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We have calculated the relativistic corrections for the mass and poten-
tial energy to one-nucleon levels. We have found new depths of Woods—
Saxon potentials for the nuclei in the region 15 < A < 209. The semi-
relativistic equation has been reduced to the integral-differential equation
with the kernel, which is proportional to the Green’s function. It can
be expressed by unperturbed wave functions and nonphysical solutions of
the Schrodinger equation. It has been shown that for an average field of
the nuclei this approach is sufficiently exact. The corrections for mass
are comparable with the energies of excited states and they are increasing
the binding energies. The correctious to potential are positive and small,
except for some light nuclei. where they can compensate the negative
corrections for mass.

PACS numbers: 21.10. -k, 21.60. -n, 21.30. +y

1. Introduction

Usually we consider the nuclei like the nonrelativistic systems. But we
must take into consideration [1] that nuclear force has a repulsive core (—0.4
fm) and a great spin-orbit interaction. The repulsive core is generating the
wave functions with high impuls [2] and we cannot solve this problem using
the nonrelativistics Schrédinger or Hartree—Fock equations. In paper [2] the
calculations for relativistic corrections for the mass or kinetic energy and
potential energy were provided

M = 86T + 6V, (1.1)

6T = Z [\/ (pi)2+m2 -—m - %;—);:l . (1.2)

(2195)
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There was obtained that the increase in the binding energy for the four nu-
cleon system is about —0.6 MeV. For the deuteron I obtained —0.0727 MeV
because the relativistic correction for mass is —0.2127 MeV and to poten-
tial energy +0.1400 MeV. The insignificant contribution of the relativistic
corrections to the binding energies for the light nuclei is the result of their
compensation. But for the large nuclei and excited states we have different
situation [3, 4]. The corrections for the mass of the nucleons in the average
potential of the nuclei 15 < A < 209 are significant and cannot be com-
pensated by small positive relativistic corrections to the potential energy of
the main field. The relativistic corrections for the mass must be taken into
account when interpreting of resonance [5], stripping [6] and knockout [7]
reactions. The single-particle eigenfunctions and energies can be obtained
by solving the Hartree-Fock equations with phenomenological potentials [8]
or Skyrme’s forces [9]. In that case the relativistic corrections for mass,
depending on state[4], can achieve the significant value —1.12 MeV. These
corrections must be calculated using the perturbation theory.

2. The general properties of the semi-relativistic equation

Semi-relativistic Hamiltonian [4] can be written in the form
54 52 2
; —p p h d d
H=———mt-———— | =V | =+ V(r)+ Vau(r). (2.1
8-m3-02+2m 4-m?.-¢? (drv(”)dr—*— (r) + Va(r) . (2:1)

The first term of the Hamiltonian and the third term include relativistic
corrections for the mass and the potential. The following term

Valr) =t (V1)) (-1 (2.2

is the spin-orbital potential which has also the relativistic origin. The semi-
relativistic equation for the eigenfunction Ry = U,/r can be obtained [4]
from the Hamiltonian (2.1) for the central potential V' (r) in the form

A d dU, & L(L+1)
CIDUa + Cor ;l-r" E—T_ + zl—r‘z—Ua — ———-—7’2

+(CEq —CV =CV)Uqs =0
2m h \2 1
M _— o L) = 2.3
¢ B2’ 2 (2mc> G 2me?’ 23)
where D is a differential operator of fourth order

) d* 2Ly d* 4Lg d (Lo)? - 6L0]
= —U, — — —[ — ~ U
DUq drt Ua r2 dr2 ¢ + r3 drl ot rd v

Ua

a
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Lo=L(L+T1). (2.4)

Substituting asymptotic expression of the eigenfunction Uy ~ r# as r — 0
in (2.3) we get four partial independent asymptotic solutions

L+1 —L L+3 —L+42
Ugo =it Faor™b Ugy ol ®, Foy~r= 20 (2.5)

Assuming that the potential energy vanishes at great distances, we can find

the four asymptotic solutions of (2.3) in the exponential form Uy ~ ekaT.
In this case we get

k'ozl = _kaa ka2 = k'ou ka

\/2‘0—( 1+\/1—4010E)

\/ﬁ (1 ++1-4C,CE, )
(2.7)

Usually 4C1CFE, < 1 and we can express ko = /—CFE,. From this, we
can make the conclusion that for the vanishing at large distances poten-
tials the semi-relativistic wave functions are decreasing at large distances
more rapidly than the Schrédinger’s wave functions for the same states be-
cause they represent the states with the larger binding energies [2, 3]. The
solutions of (2.3) can be expressed in the form

ka3 - Z.kormv ka4 = _ikam ’ kam

Ua(r) = W (r)e=kar, (2.8)

When relativistic corrections are very small the solutions (2.8) are decreas-
ing at infinity like the solutions of the Schrodinger equation. But at the
origin we have essentially different situation. We have two different physi-
cal solutions (2.5) Uqso and Uyy with the essentially different behaviour at
the origin. Wavefunctions U,y represent bound states spatially localized at
larger distances with smaller binding energies.

For convenience we have introduced a dimensionless parameter p = &
and then the radial semi-relativistic equation (2.3) obtains the form

: d_\ dU, o L(L+1)
- . S
CrD(p)Us + CrCp (d V) o s + 172 —Uq e Ua
+CF*(Ey - V)Uy =0
C
Cr=—. C2=CC. (2.9)

Now we can see that for large F the semi-relativistic equation reduces into
the Schrodinger equation. For the nucleons localized around the center of
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force about 1 fm Cp = 0.011. In the region of repulsive core (0.4 fm)
Cp = 0.07. For the electrons in the first Bohr orbit Cp = 1.3 - 107°.
These results show that the theory of electronic spectra we can calculate the
relativistic corrections with sufficient accuracy in the first approximation of
the perturbation theory [10]. But for the calculations of the nuclear energy
levels we must include the high order perturbations. In this paper the
multiplicative perturbation theory [11, 12] is used. In the average potentials
of a nucleus the nucleons are localized at sufficiently large distances from
the center of force. The Green’s functions of the semi-relativistic equation
can be expressed by the linear independent solutions Ugg and Fyo of the
Schrédinger equation. A very simple and exact iteration method can be
used for finding eigenfunctions and eigenvalues of the integral-differential
semi-relativistic equation.

3. The integral-differential semi-relativistic equation

If we consider relativistic corrections for mass and potential like pertur-
bation, the semi-relativistic equation (2.3) can be written in the form

d2
g KL+

W a 2 Uoz + C'[E(x - VD - ‘/1 (T)]Ua =0, (31)

where we introduce the differential operator

VD= V() +Valr) = Valr) + D0+ Crr V) 2. (32)

There V (r) is the average potential of the nucleus, whereas

77?,(4.)2 7'2

Vi(r) = 7 (3.3)

is the model potential. The fourth and the fifth members in (3.2) represent
’che operators of the relativistic corrections for mass and for potential. The
radial wave functions of the Schrédinger equation for the harmonic oscillator
potential (3.3) are presented in [13]

n—1 2
1 1 mwr
— T 5P 7(L+1) ) k —
Unp = 27p kE_Oaw =

n=1,2,3... (3.4)

k—n+1
(k+1) (k+L+3)

Qg1 = ay - (3.5)
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In the recurrence relation ap = 1 was chosen. Using the standard methods
we obtained the linearly independent solution

oxX0
i, _1lr :
p 2 lw(p), w=> b,
k=0

k=3 (enz +L~3)

be, bo=1. (3.6)
k+)(k—L+1y ™

bpy1 =
The eigenvalues are also known as E,; = s, hw, e =20+ L — %
From the asymptotic behaviour of the wave function U, (r) and nonphysical
linearly independent solution F,(r) at the origin we can obtain Wronskian
of these linearly independent solutions

Wo = (2L + 1) (%)1/2 : (3.7)

The eigenfunctions of Eq. (3.1) in the case of multiplicative perturbation
theory [11, 12] must be expressed by multiplying the eigenfunctionU,p for
model potential Vj(r) by the factor function [11] ¢3 ,,r; which depends on

the potential operator VD(7')

Usa = ¢2,nLjUnL . (38)

Substituting (3.8) into (3.1) we obtain the equation (3.1) in the potential
[11, 12] representation

U L +2 dU CViUprda =0
nLdr2¢2 dr L VeUnL@z = U,

Vs(r) = Vp(r) — AEnL;j, Eo=FEnp+ AE,L;. (3.9)

Using the modified method of Lagrange in the paper [11] equation of the
same type (3.9) has been reduced to integral equation

e . For r . S UntL T .
G2Upp =Up8 — Wo U,CVsdoUppda — Wo Fo1CVspoU, pda
0 i

oo
A=1+ -W%)—/FnchgégUnLdl' . (3.10)
0
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This equation can be written as

o0

d2(r)Upnr(r) = BU, (1) +/G(r >ry, r< 7‘1)C'V5¢2UnLdr1 . (3.11)
0

where according to [14] the kernel of this integral equation is the Green’s
function

1
G(r>ry,r<ry)=-

Wo nr(r > r1)Unp(r <r1). (3.12)

The solution ¢oU,, 1, regular at the origin for bound state must decrease to
zero at infinity. Using this boundary condition from (3.10) we obtain

[ UnrVDd2 nr;jUnLdr

AE,p; =1 (3.13)

J Unr¢2,n0iUnrdr

0
The equation (3.10) can be reduced to more handy form
UnL r O FnL I >
$2Unr = Unp + 357~ [FrrCVs¢2Unpdra ~ W UnLCVsoUprdry .
0 0

0 0

(3.14)

The integral equations (3.14), (3.13) can be solved by the iteration method.
For the zero approximation at the right-hand side of the integral equations
we must take ¢ = 1 and then find AFE,r; from (3.13) and ¢2U, from
(3.14). We must choose freely the model potential, but it is better when
unperturbed wave functions are close to perturbed wave functions ¢2Uy .
Then a small number of the iterations provide the results of high accuracy.
In our method the frequency w = dwy for the model harmonic oscillator
potential (3.3) can be determined by the r.m.s. radius of the nuclei [1]

wo=41-A~ (3.15)

173 MeV

—
The constant d was found by demanding the minimum of the energy. The
control calculations are in good agreement with the results obtained in
[4, 15], where discretization method has been used.
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4. Results of calculations

The control calculations of the neutron energy levels of 2°%Pb in the
states 1s;/5. 2819, 3515 give second terms —39.85 MeV, —29.43 MeV,
—15.27 MeV while in paper [4] we get —39.9 MeV, —29.5 MeV, —15.3 MeV.
The coincidence is sufficiently good because the accuracy of the calculations
in [4] is not very high. The solutions of integral equations are always more
exact.

The energies of the one-nucleon levels E,p ;, the relativistic corrections
for the mass F,, and the potential F, in the region 15 < A < 209 have
been calculated with the spherically symmetric Woods-Saxon potential

Vir)=-vm? [1 + exp[oz"”’(r — R)” - , (4.1)

and the spin-orbit potential (2.4) with parameters [15] o™P = 1.5873 fm ™!,
R =1.24A'3 fm and

VP = Vin (1 Fv

) . v=063, Vyn,=533MeV,  (4.2)

N-Z
Kk = 0.263 (1 +2— ) fm? . (4.3)
The Coulomb potential has been introduced in the usual form [16]
(Z —1)e? 3r  1/r\3
Vo(ir)=——P, P=-———-|= <R,
o) == P 2R Z(R) c e
P=1 , T>R. (4.4)

At first the integral equation (3.14) was solved for the presented potentials
without the differential operator D(r) and the relativistic corrections for
the mass F,, and the relativistic corrections for the potential Ey were
obtained in the first approximation of the perturbation theory. The one-
nucleon levels E,; very well coincide with the appropriate energy levels
obtained in [15]. The probability density of obtained wave functions at
infinity is about 10™° of their maximum values and without oscillations.
This fact is very important in the calculations of F,, which are presented
in Tables T and II. The relativistic corrections for the mass depend on the
main and the orbital quantum numbers and do not have any influence on
the definition of the constant of the spin-orbit interaction. For the neutrons
the negative corrections for the mass vary from —0.2127 MeV in the state
1sy/5 of 3H to —0.9515 MeV in the state 2p3 /5 of >*Cr. For the protons
the relativistic corrections for the mass vary from —0.2268 MeV in the state
2519 of 1TF to —1.118 MeV in the state 2p3 /9 of 59Cu.
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TABLE 1

The neutrons levels and relativistic corrections for the considered potentials

Nucleus nLj Em (Em)P (Ev)? (Enz;)° v d
MeV MeV MeV MeV MeV

70 lds;;  —0.438  —0.427  0.061 -4.148  50.10  0.85
0 28172  —0.535  —0.414  0.012 —3.254¢  50.10 0613
0 1pi)2 —0.534  —0.346  0.110 ~15.654  57.10  0.90
“Ca 1fz2 —0.524  —0.494  0.062 —-8.388 5200  1.00
*Ca 2pas2 —~0.488  —1.124  0.017 —6.135 52.00  0.80
*Ca 1ds/, —-0.334  —0.337  0.075 —15.72 54.30  0.90
¥Ar 1f7/2 -0.502 —0.502 0.058 —6.600 50.25 1.00
5TAr 1ds/; —0.354  —0.344 0.070 -11.88 50.35 1.00
73 112 —-0.490  —0.506  0.054 —-4.500  48.00  1.00
*s lds;,  —0.353 —0.348  0.069 —9.882  49.35  1.00
*®Ca 2p3/2 ~-0.418  —0.433 0.015 —5.152 46.70 0.80
¥*Ca 2p1 /2 -0.395  —0.356 0.012 —3.120 46.70 0.80
“Ca 1f7;»  —0438  —0.445  0.059 -9.937  49.80  1.00
53Cr 2p3 /2 —0.951  —0.664 0.023 —7.978 49.10 0.80
SiCr 1f7;»  —0432 —0429  0.061 —-12.00  51.32 100
5%Fe 2pas2 -0.550  —0.752 0.027 —9.284 50.27 0.80
**Fe 1f;;2  —0.445  —-0.447  0.065 -13.63 5280  1.05
"Nj 2p3 2 ~0.669  —0.611  0.031 -10.27 5110  0.80
#Sr 2ds;,  —0.528  —0.529  0.017 ~6.390  48.10  0.75
¥7Sr lge;» ~ —0.458  —0461  0.051 —11.11 4960  1.05
Zr 2ds;;,  —0.546  —0.540  0.019 —7.184 4876  0.75
¥Zr lgoja  —0.454  —0.456  0.052 —-12.00 5040  1.05
Mo 2ds;,  —0.520 —0.515  0.018 —8.046  50.02  0.90
*'Mo lgs2  —0.479  —0.450  0.052 —12.58 5077  1.05
139Ba 2f772 —0.539  —0.541 0.012 —4.725 46.65 1.05
157B, 2dy 7 —0.430  —0.424 0.025 —9.923 47.00 0.90
*"Ba lhyye —0495  —0.502 0.043 —9.157 47.00 1.10
*°Pb 29s2  —0.693  —0.639  0.014 —4.158 4550 115
209py, Liyijo ~0.585  —0.629 0.039 —2.946 45.50 1.20
29pb 3ds /o -0.486  —0.480 0.001 ~2.215 4550  0.90
27ppb 3p1)2 —0.494  —0.477 0.010 —7.379 45.38 1.00
207py 2fs/2 —0.497  —0.489 0.024 —8.023 45.38 1.20
*7Pb 3pas2 ~0.654  —0.688  0.011 —8.696  45.38  0.95
2ip, 290 /2 -0.663  —0.871 0.013 —4.538 45.50 1.15
#1po 3py2  —0.555  —0.587  0.012 -7.654 4520  0.93
*H 1s1/2 —-0.213 0.140 —2.218 26.60 0.34
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TABLE 11

The protons levels and relativistic corrections for the considered potentials.

Nucleus nLj Ev (Em)?  (Ev)®  (Ear))? 144 d
MeV MeV MeV MeV MeV

g 1ds —0.664  —0.751 0.053 —0.606 50.65 0.80
170 282 —0.227  —0.216 0.007 —0.122 50.65  0.551
BN 1pijs —0.341 —0.361 0.105 —12.00 57.60 0.75
41g¢ 1f7/2 —~0.480 —0.482 0.056 —1.096 52.44 1.00
K 1ds/; -0.366  —0.350 0.070 —8.301 54.24 1.05
49g¢ 1f/2 —0.473  —0.474 0.068 —9.643 58.10 1.05
93¢ 2p3/2 —0.737 —0.705 0.022 —5.886 58.10 0.77
55Co frs2 —0.413 —0.419 0.062 —7.207 55.40 1.03
*Cu 2p3/2 —1.118  —1.094 0.031 —3.387 53.70 0.77
*7Co Lfz/2 —0.441  —0.441 0.061 —8.105 55.37 1.03
1215y 2ds 2 —0.516 —0.499 0.026 —5.753 59.05 0.80
21gy, 1g7/2 —0.566  —0.470 0.052 —5.109 59.05 1.20
R 1gq/2 —0.373  —0.420 0.053 —10.86 58.40 1.05
200p; lhg/, —0.417 —0.418 0.043 —3.792 60.23 1.15
2004 2fr/2 —0.474 —0.474 0.026 —3.601 60.23 1.15
207 3s1/2 -0.384  —0.370 0.023 —8.054 60.00 0.90

The relativistic corrections for the potential are positive and vary for
neutrons from —0.0105 MeV in the state 3p, /o of 20TPb to 0.1400 MeV in
the state 151/2 of 2H with parameters o = 3.75 fm~!, R=24fm, V" =
26.6 MeV. (EnLj)D, (Em)P, (Ey)P were obtained solving the integral-
differential equation (3.14) for the operator potential (3.2). The depths
of Saxon-Woods potentials V™ and VP were obtained from requiring the
coincidences with experimental one-nucleons levels [15]. The differences

between Ey and (Ey)P are insignificant. That is why E'y is not presented
in the Tables.

5. Conclusions

The relativistic corrections to potential are small and they are about
0.05 MeV. We can argue on the possibility of calculating the energies of the
single-particle states without taking into account the relativistic corrections
for mass. In order to get the exact values of energy levels we must solve
the integral-differential equation (3.14) with the operator potential (3.2).
For the nuclei where two or three energy levels are presented we have ob-
tained good coincidence of the calculated levels with experiments [15]. We
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can confirm that taking into account the relativistic corrections for mass
improves the results. These corrections must be taken into consideration
in the calculations of the elastic scattering phase shifts, stripping pick-up,
knockout reactions.

They are important for solving the problems of the dependence of the
potentials on energy in the shell model [17] and the range of the nuclear
force [18]. The relativistic corrections for mass significantly increase the
binding energies of the nucleons in the external shells of the heavy nuclei
like 209Pb, 299Bi, 299P¢ and increase the probability of existence of super-
heavy unstable nuclei [15]. The obtained exact (En)P, (Ey)P values in
many cases coincide with E,,, Ey obtained in the first approximation of
the perturbation theory. It is well known [19] that bound states and elastic
scattering phase shifts can be described by the same real part of the opti-
cal potential. Consequently we can draw a conclusion that the relativistic
corrections to mass must be included into the optical model calculations.

A new procedure for the solution of semi-relativistic equation can sig-
nificantly improve the shell model calculations and can be useful for the
explanation of the properties of the recently established neutron-rich nuclei
with very large r.m.s. radii. The relativistic corrections to mass for the
neutrons hole and particle states 1f7 /9, 2ds /3, 2f7/2. 29972, 14112 signifi-
cantly increase the separation energies of the neutrons in the external shells
and the probability existence of the nuclei with abnormally high number
neutrons in these shells.

In the Nillson Hamiltonian applicable for consideration of the single-
particle energy levels of the nucleons moving in an axially deformed har-
monic oscillator potential we have angular momentum dependent term —D-
L? which diminishes the energy for higher L. A similar dependence of the
relativistic corrections for the mass was obtained [3] and [4]. We can con-
firm that relativistic corrections for the mass are important in the case of
Nilsson’s model.
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