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A discussion is continued on the author’s recent conjecture that the
overall particle number, when it changes in a localized physical process,
induces in its proximity a tiny deformation of the time run. In some cases,
the corresponding weak time-deformation field can be emitted and also
detected by matter sources. Sometimes, it can propagate freely through
the spacetime as ultraluminal waves. Though these hypothetic waves
cannot transport energy between matter sources, they can do it with a
new thermodynamic-type quantity called here the energy width. This
causes the quantum time evolution of matter sources to deviate slightly
from the conventional unitary evolution.

PACS numbers: 11.10. Lm, 11.90. +t, 12.90. +b

1. Introduction

In the first part of this paper [1] we reported on some developments
of the author’s recent conjecture that a change of the overall particle num-
ber in a localized physical process induces in its proximity a tiny defor-
mation of the time run. Such a hypothetic quantum effect is caused by
a thermodynamic-type mechanism not present in the Einsteinian classical
theory of gravitation. But this effect seems to be natural if the familiar
analogy [2] between the thermal equilibrium described by exp(—H/kT) and
the unitary quantum time evolution expressed by exp(—iHt/h) (called here
“temporal equilibrium”) is accepted as a profound physical correspondence:
kT < —ih/t.
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Then, in analogy with the small deviations from the thermal equilib-

rium: T — T + 8T (7, t), where in the case of a homogeneous medium the
heat conductivity equation holds for §7'(7, t):

(A— A;c %) ST(F,t) = 0, (1)

in some circumstances there should appear small deviations from the tem-
poral equilibrium: ¢ — ¢ + 6t(r,t) or

1

TR

S+l 0), 2

o~ | -

where a new conductivity equation should be valid for o(F,t) ~ —8t(F,t)/t?

in the vacuum:
1 0 oo
(A_XITEE> go(r,t)—O (3)

Hence, o(7,t) = ¢(F) exp(—7t), where [A + (v/Arc)]o(F) = 0.

We call “energy width” the new thermodynamic-type quantity being
the analogue of heat . Then, we extend consequently the first law of
thermodynamics to the form

dU = 6W + 6Q — i6T" (4)

where

5Q o / d37p (7, )k d[T + 6T (7, )] i=ixea (5)

and
1

t+ 5t(f‘,t)] t=fixed

with p(7,t) being the averaged particle-number density. In Eq. (4) 6I" de-
notes the amount of energy width transferred to the matter system from
the physical spacetime treated as its surroundings.

In the thermal equilibrium (of a matter system with a thermostat or
heat reservoir) we have §T(7,t) = 0 and so, an equal distribution of tem-
perature. Analogically, in the temporal equilibrium (of a matter system
with the physical spacetime that in this case may be called “chronostat”
or “energy-width reservoir”) we get dt(7,t) = 0 or ¢(,t) = 0 and, conse-
quently, §I" = 0 due to Eq. (6). Thus, in the temporal equilibrium, time
t runs equally at all space points and hence, for a so called closed matter
system the conventional unitary quantum state equation

—i8I /d3Fp(ﬁt)(—ih)d[ (6)
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., dU(t)
7
holds (in the Schrodinger picture).
From the extended first law of thermodynamics (4) we infer that in
the case of small deviations from temporal equilibrium the quantum state
equation (7) should be generalized to the nonunitary form:

=Hw(t), H'=H (7)

ihdiy) =[H-al@)]w(t) , H'=H. (8)

Here, 1 is the unit operator, while I'(t) denotes the real-parameter-valued
energy width that will be assumed to have the relativistic form (15) giving
the form (16) in the nonrelativistic approximation for matter. Of course,
in contrast to Eq. (7), the new quantum state equation (8) implies (in
general) a nonunitary quantum time evolution, although its deviations from
the conventional unitary time evolution have to be small.

The conductivity equation (3) for the real-parameter-valued time-
deformation field (7. t) is obviously nonrelativistic. Note, however, that
with the use of the d’Alembertian O = A — (1/¢?)(8%/9¢?) one obtains

- ct ct 1 0 -
(04 5g) [ oo 5] =i (- eaa) w70
ct 1 0 -
~exp o (A - A_pc_a-t) (7 t), (9)

the last step being valid if (1/¢?)(92/0t%)¢ can be neglected nonrelativis-
tically in comparison with (1/Ap¢)(8/0t)¢. The rhs of Eq. (9) is zero if
(7, t) satisfies the conductivity equation (3). Thus, in place of the conduc-
tivity equation (3), the tachyonic-type (and so ultraluminal) Klein-Gordon
equation

(a+4;2> x(z) =0, (10)

relativistic in the sense of special relativity, is suggested for the new (rela-
tivistic) time deformation field

ct

x(z) = (7, )expﬁ—F— (11)

Of course, x(z) = 0 in the temporal equilibrium.
Since the overall particle number, when it changes, is conjectured to
cause departures from temporal equilibrium, a natural thing is to assume
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that the homogeneous equation (10) transits in the presence of matter
sources into the inhomogeneous equation of the following relativistic form:

] .
(D + —2) x(z) = —4mgAp 9y j¥(z). (12)
4N

Here, ¢ > 0 is an unknown dimensionless coupling constant (likely to be
extremely small, ¢f. Ref. [1]), while (j#(z)) = (cp(z), {z)) denotes the
averaged matter (particle-number) four-current,

7M@) = (@OITH (MNP (4))av (13)

corresponding to the operator J#(7) of overall particle-number four-current
(here, ¥(t) and J#(7) are taken, for instance, in the Schrodinger picture).
We are aware of the infrared problem existing when photons are included
in the matter sources (as they should be in this theory).

Note from Eqgs. (12) and (9) that the field ¢(7, t) = y(z) exp(—ct/2AF)
satisfies the noncovariant equation

g
([1- ﬁ.-&) @(7t) = —4wghp [0, j*(x)] exp (—%) o (14)

valid in the relativistic theory. The time-run deformation can be expressed
as 6t(7,t) = —p(7, )2 [1 4+ o(7, t)t] ! due to Eq. (2).

Eventually, we decide to assume the following relativistic form for the
energy width I'(t) appearing in the nonunitary state equation (8) (in the
combination H — 1 I'(t)):

rt) = gh/d%% VIn(@)ik (@) x(2), (15)

where (1/¢) \/7,(2)j*(z) = p() [T(z)/c])? with Jlz) = p(2)0(x), while
g > 0 is the coupling constant mtroduced in Eq. (12) (this definition is an
improvement to the form (16) which was used in Ref. [1]). Note that in the
so called comoving frame of reference (1/¢) \/ju(2)j#(z) = p(x) [3]. In the
nonrelativistic approximation for matter, where |j{z)/;%(z)| = |8(z)/c| <
1, the energy width {15) becomes

P = gh [ d7pr () (16)

with x (7 t) = ¢(7, t) exp(ct/2X ).



Possible Deformation of Time Run... 2163
2. Chronodynamics

The mixed set of two equations: (8) for ¥(t) and (12) for x(z), together
with the definitions (15) of I'(t) and (13) of j*(z), determine (hopefully)
both the state vector ¥(t) and the time-deformation field x(z). We call
such a thermodynamic-type quantum theory “chronodynamics”. This may
be considered as a thermodynamic-type approximation to a future fully dy-
namical quantum theory including gravitation, where the Hilbert subspace
of the physical spacetime (described then in a quantal way) is projected
out from the whole Hilbert space by projecting the latter onto the Hilbert
subspace of the matter only. Such a procedure leads for matter (after some
averaging) to the nonHermitian time-evolution operator H —i11'(t) (for the
general formalism involved cf. Ref. [4]). _

Strictly speaking, the set of Egs. (8) and (12) is nonlinear and nonlocal
with respect to the state vector ¥(t), thus it violates slightly the super-
position principle, fundamental for the probabilistic interpretation of the
conventional quantum theory (which is valid in the temporal equilibrium).
However, this set becomes linear and local if the approximation is used,
where in the definition (13) of j#(z) the state vector ¥(t) is replaced in the
zero order by W(9)(¢) satisfying the temporal-equilibrium state equation (7).
This gives j{®)#(z), and then, Eqgs. (8) and (12) with the definition (15)
lead in the first order to

(1)
ih-@dtﬂ = [H —arMe e (17)

and
(D + —1—2—) WD (@) = —dmgAr 8,5 ¥ (z) (18)

with

ry = gh/d?’F%\/jLO)(x)j(O)u(z) YD (z) = 0(g?) (19)

or, nonrelativistically (for matter),
PO = gh [ @70y = 0lg?) (20)

From Eq. (17) it follows that

t
!P(l)(t) = W(O)(t) exp ——%/dt' F(l)(t') , (21)
to
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where we have

(O () = exp [—%H(t - to)] Ty (22)

with W = W(to) being the exact state vector in the Heisenberg picture (if
this picture and the Schrédinger picture coincide at t = tg). In general, the
norm of the state vector (1) (¢), given by

t
EOOWDW) = Walea)exp | -5 [aTOE| )

1
tg

changes slightly in time (in the interval, where y(})(7,t) # 0 and 'V (t) #
0).

3. Emission of time-deformation waves
First, consider the case of a static spherically-symmetric pointlike source:

it (z) = divy(F) = =8 (7 - 7s) (24)

N

with 7 > 0 being a time-dimensional constant. Then, the time-deformation
field equation (12) gets the following fundamental solution:

X(ﬂ — @COS [(1/2/\){7‘?” rSH (25)

|7 — 7]

(here, the label I' at X is-omitted). In Egs. (24) and (25) the constant 1/7
may be interpreted as the overall number of particleés produced per unit of
time within the static matter source (that may be, for instance, a rough
model of the Sun looked at from a large distance).
Now, assume that this number of particles oscillates harmonically in
time:
9,i"(z) = %53(7?- 7o) cos (¢ — ts) (26)

with £ > 0. In this case, the fundamental solution to the time-deformation
field equation (12) becomes

1/2X)2 4 (2/¢)? |7 — T
X(ﬁt)ERexF(F,t):QCOS [\/(/ A cos 2(t ~ ts) .

T |7 — 75|
(27)
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Here,
Xp(7rt) = g/\/ d%'Ap(z — x’)%é‘o’(f’ —7g) cos 2(t' — tg)

ex 20)? + (82/c)*|r - T

is the solution to Eq. (12) with the source (26), corresponding to the Feyn-
man-type propagator Ag. For the latter

<D + W) Ap(z — 2') = ~47 8(z — 2) , (29)

and more specifically

N d*k exp[—ik - (z—2')]
AFm_w)::—4ﬂ/kmq4k2+1/@A2+w

_ui [ 1 Bl sin B~ Fsl

|7 — 75|

0

{e(kz . )exPPddkgéfENt—tU]
+0 (5 F) ST e

+(tet) (30)

(where both €’s > 0 and — 0 after the integration over t'). Note that

X V(7 t) = ~Imyg (7, ¢)

sin 24 (02/c)2 7 — 7
_ 9 [\/(1/2A)4+ (ﬁ/) 7= 7l cos Q(t —ts) (31)

T |7 — 7s|

is a particular solution to the free equation (10). One can show that
Ap = A — iA) | where A and A are the Schwinger-type propaga-
tors. Then, y and x{!) correspond to A and A respectively. Note also
that, if in the source (26) the oscillating factor cos §2(t — tg) were replaced
by the damping factor exp[—~v(t — tg)] with v > 0, then the expressions

exp[—y(t — ts)] and 4/ (1/2X)2 — (v/¢)? should be substituted for
cos 2(t—ts) and 1/(1/2X)2 + (£2/c)? in the solution (28). Now, ./~ = i[,/7|
if ¥ > ¢/2A (and still \/~ > 0if v < ¢/2X).
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Another particular solution to the free equation (10) is given by the
formula

XO(71) = g/\/ d%' Az — x')%63(f' — 75) cos 2(t' — tg)

_ gasin [ V72N + (@) |7 - 75|

T 7 — 7]

sin 2(t — ts) (32)

corresponding to the Schwinger-type propagator A:

(D + &) Az ~2")=0 (33)

and more specifically

' d% k 1 , ,
Az —2') = —4n EW—)ZEE_IMS (kz + m) exp[—ik - (z—2")]. (34)

Note that for A1) we have

(D + 4%) AD(z = 2') =0 (35)

and

4
AN (z — 2y = —47r/ —(g-—:;—47r5 (k2 + 11—2—) exp[—ik - (z—2")]. (36)

The particular solution (31) to the free equation (10) corresponds to A(1)
as the solution (32) corresponds to A.
From Eqgs. (26) and (31) we can see that

x(7 t) = X(7 t) — ixO (7, )

_geos (VAN + (2] |5 - | - 2t ~ ts) )

T |7 — 75|

is the solution to Eq. (12) with the source (26), corresponding to the propa-
gator A —iA. This solution describes the continuous emission of harmonic,
spherically-symmetric time-deformation waves satisfying at ¢ = tg the initial

condition:
_ gacos [m/zx)z F (/02 |7 - FS@

=1 |7~ 75|

(38)
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and

sin 1/2X0)2 + (£2/¢)2 |7 — 75|
ox  _ o9 V1 i} (ﬂ iy (39)
Ot t=tg T |7 — 7|

As follows from Eq. (37), their group velocity is larger than the speed of
light:

Vgr =€ 1+(2/\CQ)2>C (40)

(so, they are ultraluminal), while their phase velocity is smaller:

Uph = e < c, (41)

giving still vgrvpy = c2. When £2 — 0 or oo, then vgr — 00 or ¢ + 0, while
Vph = 0orc—0.

Such time-deformation waves can be detected by another potential har-
monic oscillator for the overall particle number. In principle, a detector of
this kind could be a sample of hydrogen atoms (or other particles) whose
number would oscillate in time with the interacting time-deformation waves
(for the case of time-deformation field aroused in proximity of a big collider
cf. the last Section of Ref. [1]). In fact, during the nonunitary quantum
time-evolution of matter induced in such.a detector by time-deformation
field, the oscillating energy width would be transferred from these waves to
the hydrogen atoms (or other particles), making the number of the latter to
oscillate also (most likely, with an extremely small amplitude). More pre-
cisely, it follows from the nonunitary state equation (8) and the definition
(15) of the parameter-valued energy width I'(¢) that the parameter-valued
time-deformation field x(z) can contribute to the operator of energy width
1I°(t) of the matter system, but not to its energy operator H (in this context
cf. Appendix).

In conclusion, the hypothetic ultraluminal time-deformation waves,
though not exchanging energy with matter sources, do exchange the energy
width and so, still, can transport in principle information between their
emittors and receivers: much to our surprise faster than the light. Unfortu-
nately, in practice, the possible signal from the time-deformation waves is
likely to be extremely weak. Nevertheless, such a new exciting option seems
to be offered theoretically.
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Appendix

Consider for the state vector satisfying Eq. (8) the unitary transforma-
tion (which, in fact, is a phase transformation):

ot ] t
U'(t) = exp —%/dt'lE(t’) W(t) = U(t)exp -%/dt'E(t') . (A1)

to to

where E(t) is the counterpart of classical energy for the parameter-valued
field x(z),

B0 =5 | d3f{ [1>z(x)r+ (0@ - 15 [x(r)]2}

+ 20 [ e, @), (A2)

[

giving Eq. (12) as the classical field equation for x(z). Of course, j#(z) and
I’(t) defined in Eqgs. (13) and (15) are not changed under the transformation
(A1). Though the state equation (8) transits now into the form containing,
beside the operator of energy width 1I°(t), the operator of time-deformation
energy 1E(t),

L ' (t)

ih—= = {H+ 1[E(0) - T ()} ¥'(1), (A3)

Eq. (12) for our time-deformation field x(z) does not change. So, x(z)
cannot be unitarily transformed — although a quantum field could — to the
Schrédinger picture, where it were time-independent, contributing instead
to the total energy of the extended system.

Thus, we can infer that, in contrast to the energy width, the notion
of energy for the time-deformation field x(z) is (in our mixed quantum
theory) rather an artefact related to a physically irrelevant phase trans-
formation (Al) for the state vector ¥(t) (although this transformation is
time-dependent).

Even if the unitary (in fact, phase) transformation (A1) for ¥(t) is sup-
plemented by a classical canonical transformation for x(z) leading to a new,
canonically equivalent time-independent x'(7), it gives the time-deformation
energy FE(t) (expressed now by x'(7) and its canonical momentum) that
still ought to be considered as an artefact, at any rate from the viewpoint
of quantum time-evolution of matter (described by our mixed quantum
theory).
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