Vol. 27(1996) ACTA PHYSICA POLONICA B No 9

BACKPROPAGATION AND MONTE CARLO
ALGORITHMS
FOR NEURAL NETWORK COMPUTATIONS

R. JuNnczys AND R. WiT*

Institute of Physics, Jagellonian University
Reymonta 4, 30-059 Krakéw, Poland
e-mail address: wit@ztc386a.if.uj.edu.pl

Results of teaching procedures for neural network for two different
algorithms are presented. The first one is based on the well known back-
propagation technique, the second is an adopted version of the Monte
Carlo global minimum seeking method. Combination of these two, differ-
ent in nature, approaches provides promising results.

{Received July 12, 1996)

PACS numbers: 89.80.+h

1. Introduction

Neural networks are quite useful when solving some practical problems
[1]. They have also found many new applications. In particular, neural
networks may be used to identify the ancestor of a hadron jet in ete™ high
energy collisions [2]. Already with one hidden layer (¢f. Fig. 1) one may
attack problems which seem to be rather complicated. Therefore effective
methods for ’training” multilayer neural networks are of certain importance.

In this paper we would like to present the results of our numerical ex-
periments concerning weights’ calculations for a given neural network. In
addition to the standard backpropagation algorithm we introduce a Monte
Carlo one related to the clustering technique [3]. It can be easily imple-
mented and connected to other subroutines in use and yields encouraging
results.

The function of a neuron in an artificial neural network is to sum its
weighted input signals and to present the output according to the activation

* Supported in part by KBN grant No 2 P03B 196 09.

(2265)

2266 R. Junczys, R. Wit

input E

output 0

Fig. 1. A simplified structure of a neural architecture. For clarity not all connec-
tions are drawn.

function:

n; = f(z w;jn;).
J

In this way we describe node’s activity [4]. The weight w3 represents the
synapse connection strength between neuron o and 3; for convenience we
collect the wqyg’s in one vector denoted by .

The neural network training procedure consists of three obvious steps:

L. the feed forward of the input pattern,
2. the backpropagation of the resulting error,
3. the iterative change of the relevant weights.

The error function is defined in the following way
E:RY —>R+:E(zb’):ZZ(O{zﬁ)f—g‘f)Q. (1)

The subscript ¢ labels elements of the teaching sequence, the subscript @
describes elements of the output vector.
The global error is normalized by the factor

_ FE(w)
Zc Z‘i 1
Such normalization is an appropriate one since the single unit (neuron)

maximal error is equal 1 and here we are summing over all possible errors.
In this paper we use the following activation function f(h)

o (1) (2)

1
Cl4exp(=3-(h—p))’

which has an obvious sigmoidal structure (logistic sigmoid).

f(R) (3)

Backpropagation and Monte Carlo algorithms . .. 2267

The ($-shaped) diffused step functions are well suited for use in neural
dynamics algorithms due to a simple relationship between their values and
the values of their derivatives. There exists some freedom in taking the
values of the parameters 3 and p. They influence the convergence rate of
the teaching procedures and this is the main limitation for their possible
variation. The value p = 0.5 was fixed during our numerical experiments.

There are many update rules for weights’ change. One of the best algo-
rithms used in this case is based on the backpropagation technique, closely
related to the gradient steepest descent method taken from minimisation
theory. The backpropagation algorithms differ in some technical details but
the underlying theory remains the same.

The main problem of the training procedure is connected with the struc-
ture of the weight space, which very often looks like that given in Fig. 2.
Once on the flat plateau the searching algorithm, when based on gradient
calculations, does not get valuable hints where and how far to move to
obtain the requiered weight changes.

Fig. 2. Typical weight space structure of the error function.

Another difficulty is related to local and global minima. Roughly speek-
ing, the minimum finding calculations may get stuck either somewhere on
the plateau or at some local minimum, far away from the global one. Re-
peated calculations may clarify the situation (different starting point, dif-
ferent searching strategy ete.) but this is certainly not a very systematic
approach.

An entirely different attitude to the minimum finding procedure is pro-
vided by the Monte Carlo global optimization technique, introduced by
Torn [3]. We explain its essence using the following numerical example,

2268 R. Junczys, R. Wit

which serves also as a very good cross-check for our procedures and relevant
links among them.

2. Numerical example

Consider the following function g : RN — Ry:

AT

N
g(%) = Z(int){xi - a;| Z(int){xi — b,
i=1

=1
N N

x Y (int)]z; — ci| Y (int)|z; — dil . (4)
=1 i=1

By (int) we denoted the integer part of the subsequent simple expres-
sion. The appropriate parameters are described in the following way:

dimension: N = 2;

minima: @ = (5.0,5.0); 5 = (5.0, =5.0); & = (~5.0,5.0); d = (=5.0, —5.0);

boundaries for independent variables: z; € (-10,10); z2 € (—10, 10).
The structure of this function is presented in Fig. 3. The four symmetric

minima are well seen.

N, A

NI % 4

50000 “;\‘ {'\‘9:!;[.7"1’,1:1’1',”!{'.(‘,{" /!
g(X,Y)

Fig. 3. The structure of the function g(¥) (cf. (4)).

Considering a general case assume that no @ priori information about
the location of minima is available. One starts the Monte Carlo minimizing
procedure by scattering at random the so called seed points within certain
boundaries (cf. Fig. 4). Next, we move each of them towards a local min-
imum. The procedure used for this purpose consists of two steps for each
point:

Backpropagation and Monte Carlo algorithms . .. 2269

1. find a random direction in which the minimum searching calculations
should proceed,

2. use a (crude) linear minimisation procedure to move the seed points
towards some minimum along the chosen direction,

and a general stopping criterion

1. stop when some point density condition is satisfied.

10.

o
o

Fig. 4. The location of the starting seed points.

10.

o
o v o v o
8
Al
- 3 B
.

(Y
.

33
p
.

i
wn
(=] w (=] w
3
.
ofes
g
.
*
)
. ..
o
o
.
.
»
.
M
e
.
o

. |
°-10.0 -7.5 -5.0 -2.5 -0.0 2.5 5.0 7.5 10.0
X

Fig. 5. The location change of the starting points.

The results concerning function g(Z) are presented in Fig. 5. We observe
a cluster formation and therefore it is enough to take only one representa-
tive of each cluster to perform further calculations. Obviously the cluster

2270 R. Junczys, R. WIT

technique is used to prevent multiple determination of a local minimum and
repetitive, unnecessary calculations.

From now on we may either use again the Monte Carlo minimum find-
ing method or we may switch, e.g., to the backpropagation algorithm. If
corresponding computing resources are available one may initialize at this
stage parallel calculations for each starting point representing the above
mentioned clusters.

A further remark connected with a cluster structure seems to be worth
mentioning. The weight choice describing a well defined (deep) minimum of
the error function may not be a good one if we expect also certain flexibility
from our network. Therefore Monte Carlo calculations could be a useful
tool when generalization properties of a neural network are of great value.

3. XOR and pattern recognition test problems

In this section we would like to present some of the results obtained
when solving the XOR [4] and simple pattern recognition problems by means
of the backpropagation and seed points (Monte Carlo) methods. The stan-
dard network structure for solving the XOR problem is given in Fig. 6.

input E

input layer

output layer

output 9]

Fig. 6. Standard network architecture for the XOR problem.

With a given starting point wp and 3 = 10 (what corresponds to a sharp
sigmoidal activation function) we see in Fig. 7 that there is no error reduc-
tion when using the backpropagation algorithm. However, we observe a real
change if the calculations are performed by means of the Torn prescription
[3] (¢f Fig. 8).

We see, however, that if for the same starting point we change the shape
of the activation function putting 5 = 5 we get some improvement for the
backpropagation algorithm. This is seen in Fig. 9 and to some extend could
be expected: for smaler 3 values the activation function is smoother.

Backpropagation and Monte Carlo algorithms . . . 2271

error
1. T

!
0.8
0.6
0.4 -+
0.2

epoch
¢ 200 400 500 800

Fig. 7. Solution to the XOR problem — 3 = 10. For a given starting point the
backpropagation does not work.

errox

DS
L

6.2 \

N

] 200 400 600 80¢ 1000

epoch

Fig. 8. Solution to the XOR problem — ;3 = 10. the Toérn seed points method.

eYroxr
1.0 e S O —
o S VS
: .
0.6 oo - S e L
0.4 :
0.2 A EE- O
i
L R epoch
[100 200 300 400

Fig. 9. Again the XOR problem — this time with 3 = 5. Backpropagation works
better.

It is, however, evident that we have obtained the best results when
starting with the Monte Carlo calculations and then switching to the back-

2272 R. Junczys, R. Wit

error

epoch
0 100 200 300 400

Fig. 10. Start with Monte Carlo to solve the XOR problem (# = 10) and continue
by backpropagation. The result is excelent.

propagation algorithm. The corresponding numerical results are presented
in Fig. 10.

L

o | — [FJ sfels] — (19
hd output output
input input

Fig. 11. Simple 3 x 3 patterns

error

epoch

Fig. 12. Pattern recognition — backpropagation.

Backpropagation and Monte Carlo algorithms . .. 2273

Another example we would like to discuss here is a simple pattern recog-
nition problem (see Fig. 11). The backpropagation method (Fig. 12) works
now better than the Térn method (Fig. 13) but the combination of these
two (Fig. 14) leads again to encouraging results.

errorxr

epoch
0 3000 6000 9000 12000

Fig. 13. Error change for the pattern recognition problem using the Térn algorithm.

error

epoch

Fig. 14. Pattern recognition — hybrid solution method.

2274 R. Junczys, R. Wit
4. Final conclusions

As we have shown the inclusion of Monte Carlo technique into the
weights calculations for neural networks provides one with quite interesting
perspectives and results.

All the examples we discussed above are, of course, low dimensional
ones. Programs, written in C + 4, were well adjusted to be used on PC'’s.
Dealing with more complicated neural networks we should expect additional
problems connected with the curse of dimensionality’. In particular we feel
that an introduction of a more elaborated (but not time consuming) proce-
dure for the directional minimisation would be necessary. Also a different
organisation of our numerical procedures could be unavoidable.

What seems, however, to be attractive in the presented approach is
that right from the beginning one tries to get here a general look at the
structure of local minima {(metastable memory points [5]). This sort of
information is often of great value during the planning stage of a neural
network architecture. A possible inclusion of parallel calculations might
also be interesting.

One of the crucial elements in the Monte Carlo algorithm is a proper
choice of the relevant cluster analysis technique. Here we may gain a lot
of computational effort. The cluster analysis, by itself an important part
of scientific activities in different areas (¢f. [6])., when properly applied to
neural network calculations may lead to further improvements.

At the end we would like to emphasize that the positive examples we
presented here should be considered as some hints for further investigations
rather than an indication for something closed and definite.

We are grateful to J. Wosiek for reading the manuscript of this paper.
A. Burzynski was very helpful fixing some software problems we met when
performing this work.

REFERENCES

[1] S. Haykin, Neural Networks, A Comprehensive Foundation, Macmillan College
Company, Inc., New York 1994.

[2] L. Lonnblad, C. Peterson, T. Rognvaldsson, Nucl. Phys. B349, 675 (1991).
[3) A.A. Torn, A Program for Global Optimization. Multistart with Clustering
(MSC), in IFIP Proceedings, ed. P.A. Samet, North-Holland, 1979, p.427.

[4] L. Fausett, Fundamentals of Neural Networks, Prentice Hall, Englewood Cliffs.
NJ 07632 1994.

[5] J. Hertz, A. Krogh. R.G. Palmer. Introduction to the Theory of Neural Com-
putation, Addison—Wesley, Redwood City CA 1992.

[6] STATISTICA, StatSoft, Tulsa OK 1995.

