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We added a rotational energy to our Thomas-Fermi nuclear model
of W.D. Myers, W.J. Swiatecki, Acta Phys. Pol. B27, 99 (1996) and

W.D. Myers, W.J. Swigmtecki, Nucl. Phys. A601, 141 {1996) and present
here a survey of fission barriers, deformation energies, y-ray rotational cas-
cades and moments of inertia. We explore a hypothesis according to which
the moment of inertia of a deformed nucleus can be estimated by subtract-
ing from the rigid-body value the moment of inertia of an inscribed sphere.

PACS numbers: 21.60. -n, 21.65. +f

1. Introduction

At last year’s workshop in honour of Zdzistaw Szymariski (Ref. [1])
I showed the first results of adding a rotational energy to our Thomas-
Fermi model of nuclei (Ref. [2]). Today I will present additional results on
fission barriers, rotational gamma ray energies and moments of inertia. I
will conclude with a speculation concerning an effective “inert core”, which
reduces the moment of inertia of a rotating nucleus below the rigid-body
value.

References [1] and [2] give a description of our model, as well as a more
extensive list of references. Here I will only recalli that the two physical
ingredients in the model are the Thomas—Fermi assumption of two fermions
per h® of phase space volume, and the use of an effective velocity- and
density-dependent Yukawa interaction between the nucleons. When angular
momentum is present, all mass elements of the density distributions will be

* Presented at the XXXI Zakopane School of Physics, Zakopane, Poland, September
3-11, 1996.
(9)



10 W.D. MYERS, W.J. SWIATECKI

assumed to rotate with the same angular velocity, except when, towards the
end, the hypothesis of an “effective inert core” is being tested.

2. Fission barriers

A comprehensive survey of macroscopically calculated fission barriers
was given in 1986 by A.J. Sierk within the framework of the Yukawa-plus-
Exponential model of Krappe and Nix [3]. Figure 1 compares Sierk’s bar-
riers for zero angular momentum with our Thomas-Fermi calculations and
with measurements. For the heaviest elements both calculations repro-
duce closely experiment, but then Sierk’s barriers fall significantly below
the Thomas-Fermi values. This continues to be the case after inclusion
of angular momentum (Fig. 2). For example, in the case of a nucleus on
the valley of beta-stability with atomic number Z = 60, the Thomas-Fermi
barrier for angular momentum L = 70 (in units of &) is close to 13 MeV,
whereas Sierk’s value is about 8.5 MeV.

Figure 3 shows the Thomas—Fermi barriers for other nuclei on the valley
of stability, all with angular momentum L = 70. It turns out that, for
given Z, fission barriers increase significantly with neutron number. Since
the neutron separation energy decreases with increasing N, the chances
of an excited compound nucleus surviving fission go up markedly when
neutron-rich projectiles and targets are used in heavy-ion reactions designed
to produce the highest possible angular momenta. The contour lines in
Fig. 4 are labeled by the “figure of merit” A, defined as the difference
between the fission barrier By and the neutron binding B, as calculated
using the Thomas-Fermi model. The probability to emit a neutron rather
than to fission is given approximately by the standard formula

1
P~ m“_jﬁ? ) (1)

where T is a temperature. If A is negative the greatest danger of losing
the system by fission is when T is small, say of the order 0.7 MeV, towards
the end of the neutron evaporation chain. The corresponding values of
P, are indicated in Fig. 4. The dots in Fig. 4 indicate nuclei resulting
from bombardments of available targets with beams of 48Ca, followed by
the emission of four neutrons. Relatively favorable conditions prevail for
52 < Z < 62. An Ytterbium compound system is also a fair choice. Note
that adding two neutrons can increase the survival probability from, say,
5% to 50%. Figure 4 is based on calculations of dozens of neutron binding
energies and fission barriers for L = 70, using rigid-body moments of inertia.
Since one expects actual moments of inertia to be less than rigid (see later),
the absolute values of the survival probabilities in Fig. 4 may be on the
optimistic side, but relative values should nevertheless be useful as a guide.
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Fig. 1. Fission barriers of nonrotating nuclei against the fissility parameter
Z?[A(1 — 2.21%) where I = (N — Z)/A. The shaded band and the solid squares
refer to measurements. The dashed curve refers to nuclei along Green’s valley of
stability, given by N — Z = 0.44%/(200+ A), and the open circles to individual nu-
clei, as deduced from Sierk’s survey [3]. The solid curve and open squares represent
the Thomas-Fermi results.
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Fig. 2. The dependence on angular momentum of fission barriers for nuclei on the
valley of stability. Solid curves are the Thomas—Fermi results, the broken curves
refer to Sierk’s barriers.
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Fig. 3. Thomas—Fermi fission barriers for nuclei along the valley of stability with
angular momentum L = 70.
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Fig. 4. Contour plots of A, the difference between the fission barrier and the
neutron binding energy, as calculated using the Thomas—Fermi model for nuclei
with angular momentum I = 70. The contours are labeled by A, as well as by
the probability P, to emit a neutron (t¢.e., to survive fission) for a temperature
T = 0.7MeV, typical of the end of a neutron evaporation chain.

Figure 5 shows the deformation energies of 1®*Hg with L = 0, 10, 20, 30,
40, 50, 60, 70. Each curve is the result of some 30 constrained Thomas—Fermi
calculations of the binding energy, the constraint being the quadrupole mo-
ment of the rotating nucleus, taken with respect to an axis at right angles
to the rotation axis. The difference in energy between the maximum and
minimum for each curve is the Thomas—Fermi fission barrier. Also shown
as crosses are the measured binding energy of the ground state of '%*Hg and
of the L = 10,20, 30, 40, 50 rotational states of the “SD-1" superdeformed
band, whose quadrupole moment is Q9 = 17.2b. The difference between
the top of the calculated barrier and the measured rotational state gives
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Fig. 5. The binding (or deformation) energies of ®*Hg for different angular mo-
menta, plotted against Qg, the quadrupole moment with respect to an axis at
right angles to the axis of rotation. Triangles locate the saddle-point configura-
tions. Crosses refer to the measured binding energy of the ground state and to
the L = 10,20, 30,40, 50 states of the SD-1 superdeformed band in °4Hg, whose
absolute energies were determined recently. The energy differences between cor-
responding triangles and crosses provide estimates of the fission barriers in their
dependence on angular momentum.
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Fig. 6. The fission barriers for the SD-1 superdeformed band in '°**Hg, as deduced
from Fig. 5. The state with the highest observed angular momentum, L = 50, is
thus estimated to have a 5 MeV fission barrier.
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an improved estimate of the corresponding fission barrier, subject only to
the uncertainty of the calculated saddle-point energy. (There are reasons to
believe that macroscopically calculated saddle-point energies are relatively
accurate -— see the “topographic theorem” of Ref. [2].) Figure 6 shows the
fission barriers of the SD-1 band in ®*Hg calculated in this way. Figure 7
shows the saddle-point shape of '**Hg at zero angular momentum.
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Fig. 7. The saddle-point shape of 1°*Hg with L = 0. The solid curve gives (except
towards the tip) the effective sharp radius of density slices taken at right angles
to the major axis of the axially symmetric density distribution. The dashed curve
extends beyond the effective location of the major axis because of the surface
diffuseness

3. Rotational bands and moments of inertia

Reading off the sequence of calculated energies in Fig. 5 at the measured
quadrupole moment Qg = 17.2 b, one can deduce the predicted Thomas—
Fermi gamma-ray energies in the superdeformed band of '** Hg at this
quadrupole moment. The result is compared with measurements in Fig. 8.
The calculated energies are lower, implying that the rigid-body moments of
inertia used in the calculation are too high. The deduced ratio Jexp/Jrigid 18
plotted against the square of the rotation frequency (hiw)? in Fig. 9. along
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Fig. 8. The y-ray energies as functions of the angular momentum for the superde-
formed band in '9‘Hg, as found experimentally (diamonds) and as calculated using
the Thomas-Fermi model.
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with similar ratios for the SD-1 superdeformed bands in 2Dy and 32Ce,
as well as for the ground-state rotational bands for 172Hf and 23%U. The
resulting plots show the familiar trends, often interpretable quantitatively
in terms of spin alignment and the quenching of pairing interactions.
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Fig. 9. The ratio of the mcasured moment of inertia to the Thomas-Fermi rigid-
body value, as deduced from plots similar to Fig. 8, in the case of ground-state
rotational bands in 238U and !72Hf, and superdeformed SD-1 bands in **Hg, *5?Dy
and '32Ce.

We used Fig. 9 to test a speculation that the above effects might cor-
relate with a simple geometrical property of the rotating nuclei. Figure 10
illustrates the idea: a rotating deformed diffuse potential well perturbs the
particles it contains only in a region outside a core whose radius is approx-
imately equal to the minor axis of the shape in question; inside this core
the potential is virtually time-independent. It is true that for strictly inde-
pendent particles in a rotating, deformed potential this makes no difference
and (in the Thomas—Fermi approximation) the response of such a gas of
particles to rotation is always that of a rigid-body. But to the extent that
residual interactions hamper such an optimum alignment of the particles’
angular momenta, the resulting decrease of the moment of inertia might
well be correlated with the region in space where the rotation potential is
ineffective in breaking up the pairing correlations. However that may be,
Fig. 9 was used to calculate, for each nucleus, the radius of an effective inert
core such that, after its excision, the rigid moment of inertia of the remain-
der matches the measured values. Will the radii thus obtained be at all
comparable with the minor axes of the rotating shapes? Figure 11 shows
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Fig. 10. A rotating, deformed, slightly diffuse potential well is characterized by
a core where the potential exhibits no time dependence. Is there a correlation
between the size of such a core and the deviation of the observed moment of inertia

from the rigid-body value?
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Fig. 11. The deviation of the moment of inertia from the rigid-body limit in
Fig. 9 was translated into an effective inert core radius, i.e., the radius of a
core whose moment of inertia, when subtracted from the rigid-body value, would
ensure agreement with measurement. The resulting radii, in units of the rele-
vant mean transverse axis, are plotted as functions of the square of the rotational
frequency w.
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the radii of the excised cores in units of the corresponding minor axes for the
five nuclei in question (actually the mean of the two transverse minor axes of
the triaxial shapes). A more or less universal trend, not very different from
unity is, indeed, suggested. (The experimental moments of inertia in Figs. 9
and 11 were deduced by dividing the square of the angular momentum by
twice the rotational energy EroT(L); one might call this the “geometric”
moment of inertia J©) to distinguish it from the kinematic and dynamic
moments of inertia J(!) and J(2). In the case of superdeformed rotational
bands, which do not start at L = 0, the absolute value of EFroT(L) can
only be estimated by extrapolating Fror1(L) down to zero angular momen-
tum. This introduces some uncertaintity in the deduced values of J(©) over
and above the uncertaintity resulting from the inaccuracy in the estimated
angular momenta of the superdeformed bandheads.)

4. Ubiquitous superdeformations?

Whether there is a physical basis for assuming an effective inert core
remains to be seen. However, if it is really true that the moment of inertia
of a rotating nucleus may be estimated by cutting out an effective core
corresponding to an inscribed sphere, two obvious, but otherwise qualitative
predictions can be made more quantitative. Figure 12 shows the calculated
deformation energies of !**Nd with L = 60, resulting from assuming an
inert core whose radius is 0, 0.8, 0.9, or 1.0 in units of the mean transverse
axis of the rotating Thomas-Fermi nucleus. In the first case the calculated
Thomas-Fermi ground state is a slightly oblate shape with Qg close to
zero. But if a core is cut out, the moment of inertia becomes small as the
shape approaches axial symmetry for small Qp, and the rotational energy
grows correspondingly. There results a tendency to avoid small Qg values,
and equilibrium deformations with quadrupole moments in the range 10-
20 b can be expected. Thus a new type of ubiquitous superdeformed nuclei
is predicted, the superdeformation not being governed by the presence of
shell effects for special neutron and proton numbers. Figure 13 shows how
the quadrupole moments of such superdeformed shapes would grow with
increasing L for three different assumptions about the size of the inert core.

Experimentally, one might look for evidence of such superdeformations in
the lifetimes of unresolved continuum gamma rays.

The second prediction implied by Fig. 12 is a significant lowering of
fission barriers with increasing angular momentum. This is because the
relative moment of inertia of an inscribed sphere for a necked-in-saddle-
point shape is almost negligible, so that the saddle-point energy stays almost
unaffected, whilst the energy of the equilibrium shape is pushed up by the
increased rotational energy caused by the decreased moment of inertia.
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Fig. 12. An illustration in the case of !3°Nd, rotating with L = 60, of the conse-
quences of assuming that the moment of inertia can be estimated by cutting out an
effective inert core (with radius equal to 0.8, 0.9, or 1.0 times the mean transverse
axis). When such a core is excised, the resulting deformation energies predict large
equilibrium deformations and reduced fission barriers.
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Fig. 13. The equilibrium deformations, as measured by the quadrupole moment
Qo, are plotted as a function of angular momentum for *35Nd, for three values of
£, the radius of the excised core relative to the mean transverse axis.

Systematic measurements of the angular momentum dependence of fis-
sion barriers, as well as the above mentioned measurements of the lifetimes

of continuum gamma rays may throw light on the hypothesis of an effective
inert core.
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