me)

105192 (a\? g 24094800 (a+ 5)2 T

3625 \ g/ 320 — 5¢2 3625 1 31696 + 29¢2

(22)
Using in the first term of Eq. (22) experimental values of m, and m, and
in its terms O [(%)2] and O [(“+‘9) ] the values (20) for # and £2, we
predict that

2 2

2% v+ 3\° .

My = []776.80— 7.819 (3> +18.03 (%—) MeV.  (23)
1
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Thus, the difference

a\? o+ 3 2
my —mSP = | -7.82 (—) +18.0 < ) — 03703 MeV  (24)
p I '
becomes zero for
2 2
18.0 (a ks /3) ~7.82 (3) =0.3%02, (25)
I I '

what cannot exclude the option of &« = 0 = 3 for charged leptons.
It is interesting to note that the same specific ansatz (17) as for charged
leptons, when applied to the down quarksd, s, b, leads via the unperturbed

mass matrix M) = pi(n)p to the reasonable eigenvalues:

miio) = Méo) = K2

29’
(0) _ 2 p0) _ 4 p 2
s =M = - %),
m M, 939 (80 +=7)
(0) = (0) = —24 _,U 324 2 2
my = M, 5529 (624 + <) . (26)

In fact, from the first and second Eq. (26)

v PN ()]
29 (0) (0) 5 320m
p=——=(9mg —4m;’), e = : . (27)
320 ! ngo) - 4m§0)
and then from the third Eq. (26)
m(bo) = —6—-(351m(30) - 136771510)) . (28)

125

what nicely correlates the experimentally suggested values for mg, mg, my.

For instance, with mflo) ~ 7MeV and mgo) ~ (4.7 to 4.73) GeV Eq. (28)
implies
m{® ~ (282 to 283) MeV, (29)

while Eqgs. (27) give
po (227 to 229)MeV , €2 ~ 0.893 to 0.888. (30)

This nice situation is no longer the case for up quarks u, ¢, t , where
the top mass turns out much too large to be described together with the
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up and charm masses by the specific ansatz (17). However, one may try
instead the modified ansatz

2

_ 2 1-¢ A
u(n)y=p [(1+2n) ————~——( 20 +CJ, (31)

0 0 O
C:2ﬁ2(n—1) Nc (Ng - 1)[Nc(Q+ B)] = (0 0 0 ) (32)
0 0 144

leads to reasonable results (5 = 0 for leptons and down quarks). Here,
N¢, Q and B are the number of colors, the charge and the baryon number,
respectively [note that 2n2(n — 1) = (N — 1)(N — 3), while for leptons
N¢ ~ 1 =0 and for down quarks Q + B = 0]. Then, the unperturbed mass

matrix M) = pu(n)p gets the eigenvalues

mslo) = Méo) = ﬁsz ,

29
(0) _ , (0) _
=M
me 1 929 (80 +€ ) y
(0) _ 5 4(0) _
=M 42 ] 33
m, 5 2529( 24+E) (33)
Hence ©
29 (0) (0) 2 _ 320m,,
= —4 S = 34
and 5
m\® = 25(594 (0 _ 259m Yy . (35)

For instance, with m, ~ 4MeV and m. ~ (1.5 to 1.55)GeV Eq. (35)
implies
m{® ~ (171 to 177) GeV, (36)

whereas Eqs. (34) give
g~ (1.22 to 1.26) GeV, €% ~ 0.0949 to 0.0919. (37)

The predicted value (36) is to be compared with the experimental figure
m{P =174 £10 %13 GeV [4).



Texture Dynamics 2129

The result of perturbing p(%) in the way described in Eq. (12) depends
much on the massdimensional coupling constants o and § (in the case of
up and down quarks there are a priori four such constants o(®) | 3(#) and
ald) B(4)), Because of considerable quark mixing the simple perturbative
calculation does not apply in this case (especially to small masses m, and
mgq). However, a somewhat complicated numerical evaluation of six quark
masses and the 3 x 3 Cabibbo—Kobayashi-Maskawa unitary matrix V=
U@ =17 iy terms of ol®) , B and of® | 8D a5 well as ,u(“) , elw)2
and (@ | (D2 js always at hand. Of course, further ansatzes about these
eight a priori free parameters are desirable to increase the predictive power
of the scheme and to connect quarks with leptons [for a previous, partly
different scheme for such a numerical calculation ¢f. Ref. [3], where o) =
12u(wlegle) gld) = 3udele) and g») = g(d) = ( with £(¢)2 as given in
Eq. (20) for charged leptons, but p{*) (@) and p(¥(7) are there modified
compared with the forms (31) and (17) ].

Concluding, the idea of texture dynamics may provide us with a new
physical guide how to solve the fundamental-fermion mass problem. The
model of texture dynamics, especially for charged leptons, briefly discussed
above, is promising in this respect, although, its specific form does not seem
to follow from our hitherto existing experience. Perhaps, there is something
dynamically new in this form.
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