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The permanent magnetization of the proton crystal immersed in the
neutron background inside the neutron star core is studied. The mag-
netization is produced by the ferromagnetic ordering of spins of protons
localized at the lattice sites. We calculate the magnetization of the crystal
in a simple model based on the Skyrme forces in which we use variational
wave functions for localized protons and Bloch neutrons in the Hartree-
Fock approximation. The induced spin excess of the neutron Fermi sea is
found and its contribution to the magnetization is included.

PACS numbers: 21.65. +f, 97.60. Jd

1. Introduction

Magnetic properties of the dense matter, which play an important role
in explaining the origin and/or evolution of the magnetic field of neutron
stars, are determined by the behaviour of protons which form nuclear po-
larons {1]. At high densities the polarons become localized [2]. This triggers
the spontaneous ferromagnetic spin ordering of protons which produces a
permanent magnetization of the neutron star core [3].
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Protons, which are a dilute component of the neutron star core matter
are likely to form a crystal structure at high densities [4]. This proton crystal
has a single proton localized inside every elementary cell. The periodic
potential, which localizes protons is due to a periodic density distribution
of background neutrons [4]. The localization of protons in the neutron star
matter is a result of the behaviour of the nuclear symmetry energy at high
densities [5, 6].

In this paper magnetic properties of this proton crystal are studied. It
is quite obvious that a single proton, which has a well-defined spin, will
polarize the surrounding neutron matter, provided there exist any proton-
neutron spin interactions. Propagation of polarized neutrons can in turn
induce the polarization of neighbouring protons by the RKKY mechanism
[7]. In this way, a long-range magnetic order can propagate in the proton
crystal leading to the alignment of proton spins.

Here we calculate the magnetization of the crystal with all the proton
spins ferromagnetically polarized. The magnetization consists of contribu-
tions due to localized protons and the induced polarization of the neutron
Fermi sea [3]. To calculate the latter one we have chosen to work with the
Skyrme forces which provide the spin interaction. The induced spin excess
of the neutron Fermi sea is calculated variationally.

The Skyrme forces were used in an earlier calculation [4] of the proton
crystal in the neutron star matter. However, the parametrization used in
Ref.[4] is not well suited for the calculation of the neutron spin excess. The
unwelcome feature of some earlier parametrizations is that pure neutron
matter becomes unstable at higher densities [8]. The origin of this unphysi-
cal instability was discussed in Ref. [8]. Also, an improved parametrization
applicable to spin excess calculations was proposed in Ref. [8]. The Skyrme
force parameters from Ref. [8] are given in the Appendix.

The paper is organized as follows: In Section 2 we briefly discuss the
proton and neutron trial wave functions which describe the proton crystal in
Ref. [4]. In Section 3 the energy of the polarized proton crystal is calculated
variationally and the net magnetization including the induced neutron spin
excess is obtained. Results of our calculations are collected in Section 4. In
the Appendix analytic formulae for the energy of polarized crystal are given
together with parameters of Skyrme forces. For completeness, also energy
of normal crystal [4] is given there.

2. Proton crystal: proton and neutron wave functions

In Ref. [4] a simple model of the proton crystal is constructed. We
assume protons to form a simple cubic lattice. Single protons are localized
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on lattice sites. The lattice constant « is determined by the proton density,

a:n;l/g. (1)

Here np = znp, where ng is the baryon density and z is the proton fraction.
The localized protons are described by a variational wave function:

$p(r,0) = Cp[1 4 cos(gpx)][1 + cos(gpy)][1 + cos(gpz)]xp (o), (2)

for
v T T T T T
-——<rl— -——<y<—, -——<z< —,
qp qp qp qp qp qp
and
¢p(r) =0 (3)
for

™ T w
qp qp qp

The normalization is

Cp = (g—};)gﬂ. (4)

The wave function, Eq. (2), vanishes at the surface of the cube of the volume
(2r/qp)3. For the proton to be localized inside the cubic cell of size a, the
variational parameter gp should satisfy the inequality

gp > 21/a=gq. (5)

One can generally write the wave functiop of the j-th proton localized on
the site R; as
bi(r;,0) = d;;ép(| ri — R; |,0). (6)

The proton spin is polarized in the z-direction.
The neutron wave functions are assumed to be the Bloch wave functions,

Yk, (rj,0) = kit uk; (ri)xn (o). (7)

The wave vector k; is limited to the first Brillouin zone and the subscript ¢
denotes the i-th band. The functions ug,(r) have the symmetry of a simple
cubic lattice. We choose them in the form

ug; (r) = C[1 + acos(¢z)][1 + acos(gy)][1 + acos(qz)], (8)

where a is a variational parameter. The wave vector ¢ for a crystal with a
single proton per site is defined in Eq. (5).
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The normalization of the wave function. Eq. (8), is

AP S (9)
VV{1+0.5a2)3

The single-particle orbitals (7) are filled up to the Fermi level.

3. Spin excess calculations with skyrme forces

The Skyrme potential we use reads

v(r, o) =to(1+ 20 Pr)3(r) + 31 [k 25(r) + 6(r)k?]
4 ta(1+ 22 Py)k - 8(r)k + Lis(1 + 23 Py)n(R)6(r) . (10)

Here r =7; —r; and R = %(ri + 7). The operator k = 3(V,; — V) acts

on the right of the delta-function and k is the same operator acting on
the left of 8(r). P, is the spin exchange operator. This parametrization
employs the exchange parameter z which is commonly neglected in earlier
parametrizations [8]. A suitably chosen value of x5 removes the unphysical
instability of the neutron matter at higher densities [8]. Parameters of this
potential from Ref. [8] which we use here are given in the Appendix.

The Skyrme potential depends on the spin variables of the particles
through the spin exchange operator Py = (14 &152)/2. The spin interac-
tions of polarized protons with the neutrons will induce the neutron spin
excess

[t

§ == 3 (ng{:.— nf»é), (11)

]

t

where ng: and "I{i‘ is the density of neutrons with spin up and spin down.
respectively.

3.1. The normal state

The variational wave function of the whole system, W, is a Slater de-
terminant of proton and neutron single-particle orbitals (6) and (7). It
contains two variational parameters a and gp which will be chosen to min-
imize the energy of the crystal at a given baryon density npg and for the
proton fraction . There is no spin excess in the normal state, which is
unpolarized.

In the case of contact interactions (10) the energy

E=(V|H|¥) (12)
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of the crystal with localized protons, whose wave functions do not overlap,
is the sum of single cell energies E. .

E = N:Ecen - (13)

Here N, is the total number of cells in the crystal which for a single proton
per site is equal to the total number of protons, N, = Bp = Vnp.

The cell energy consists of the neutron background energy including
neutron-neutron interactions, the proton kinetic energv and the protou-
neutron interaction energy:

Ecell = Eneut + Ekin + EPN . (14)

The neutron energy is
3
Epent = a”en(a) . (15)

where the mean neutron-background energy density is

1 I .
ex(a) :"?[;(‘i"k | T Imn V2 | )
|k kr |
3 zk: Zl:@/’k’(/fl | v(z, y) | ridr — o)) - (16)

One can obtain an analytic expression for ey which is given in Ref. [4] for
9 = 0. In the Appendix we give the modified formula valid for x5 # 0.
The proton kinetic energy for the wave function, Eq. (2). is

a5

Exin = Exin(qp) = 5, —- (17)
mp
The proton-neutron interaction energy is
kp
Epn = Epn(a.qp) = Y _(vrop | v(z.y) | ¥nép). (18)
k

For our choice of trial wave functions also this expression can be calculated
analytically and is given in the Appendix.

The results of minimization of the cell energy, Eq. (14), are discussed
in detail in Ref. [4].
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3.2. Ferromagnetic state

When the proton spins are ferromagnetically ordered the proton-neutron
spin interactions induce the spin excess, s # 0, in the neutron Fermi sea.
The cell energy of the ferromagnetic crystal is a sum of the polarized neutron
Fermi sea energy, Epeut,m. the proton kinetic energy, Ey;,, and the inter-
action energy of the proton with the polarized neutron Fermi sea, Epnm,

EZn = Eneut,m + Exin + Epnm - (19)

It depends on the neutron spin excess s as now both the neutron background
energy and the proton-neutron interaction energy depend on s.
The neutron energy is

Eneut‘m = a3€Nn7(a~8)v (20)

where the mean energy density of the polarized neutron Fermi sea is

k‘
1 ! 1
enmla, s) = v Z Z('@f’k | —Mvz | r)

==u.,d k

ki Ky
+% DD DD | v, y) | vrdh — v | - (21)

i=u,dj=u,d k l

Here k,, k4 is the Fermi momentum of spin up and spin down neutron Fermi
sea, respectively. We give the analytic expression for ¢, in the Appendix.
The proton-neutron interaction energy is

k;
EpNm = Epnm(oqp.s) = D Y (dwop | v(@,y) | vrop).  (22)

i=u,d k

For our choice of trial wave functions also this expression can be calculated
analytically, see the Appendix.

To determine the values of variational parameters o , ¢gp and s we
minimize the energy per particle in the cell

m

W = —cell | 23
Bcell ( )

where the total baryon number of the cell is
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Been = *(1—2)np+1, (24)

for a given total baryon density ng and the proton fraction z.
Having the neutron spin excess s, which is a function of the baryon
density npg, we can calculate the magnetic moment of the cell

ficen = a’pungs + pp (25)

where uy and pp is the neutron and proton magnetic moment, respectively,
and g = 2. The magnetization is

M= //'cell/a3 . (26)

4. Results and discussion

The results of our variational calculations are presented in Figs. 1-4. In
Fig. 1 we show, as an example, the energy per particle of the ferromagnet-
ically polarized crystal, Eq. (23), as a function of the neutron spin excess
density gs, for the baryon density ng = 0.5fm ™3 and the proton fraction
z = 0.01, and for appropriate parameters o and gp. The energy displays a
well defined minimum determining the induced spin excess s.

80.6 ¢

x=0.01
ng=0.5fm™>

80.3 o b s
=005 -0.03 -0.01  0.01

gs(fm™)

Fig. 1. The energy per particle of the polarized crystal as a function of the spin
excess of the neutron Fermi sea. The minimum of the curve determines the induced
neutron spin excess.
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Fig. 2. The induced spin asymmetry of the neutron Fermi sea as a function of
baryon density. The solid curve corresponds to the first set of the Skyrme force
parameters. The curve displays the ferromagnetic ordering of the neutron spins
above the density ny = 0.78 fm™3. The dashed curve corresponds to the second
set of the Skyrme force parameters.
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Fig. 3. The energy per particle of normal neutron matter (solid curves) and fer-
romagnetic neutron matter (dashed curves) as functions of the neutron density.
The curves 1 and 2 correspond, respectively, to the first and the second set of the
Skyrine force parameters. The curves 1 cross at ny = 0.78 fm~3.
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In Fig. 2 we show the degree of polarization of the neutron Fermi sea
corresponding to the neutron spin excess s,
5 v pd
Fspin = g_— = nE: ni; . (27)
nN nN + nN
as a function of the baryon density for the proton fraction z = 0.01. The
spontaneous polarization occurs above the critical density which is the same
as the critical density for the proton localization. The spin asymmetry,
Eq. (27), generally increases with the baryvon density. In Fig. 2 we show
curves corresponding to two sets of Skyrme force parameters from the Ap-
pendix. The induced spin asymmetry agpin depends on the parametriza-
tion of Skyrme forces. For the parameters, fitting the UV 14 + TN T equa-
tion of state for the neutron matter, we find that Qspin = 1 for densities
ng > 0.78fm~3. This means that not only protons are fully polarized
but also the neutron matter is ferromagnetically polarized. To explain this
behaviour we plot in Fig. 3 the energy per particle of normal and ferro-
magnetic neutron matter, for two parametrizations from the Appendix.

For x9 = —1.02 the ferromagnetic state becomes the ground state above
ny = 0.78fm=3. This is why the spin asymmetry aspin = 1 for ng > ny.
For z9 = —1.08, from the second set of parameters, the ground state is

unpolarized at higher densities. As a result, the spin asymmetry agspin < 1.
We regard the small values of agpiy as more realistic.

The net magnetization of the proton crystal, Eq. (26), is shown in
Fig. 4. A magnetized neutron star core contributes to the magnetic moment
of the neutron star [9, 10]. The magnetization required to explain the
observed value of the magnetic field of neutron stars is of order 1013Gs.
Here we obtain such values for the second set of Skyrme force parameters,
which correspond to the neutron matter which is far from instability with
respect to spin fluctuations. In case of ferromagnetically unstable neutron
matter. the curve labelled 1 in Fig. 4, we obtain too large values of the
magnetization.

APPENDIX

In the calculations reported here we use two sets of the Skyrme force
parameters. For both sets we use the same parameters fg,ty,t2 and t3:
to = —1057.3 MeV fm?. t; = 235.9 MeV fm>. o = —100.0 MeV fm?>, t3 =
14463.5 MeV fm®. The exchange parameters for the first set are adjusted
to fit the neutron matter equation of state with UV 14 4+ TN interaction
from Ref. [11]: 29 = 0.1865, 2o = —1.08 and 23 = 1.0. The second set
consists of exchange parameters fitting the {/V14 + UV IT equation of state
for neutron matter from Ref. [11]: 29 = 0.17. 23 = ~1.02 and x3 = 0.64.
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Fig. 4. The magnetization of the proton crystal as a function of baryon density for
both sets of the Skyrme force parameters. The proton fraction is z = 0.01.

Energy of the uniform nucleon matter
With the effective interaction (10) one finds the energy density of a

uniform nucleon matter of density np and proton fraction @ in the form
[12]:

1 1
Can ={(—— —— 4+ Bp 2
un (2777/N +BN)7N+ (2"Tlp + })TP‘f‘nB
X [b—f—dnB - (% —LIJ)Z(CL3+(L47?.B)], (A1)

where
B; = {[(t1 + t2(1+ 0.529))np + F(t2(1+ 222) — t1)ni}, i=N,P (A2)

and

b=ito, d=gts. ag=(3+zo)te, as = §t3(+73). (A3)
Single-proton cell energy for the normal state
The mean energy density of the neutron background is

en(@) = nn[el) + ToN + TN 4 79N L 7NN L 2 (w4 w)],  (Ad)
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where the kinetic energy density is

(N) 3 2
nNeg | = o~ kxnx (A5)

1. . .
where ky = (372nx)3 is the Fermi momentum of uniform neutron matter.
The interaction terms are

. 1 PO
NN 2
anTy N~ 3—_2t0(1 - .ro)n;;'y“ﬁ. (A6)
IN 3 1 :
NN _ 2.2 3
anT} o = ﬁtl kxnyy 3 (A7)
9 . 1
NN _ 2.2.31
Ty = ﬁtrz(l + xo)kynyy 3 (A8)
! 1 ; 1
nNTé\‘NN = @tg(l — 23)(16 + 12002 + 90a* + 5ab)3n§1/3—9 . (A9)
The g-dependent terms are
. 1
2
N W = NN = Al0
N 2mNa N3 (A10)
B g o 1
nNu = l—6t1n§10/2(4 + a'z)*,'zrj_—é . (Al11)
In these formulae 3 and ~ are
3 = 2+a?, (A12)
v = 84 24a” + 30, (A13)
The proton-neutron interaction energy for the normal state is
Epn(a,qp) =Tg b + T1F + T)F + TRNF (A14)
where 64 .
P = S=to(1+ o..s:co)nNA;‘gB-. (A15)
32 L/(3 3 ‘ 1
TNP — Et;Af (mk:{mNA] + 57N (g®Ag + R As + 2(¥qqp146)) 7
(A16)

32
TNP =o-ta(l+ 0.52)A2
{

3 3
X (Ek%\InNAl + inN (a'2q2.42 + qi":Ag - 20’qu.46))

1
/3_37
(A17)



2238 M. KutrscHERA, W. Wik

: 64 :
I3NP = 30 + x3)nd A3 — 3()- (A18)

S

Single-proton cell energy for the polarized state

The mean energy density of the polarized neutron background is

‘N"'(a s) = 601;/}) + T + Tlm + TZrn + T\N\ + (Iz(wm + um) . (Al19)

where the free kinetic energy density is

AN)

€om — 10 (]‘u"N_‘“l‘;IngI) (AQO)
m

Here k; = (671’272,&)3 .1 = u,d, is the Fermi momentum of spin up and spin
down Fermi sea, respectively. The interaction terms are

1 1
T(E\n? = ‘“fo(l — xo)ny "r(ir jg- (A21)
NN = 3 (k2 + k2) nfnds? 3 1 (A22)
im 160 u 3()
) 3 0 A A 5 1
THN = tegta (L) (AL (nf) P+ 2kG () + (K kDt nd )7 55+ (A23)
1 . . 1
TNNN — Et;‘u — 23)(16 + 12002 4 90a* + 50/(’)311,1\1'17.1’\‘171,1‘{] = (A24)
The g-dependent terms are
Wy, = NMNW, (A25)
3 nttnda? (44 a?)y? (A26)
. = — ,] . ¥
Um 1 11N 7\ }\jﬁ

The proton-neutron interaction energy for the polarized state is

s P oy
EPNm(OR qp » 5) T()m + 11\175) + F?m + TBNmN ) (AZ‘)
where 6 .
Tom = ‘2:’0(7“\1 + ny o) 4f§3— . (A28)
1()
Tlm = ( (kun\ + Ad?l\;) A1 4+ 3nyn (aq Ay

5 1
+ qf)As +2094p A6) ) 53 (A29)

g
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16

T2m :2

3
2 41< ((1+17)/‘“1LN+kan)4

1

+ 3(nn + (6272,1%)((\’2(]2,42 + q%Ag — ?,a'quAg)) 3

(A30)

256 1
n;?IP Hh <(nN + )N + (1 — 23)ng n\I) A= 76 (A31)

In all above formulae the coefficients Aj....4g are the following integrals:

T,

ar
A = g—l; (1+ Cos(qp;r))2(1 + acos(ga))? du (A32)

Ay = g—l; / (1 + cos(gp)) sin(qz)? dx | (A33)

-7

ap

I

qp

Ay = ;’—‘;/ sin(gpz)2(1 + arcos(qz))? de | (A34)

Ay = %[i / (1 + cos(gpx))? cos(qz) (1 + acos(gx)) da (A35)
i

ap

ASg—P / cos(gpx) {1 +cos{¢qpx)) (1 + o COS((].T))Z dz {A36)
s

ndi

ap
ap

Ag = g—l; / sin(gpz) (1 4 cos{gpx))sin(gz) (1 + avcos(ga)) dz , (A37)

A7 = q—P / (14 COS((]p.L‘))Jl(l + a (:os(q.'z'))2 da (A3R)
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LP
= / 1+ cos(gpz))*(1 + acos(gz))* dz . (A39)
T
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